Preface

This volume contains the conference proceedings of the 36th Annual German Conference on Artificial Intelligence (KI 2013) held September 16-20, 2013, at University of Koblenz, Germany. Initiated by the German Workshop on AI (GWAI) in 1975, the annual German Conference on Artificial Intelligence is the premier forum for German research in artificial intelligence, and attracts numerous international guests, too. The conference traditionally brings together academic and industrial researchers from all areas of AI. The conference is organized by the Special Interest Group on Artificial Intelligence of the German Informatics Society (Fachbereich Künstliche Intelligenz der Gesellschaft für Informatik e.V.). Next to KI 2013, five co-located conferences took place, including the 43rd annual German conference on informatics (Informatik2013) and the 11th MATES 2013 (German Conference on Multi-Agent System Technologies), which is jointly held with the 4th JAWS (Joint Agent Workshops in Synergy). Together, this makes a perfect basis for interesting discussions and information exchange within the AI community and to the other communities.

Over the years, artificial intelligence has become a major field in computer science in Germany, involving numerous successful projects and applications. Its applications and methods have influenced many domains and research areas, like business informatics, logistics, eHumanities, finance, cognitive sciences, and medicine. These applications become feasible on the basis of sophisticated theoretical and methodological efforts and successes in the German AI community. Thus, the theme of KI 2013 is “From Research to Innovation and Practical Applications”.

The review process was very selective. Out of 70 contributions submitted this year, the international Program Committee accepted 24 as full papers and 8 conditionally as short (poster) papers leading to an acceptance ratio of 46%. Each submission received at least three reviews and the members of the Program Committee invested considerable effort in the discussion of the submissions. The contributions cover a range of topics from agents, robotics, cognitive sciences, machine learning, swarm intelligence, planning, knowledge modeling, reasoning, and ontologies.

Together with MATES 2013, we were pleased to host four prominent invited speakers in the agent and AI community: “The Headaches of a Negotiation Support Agent” by Catholijn M. Jonker from TU Delft, “AI – Research and the Future of Automobiles” by Raúl Rojas from the Free University Berlin, and “Autonomous Systems Inspired by Biology” by Gerhard Weiss from Maastricht University.
In the first two days of the conference, five workshops with many additional presentations took place:

- Gabriele Kern-Isberner and Christoph Beierle organized the 4th Workshop on Dynamics of Knowledge and Belief
- Dirk Reichardt organized the 7th Workshop on Emotion and Computing – Current Research and Future Impact
- Joachim Baumeister and Grzegorz J. Nalepa organized the International Workshop on Knowledge Engineering and Software Engineering
- Stefan Edelkamp, Bernd Schattenberg and Jürgen Sauer organized the 27th Workshop on “Planen, Scheduling und Konfigurieren, Entwerfen”
- Marco Ragni, Michael Raschke and Frieder Stolzenburg organized the Workshop on Visual and Spatial Cognition

Additionally, together with the Informatik 2013, a doctoral mentoring program was offered at the beginning of the conference.

We would like to thank the authors and reviewers for their excellent work. Furthermore, we would like to thank Björn Pelzer, Ralf Schepers, Fabian Lorig, Ruth Ehrenstein, and Sarah Piller for their support in the organization of KI 2013. As chairs of the special interest group on AI (GI Fachbereich Künstliche Intelligenz), Antonio Krüger and Stefan Wölfl provided invaluable support in organizing KI 2013 – thank you. Last but not least, we thank the members of the KI 2013 Organizing Committee:

- Stefan Kirn
 (Industry Chair, University of Hohenheim)
- Andreas D. Lattner
 (Doctorial Consortium Chair, Goethe University Frankfurt)
- Jürgen Sauer
 (Tutorial Chair, University of Oldenburg)
- Ute Schmid
 (Workshop Chair, University of Bamberg)

