T-Labs Series in Telecommunication Services

Series Editors

Sebastian Möller, TU Berlin and Telekom Innovation Laboratories, Berlin, Germany
Axel Küpper, TU Berlin and Telekom Innovation Laboratories, Berlin, Germany
Alexander Raake, TU Berlin and Telekom Innovation Laboratories, Berlin, Germany

For further volumes:
http://www.springer.com/series/10013
Dimension-based Quality Modeling of Transmitted Speech
Preface

In the present book, speech transmission quality is modeled on the basis of perceptual dimensions that are relevant for today’s public-switched and packet-based telecommunication systems. The complete transmission path from the mouth of the speaker to the ear of the listener is regarded, and both narrowband (300–3400 Hz) as well as wideband (50–7000 Hz) speech transmission are taken into account. A new analytical assessment method is developed that allows the dimensions to be rated by non-expert listeners, and a new parametric model for the quality estimation of transmitted speech based on the perceptual dimensions is derived.

This book was created within the scope of my dissertation at the Institute of Communication Acoustics (IKA) at Ruhr-University Bochum, and to the largest extent at the Quality and Usability Lab at TU Berlin, which in turn is part of Telekom Innovation Laboratories (T-Labs). During the last years, a large number of individuals supported my scientific activities at both professional and personal levels. First of all, I owe my deepest gratitude to my colleague and supervisor Prof. Sebastian Möller for enabling this work, for his advice, for the scientific freedom he provided, for many fruitful discussions, and for the ongoing motivation, his patience, and his trust also in difficult times. I am truly indebted to Prof. Ulrich Heute for his interest in my work, his ideas, numerous inspiring discussions, and for his willingness to co-supervise and examine the present work. I would also like to thank my colleague Prof. Alexander Raake for the longstanding company through different stages of my scientific career, his ideas and the motivation, and for numerous intensive and in-depth discussions. I would not have met these excellent teachers if Prof. Jens Blauert had not introduced me to the fascinating topics of technical acoustics and communication acoustics in his Bochum lectures when I was an undergraduate, which I greatly appreciate.

I am particularly thankful to Kirstin Scholz for the productive and exciting collaboration over several years, for sharing her thoughts in countless valuable discussions, and for the review of large parts of an earlier version of this book. The close collaboration with Nicolas Côté was always a pleasure for which I would like to express him my gratitude. I am also very grateful to Lu Huo and Błażej Lewcio for contributing their expertise in many joint research efforts.
I would like to acknowledge the very friendly, diverse, and supportive atmosphere at T-Labs and I am obliged to many of my colleagues who supported and advised me in different concerns, in particular Ina Wechsung, Robert Schleicher, Sascha Spors, Jens Ahrens, Tim Polzehl, Benjamin Weiss, Benjamin Belmudez, Jan-Niklas Antons, Christine Kühnel, Marie-Neige Garcia, Anja Naumann, Matthias Geier, Juan-Pablo Ramírez, Klaus-Peter Engelbrecht, Pablo Vidalés, and Niklas Kirschnich. Moreover, I would like to thank Irene Hube-Achter, Tobias Hirsch, Klaus-Jürgen Buß, and their great teams for the administrative support and for providing more than the obligatory resources. I am also very grateful to Falk Schiffner and Ulrike Stiefelhagen for the organization and realization of many auditory experiments. Besides these individuals, I would also like to thank all the “new” colleagues for their impressive support during my doctoral defence.

It is a great pleasure to thank Jens Berger, Hans-Wilhelm Gierlich, Vincent Barriac, and other colleagues from Study Group 12 of the International Telecommunication Union (ITU-T) for sharing their expertise and for being so open-minded to newcomers.

For their financial support, I am grateful to the Deutsche Forschungsgemeinschaft (DFG).

My special thanks go to my family and friends (to which many of the above-mentioned colleagues belong) for their empathy, their moral support, and for the joyful moments during the last years. Finally, and most important, I would sincerely like to thank Joanna. This work would not have been possible without all her support, her patience, and her ongoing encouragement.