July 2013

Ingo J. Timm
Matthias Thimm
Organization

General Chair

Ingo J. Timm
University of Trier, Germany

Local Chair

Matthias Thimm
University of Koblenz-Landau, Germany

Workshop Chair

Ute Schmid
University of Bamberg, Germany

Tutorial Chair

Jürgen Sauer
University of Oldenburg, Germany

Industry Chair

Stefan Kirn
University of Hohenheim, Germany

Doctoral Consortium Chair

Andreas D. Lattner
Goethe University Frankfurt, Germany

Program Committee

Klaus-Dieter Althoff
German Research Center for Artificial Intelligence (DFKI), Germany

Tamim Asfour
Karlsruhe Institute of Technology (KIT), Germany

Franz Baader
TU Dresden, Germany

Joscha Bach
Klayo AG, Berlin, Germany

Sven Behnke
University of Bonn, Germany

Ralph Bergmann
University of Trier, Germany

Philipp Cimiano
University of Bielefeld, Germany

Eliseo Clementini
University of L’Aquila, Italy

Cristobal Curio
Max Planck Institute for Biological Cybernetics, Germany
VIII Organization

Kerstin Dautenhahn University of Hertfordshire, UK
Frank Dylla University of Bremen, Germany
Stefan Funke University of Stuttgart, Germany
Johannes Fürnkranz TU Darmstadt, Germany
Christopher W Geib University of Edinburgh, UK
Birte Glimm University of Ulm, Germany
Björn Gottfried Tzi, University of Bremen, Germany
Martin Günther University of Osnabrück, Germany
Jens-Steffen Gutmann Evolution Robotics / iRobot, USA
Malte Helmert University of Basel, Switzerland
Otthein Herzog Tzi, University of Bremen, Germany
Gabriele Kern-Isberner TU Dortmund, Germany
Stefan Kirn University of Hohenheim, Germany
Thomas Kirms University of Rostock, Germany
Alexander Kleiner Linköping University, Sweden
Roman Kontchakov Birkbeck College, UK
Oliver Kramer University of Oldenburg, Germany
Ralf Krestel University of California, Irvine, USA
Torsten Kroeger Stanford University, USA
Kai-Uwe Kuehnberger University of Osnabrück, Germany
Bogdan Kwolek AGH University of Science and Technology, Poland
Gerhard Lakemeyer RWTH Aachen University, Germany
Andreas Lattner Goethe University Frankfurt, Germany
Volker Lohweg inIT - Institute Industrial IT, Germany
Benedikt Löwe Universiteit van Amsterdam, The Netherlands
Robert Mattmüller University of Freiburg, Germany
Ralf Möller TU Hamburg-Harburg, Germany
Marco Ragni University of Freiburg, Germany
Jochen Renz Australian National University, Australia
Benjamin Satzger Microsoft, USA
Jürgen Sauer University of Oldenburg, Germany
Bernd Schattenberg University of Ulm, Germany
Malte Schilling CITEC Bielefeld, Germany
Ute Schmid University of Bamberg, Germany
Lutz Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
René Schumann HES-SO, Switzerland
Jan-Georg Smaus Université de Toulouse, France
Daniel Sonntag German Research Center for Artificial Intelligence (DFKI), Germany
Luciano Spinello University of Freiburg, Germany
Steffen Staab University of Koblenz-Landau, Germany
Heiner Stuckenschmidt University of Mannheim, Germany
Matthias Thimm University of Koblenz-Landau, Germany
Ingo J. Timm University of Trier, Germany
Johanna Völker
University of Mannheim, Germany

Toby Walsh
NICTA and UNSW, Australia

Thomas Wiemann
University of Osnabrück, Germany

Stefan Wölfl
University of Freiburg, Germany

Diedrich Wolter
University of Bremen, Germany

Additional Reviewers

Holger Andreas
Denis Ponomaryov

Timothy Cerexhe
Marvin Schiller

Daniel Fleischhacker
Christoph Schwering

Johannes Knopp
Invited Talks
Autonomous Systems Inspired by Biology

Gerhard Weiss

Department of Knowledge Engineering
Maastricht University, 6211 LK Maastricht, The Netherlands
gerhard.weiss@maastrichtuniversity.nl