Berlin, September 2012
Marcel Wältermann
Contents

1 Introduction .. 1

2 A Dimension-Based Approach to Mouth-to-Ear Speech Transmission Quality .. 5
 2.1 General Research Scenario 5
 2.2 Speech Transmission in Telecommunication 9
 2.2.1 Introduction 9
 2.2.2 Mouth to Channel 10
 2.2.3 Channel .. 18
 2.2.4 Channel to Ear 19
 2.3 Perception of Transmitted Speech 22
 2.3.1 Introduction 22
 2.3.2 Schematic of a Listener 23
 2.3.3 Perceptual Features and Dimensions 25
 2.3.4 Integral Quality, Quality Features and Dimensions, and Quality Elements 26
 2.3.5 QoS and QoE Terminology 28
 2.4 Auditory Quality Measurement 29
 2.4.1 Listener as a Measuring Organ 29
 2.4.2 Scaling Functions 30
 2.4.3 Psychometric Methods 31
 2.4.4 Personal and External Modifying Factors and Some Countermeasures 38
 2.4.5 Scale Transformation 42
 2.4.6 Towards a Universal Continuum for Perceptual Value .. 45
2.5 Dimension-Based Quality Models ... 46
 2.5.1 Principle ... 46
 2.5.2 Vector Model and Ideal-Point Model 47
 2.5.3 Combination of Impairments .. 50
2.6 Instrumental Quality Measurement ... 51
 2.6.1 Introduction ... 51
 2.6.2 Signal-Based Instrumental Models 54
 2.6.3 The E-Model, a Parametric Instrumental Model 56
2.7 Research Topics Covered in this Book 60

3 Quality Feature Space of Transmitted Speech 63
 3.1 Introduction ... 63
 3.2 Experimental Paradigms .. 64
 3.2.1 Pairwise Similarity and MDS 65
 3.2.2 Semantic Differential and PCA 66
 3.2.3 Three-way Models .. 67
 3.3 Literature Review: Speech-Quality Features and Dimensions 68
 3.4 Experimental Set-Up ... 73
 3.4.1 Speech Samples ... 73
 3.4.2 Test Room and Participants 76
 3.5 Determination of SD Attributes 77
 3.6 Multidimensional Analyses ... 78
 3.6.1 Speaker/Sentence- and Subject-dependency of the Data 78
 3.6.2 Resulting Perceptual Dimensions 80
 3.7 Relevance for Quality .. 88
 3.8 Conclusions ... 90
 3.9 Considerations on a “Loudness Feature” 91
 3.10 Global Dimensions Versus Local Dimensions 93

4 Direct Scaling of Speech Quality Dimensions 95
 4.1 Introduction .. 95
 4.2 Dimension Rating Scales .. 96
 4.3 Test Procedure .. 97
 4.3.1 General ... 97
 4.3.2 Dimension Assessment ... 98
 4.3.3 Number of Test Stimuli and Overall Test Duration 100
 4.3.4 Details on the Experiment Organization 100
 4.4 Application ... 102
 4.4.1 Speech Samples ... 102
 4.4.2 Test Room and Participants 104
4.5 Results and Analysis .. 104
4.5.1 General Characteristics of the Data 104
4.5.2 Speaker/Sentence- and Subject-Dependency of the Data 106
4.5.3 Relevant Effects .. 106
4.5.4 Example Quality and Dimension Scores 108
4.6 Conclusions ... 111

5 Instrumental Dimension-Based Speech Quality Modeling 115
5.1 Introduction ... 115
5.2 Dimension-Based Quality Model 116
5.2.1 Total Impairment ... 116
5.2.2 Dimension Impairment Factors 118
5.2.3 Distance Model .. 120
5.3 Instrumental Dimension Models 125
5.3.1 Introduction ... 125
5.3.2 Estimation of “Discontinuity” 125
5.3.3 Estimation of “Noisiness” 133
5.3.4 Estimation of “Coloration” 145
5.4 Dimension-Based Estimation of Integral Quality: The DNC-Model .. 150
5.4.1 Introduction ... 150
5.4.2 DNC-Model ... 151
5.4.3 Evaluation ... 152
5.5 Signal-Based Instrumental Quality Models Based on Dimensions .. 158
5.6 Conclusions ... 160

6 Conclusions and Future Work .. 163

Appendix A: Logistic and Log-Logistic Functions 169
Appendix B: E-Model Algorithms 173
Appendix C: Experiments .. 181

References ... 195
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE</td>
<td>Artificial Bandwidth Extension</td>
</tr>
<tr>
<td>ACR</td>
<td>Absolute Category Rating</td>
</tr>
<tr>
<td>ADPCM</td>
<td>Adaptive Differential Pulse Code Modulation</td>
</tr>
<tr>
<td>AEC</td>
<td>Acoustic Echo Cancelation</td>
</tr>
<tr>
<td>AMR</td>
<td>Adaptive Multi-rate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BeTR</td>
<td>Bellcore Transmission Rating Model</td>
</tr>
<tr>
<td>CANDECOMP</td>
<td>Canonical Decomposition</td>
</tr>
<tr>
<td>CELP</td>
<td>Code-excited Linear Prediction</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>DAM</td>
<td>Diagnostic Acceptability Measure</td>
</tr>
<tr>
<td>DECT</td>
<td>Digital Enhanced Cordless Telecommunications</td>
</tr>
<tr>
<td>DIAL</td>
<td>Diagnostic Instrumental Assessment of Listening-quality</td>
</tr>
<tr>
<td>DIF</td>
<td>Dimension Impairment Factor</td>
</tr>
<tr>
<td>DNC</td>
<td>Discontinuity-Noisiness-Coloration</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>DTX</td>
<td>Discontinuous Transmission</td>
</tr>
<tr>
<td>ERP</td>
<td>Ear Reference Point</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>FB</td>
<td>Fullband (20–20000 Hz)</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>HATS</td>
<td>Head and Torso Simulator</td>
</tr>
<tr>
<td>HFT</td>
<td>Hands-free Terminal</td>
</tr>
<tr>
<td>IDIOSCAL</td>
<td>Individual Differences in Orientation Scaling</td>
</tr>
<tr>
<td>INDSCAL</td>
<td>Individual Differences Scaling</td>
</tr>
<tr>
<td>IRS</td>
<td>Intermediate Reference System</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>LBR</td>
<td>Low-bitrate Redundancy</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Prediction</td>
</tr>
</tbody>
</table>
LPC Linear Predictive Coding
LTI Linear Time-invariant
LTP Long-term Predictor
MANOVA Multivariate Analysis of Variance
MDS Multidimensional Scaling
MNRU Modulated Noise Reference Unit
MOS Mean Opinion Score
MRP Mouth Reference Point
NB Narrowband (300–3400 Hz)
NR Noise Reduction
OLR Overall Loudness Rating
OSI Open Systems Interconnection
PARAFAC Parallel Factor Analysis
PC Principal Component
PCA Principal Component Analysis
PCM Pulse Code Modulation
PESQ Perceptual Evaluation of Speech Quality
PLC Packet-loss Concealment
POLQA Perceptual Objective Listening Quality Assessment
PS Pairwise Similarity
PSTN Public Switched Telephone Network
QoE Quality of Experience
QoS Quality of Service
RELP Residual-excited Linear Prediction
RLR Receive Loudness Rating
RTCP RTP Control Protocol
RTP Real-time Transport Protocol
SD Semantic Differential
SDP Session Description Protocol
SIP Session Initiation Protocol
SNR Signal-to-noise Ratio
SLR Send Loudness Rating
SVD Singular Value Decomposition
SWB Super-wideband (50–14000 Hz)
TCP Transmission Control Protocol
TOSQA Telecommunication Objective Speech-Quality Assessment
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
VAD Voice Activity Detection
VoIP Voice over Internet Protocol
WB Wideband (50–7000 Hz)