Abstract. We can currently see the rapid formation of an exciting multidisciplinary field focusing on the application of biological principles and mechanisms to develop autonomous systems – software agents and robots – that act highly flexible and robust in the face of environmental contingency and uncertainty. In this talk I will give an overview of various aspects of this field. The state of the art will be illustrated with diverse examples of bio-inspired approaches to system adaptivity, functional and structural optimization, collective and swarm behavior, locomotion, sensor-motor control, and (co)evolution. A focus will be on representative work on biologically inspired autonomous systems done at the Swarmlab of Maastricht University, including recent research motivated by the behavior of social insects such as bees and ants.

About the Speaker

Gerhard Weiss is full professor of artificial intelligence and computer science and Head of the Department of Knowledge Engineering (DKE), Faculty of Humanities and Sciences, Maastricht University. Before joining Maastricht University in 2009, he was the Scientific Director of Software Competence Center Hagenberg GmbH, Austria, and Assistant Professor at the Department of Computer Science of Technical University Munich, Germany. He received his PhD (Dr. rer. nat.) in computer science from Technical University Munich and his Habilitation degree from Johannes-Kepler University Linz, Austria. His main interests are in the foundations and in practical applications of artificial intelligence, multi-agent technology, and autonomous and cooperative systems. He is editorial board member of several journals related to his research fields, and he has been in the program and steering committees of various international conferences and workshops. He was a Board member of the International Foundation for Autonomous Agents and Multi-agent Systems (IFAAMAS) and of two European networks of excellence (Agentlink and Exystence). Professor Weiss has served as a reviewer for several national, European and international research funding organizations and has been engaged as a scientific consultant and advisor for industry. See also http://www.weiss-gerhard.info.
AI – Research and the Future of Automobiles

Raúl Rojas

Department of Mathematics and Computer Science
Free University of Berlin, 14195 Berlin, Germany
Raul.Rojas@fu-berlin.de

Abstract. In this talk I will reflect on the development of autonomous cars during the last ten years, and also on the open research problems for the next decade. As we will see, accurate sensing is not a problem for mobile robots. Laser scanners and video cameras provide more than enough data for the purposes of safe navigation. However, making sense of this data is still a hard problem in some situations in real traffic. Humans are good at recognizing and predicting intentions and behavior – computers are still bad at this task. I will show videos of our experiments in the field driving in three countries and will speculate about the possible avenues of research for making robotic cars a reality.

About the Speaker

Raúl Rojas has been a full professor of Artificial Intelligence and Robotics since 1997 at Freie Universität Berlin. He received his PhD and venia legendi (habilitation) at this university. He studied mathematics and physics, as well as economics, in Mexico City. After the habilitation, he was appointed visiting professor in Viena and later professor of Artificial Intelligence at Martin-Luther-University Halle (1994-1997). Raúl Rojas’ initial research was dedicated to the design and the construction of Prolog computers for Artificial Intelligence at GMD-FIRST. Today, he is working on a broad field of pattern recognition topics with special focus on neural networks and developing robots for various applications. With the FU-Fighters he won the world championship in RoboCup in 2004 and 2005. From 2006 on, he and his team have been developing autonomous vehicles, which were certified for city traffic in 2011. For his research on computer vision, Raúl Rojas received the Technology Transfer Award from the Technologiestiftung Berlin (Foundation for Innovation and Technology). He was appointed a member of the Mexican Academy of Sciences in 2011.
The Headaches of a Negotiation Support Agent

Catholijn M. Jonker

Department of Intelligent Systems
Delft University of Technology, 2628 CD Delft, The Netherlands
C.M.Jonker@tudelft.nl

Abstract. Negotiation is a complex process as it poses challenges to the negotiator on both the emotional plane as well as on the computational plane. Human negotiators are known to leave money on the table, have trouble getting a clear view of their own preferences and those of their negotiation partner, and sometimes find it difficult to deal with their own emotions and those of their negotiation partner. In this talk I will briefly outline the Pocket Negotiator project and its prototype. I will show some solutions developed during the project and will discuss some of the open challenges. In terms of research fields, I combine Artificial Intelligence, Affective Computing, and Human Computer Interaction.

To find out more about the Pocket Negotiator project, please visit http://mmi.tudelft.nl/negotiation/index.php/Pocket_Negotiator

To try out the prototype, please use Chrome or FireFox to visit http://ii.tudelft.nl:8080/PocketNegotiator/index.jsp

About the Speaker

Catholijn Jonker (1967) is full professor of Man-Machine Interaction at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology. She studied computer science, and did her PhD studies at Utrecht University. After a post-doc position in Bern, Switzerland, she became assistant (later associate) professor at the Department of Artificial Intelligence of the Vrije Universiteit Amsterdam. From September 2004 until September 2006 she was a full professor of Artificial Intelligence / Cognitive Science at the Nijmegen Institute of Cognition and Information of the Radboud University Nijmegen. She chaired De Jonge Akademie (Young Academy) of the KNAW (The Royal Netherlands Society of Arts and Sciences) in 2005 and 2006, and she was a member of the same organization from 2005 to 2010. She is a board member of the National Network Female Professors (LNVH) in The Netherlands. Her publications address cognitive processes and concepts such as trust, negotiation, teamwork and the dynamics of individual agents and organizations. In Delft she works with an interdisciplinary team to create synergy between humans and technology by understanding, shaping and using fundamentals of intelligence and interaction. End 2007 her NWO-STW VICI project “Pocket Negotiator” was awarded. In this project she develops intelligent decision support systems for negotiation. See also http://ii.tudelft.nl/~catholijn.
Table of Contents

Using State-Based Planning Heuristics for Partial-Order Causal-Link Planning .. 1
Pascal Bercher, Thomas Geier, and Susanne Biundo

Workflow Clustering Using Semantic Similarity Measures 13
Ralph Bergmann, Gilbert Müller, and Daniel Wittkowsky

Empathy and Its Modulation in a Virtual Human 25
Hana Boukricha, Ipke Wachsmuth, Maria Nella Carminati, and Pia Knoeferle

Cognitive Workload of Humans Using Artificial Intelligence Systems: Towards Objective Measurement Applying Eye-Tracking Technology ... 37
Ricardo Buettner

Computing Role-Depth Bounded Generalizations in the Description Logic \mathcal{ELOR} .. 49
Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan

Parallel Variable Elimination on CNF Formulas 61
Kilian Gebhardt and Norbert Manthey

Agent-Based Multimodal Transport Planning in Dynamic Environments ... 74
Christoph Greulich, Stefan Edelkamp, and Max Gath

On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs in Astronomy ... 86
Justin Heinermann, Oliver Kramer, Kai Lars Polsterer, and Fabian Gieseke

On Mutation Rate Tuning and Control for the (1+1)-EA 98
Oliver Kramer

Variable Neighborhood Search for Continuous Monitoring Problem with Inter-Depot Routes .. 106
Vera Mersheeva and Gerhard Friedrich

Advances in Accessing Big Data with Expressive Ontologies 118
Ralf Möller, Christian Neuenstadt, Özgür L. Özcep, and Sebastian Wandelt
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating the Driver’s Workload: Using Smartphone Data to Adapt</td>
<td>130</td>
</tr>
<tr>
<td>In-Vehicle Information Systems</td>
<td></td>
</tr>
<tr>
<td>Christina Ohm and Bernd Ludwig</td>
<td></td>
</tr>
<tr>
<td>Pattern-Database Heuristics for Partially Observable Nondeterministic</td>
<td>140</td>
</tr>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Manuela Ortlieb and Robert Mattmüller</td>
<td></td>
</tr>
<tr>
<td>Automated Theorem Proving with Web Services</td>
<td>152</td>
</tr>
<tr>
<td>Björn Pelzer</td>
<td></td>
</tr>
<tr>
<td>Local SVM Constraint Surrogate Models for Self-adaptive Evolution</td>
<td>164</td>
</tr>
<tr>
<td>Strategies</td>
<td></td>
</tr>
<tr>
<td>Jendrik Poloczek and Oliver Kramer</td>
<td></td>
</tr>
<tr>
<td>Changes of Relational Probabilistic Belief States and Their</td>
<td>176</td>
</tr>
<tr>
<td>Computation under Optimum Entropy Semantics</td>
<td></td>
</tr>
<tr>
<td>Nico Potyka, Christoph Beierle, and Gabriele Kern-Isberner</td>
<td></td>
</tr>
<tr>
<td>Translating Single-Player GDL into PDDL</td>
<td>188</td>
</tr>
<tr>
<td>Thorsten Rauber, Peter Kissmann, and Jörg Hoffmann</td>
<td></td>
</tr>
<tr>
<td>Comparison of Sensor-Feedback Prediction Methods for Robust</td>
<td>200</td>
</tr>
<tr>
<td>Behavior Execution</td>
<td></td>
</tr>
<tr>
<td>Christian Rauch, Elmar Berghöfer, Tim Köhler, and Frank Kirchner</td>
<td></td>
</tr>
<tr>
<td>Ingredients and Recipe for a Robust Mobile Speech-Enabled Cooking</td>
<td>212</td>
</tr>
<tr>
<td>Assistant for German</td>
<td></td>
</tr>
<tr>
<td>Ulrich Schäfer, Frederik Arnold, Simon Ostermann, and Saskia Reifers</td>
<td></td>
</tr>
<tr>
<td>A Philosophical Foundation for Ontology Alignments –</td>
<td>224</td>
</tr>
<tr>
<td>The Structuralistic Approach</td>
<td></td>
</tr>
<tr>
<td>Christian Schäufler, Clemens Beckstein, and Stefan Artmann</td>
<td></td>
</tr>
<tr>
<td>Contraction Hierarchies on Grid Graphs</td>
<td>236</td>
</tr>
<tr>
<td>Sabine Storandt</td>
<td></td>
</tr>
<tr>
<td>Mastering Left and Right – Different Approaches to a Problem That Is</td>
<td>248</td>
</tr>
<tr>
<td>Not Straight Forward</td>
<td></td>
</tr>
<tr>
<td>André van Delden and Till Mossakowski</td>
<td></td>
</tr>
<tr>
<td>Move Prediction in Go – Modelling Feature Interactions Using Latent</td>
<td>260</td>
</tr>
<tr>
<td>Factors</td>
<td></td>
</tr>
<tr>
<td>Martin Wistuba and Lars Schmidt-Thieme</td>
<td></td>
</tr>
<tr>
<td>Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple</td>
<td>272</td>
</tr>
<tr>
<td>Models and Improve Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Claus Zinn</td>
<td></td>
</tr>
</tbody>
</table>
Combining Conditional Random Fields and Background Knowledge for Improved Cyber Security .. 284
 Carsten Elfers, Stefan Edelkamp, and Hartmut Messerschmidt

Adapting a Virtual Agent’s Conversational Behavior by Social Strategies .. 288
 Nikita Mattar and Ipke Wachsmuth

Encoding HTN Heuristics in PDDL Planning Instances 292
 Christoph Mies and Joachim Hertzberg

Towards Benchmarking Cyber-Physical Systems in Factory Automation Scenarios .. 296
 Tim Niemueller, Daniel Ewert, Sebastian Reuter, Ulrich Karras, Alexander Ferrein, Sabina Jeschke, and Gerhard Lakemeyer

Syntactic Similarity for Ranking Database Answers Obtained by Anti-Instantiation ... 300
 Lena Wiese

Towards the Intelligent Home: Using Reinforcement-Learning for Optimal Heating Control ... 304
 Alexander Zenger, Jochen Schmidt, and Michael Krödel

A Prolog-Based Tutor for Multi-column Subtraction with Multiple Algorithms Support .. 308
 Claus Zinn

Author Index ... 313