Lecture Notes in Computer Science 7219

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany
Youssef Hamadi Marc Schoenauer (Eds.)

Learning and Intelligent Optimization

6th International Conference, LION 6
Paris, France, January 16-20, 2012
Revised Selected Papers

Springer
This LION conference (Learning and Intelligent OptimizatioN) was the sixth in a series of conferences that target the interface between optimization and machine learning, and the ever increasing success of these events bears witness to the growing interest of the scientific community in this research area today, as confirmed by the 109 submissions from 39 different countries that we received for this year’s event. We would like to thank all of the authors for submitting some of their best work to LION 6.

Of the 109 submissions, there were 78 long papers and 21 short papers presenting original work, and 10 papers presenting work that had already been published. Due to this very high pressure, and the single-track format of the conference, we chose to give room to original works rather than works already published, regardless of the quality of the papers.

Out of these 99 original submissions, 24 papers were accepted as long papers (hence an acceptance rate of 31%), and 30 papers were accepted as short papers (19 that had been submitted as long papers, and 5 that had been submitted as short papers). All long papers were assigned to 3 independent reviewers, and all papers received at least 2 reviews. Note that the papers submitted to the special sessions were assigned by the special session chairs, except the ones that were authored by some of the session chairs. These were handled by the conference chairs, to ensure the anonymity of the reviewers (similarly, papers authored by one of the conference co-chairs were handled by the other co-chair and one member of the steering committee, unknown by the authors). We wish to heartily thank here all the reviewers (not anonymous any more, see next pages) for their hard and timely work, emphasizing the importance of such peer review, the best (if not only) way we know today to make a review process as fair as possible.

Because LION is a unique occasion for people from different research communities, the conference was single track (no parallel sessions) and the program left room for interaction among attendees with long coffee breaks. For the same reason, though the presentations of long papers (resp. short papers) were scheduled with 25minute (resp. 15minute) slots, the presentations themselves were not allowed more than 20minutes (resp. 12minutes), allowing time for questions and discussions. We want to thank here the session chairs, who were very strict on respecting these constraints, and thus made sure that the conference ran smoothly.

The final program of the conference also included 3 invited speakers, who presented forefront research results and frontiers, and 3 tutorial talks, which were crucial in bringing together the different components of the LION community. We wish to thank all these speakers who focused on different aspects of LION themes, and thus contributed to a better view and understanding of intelligent optimization at large.
Beside the authors, the reviewers, and the invited speakers, there are other people who made this event possible whom we wish to thank: Pierre-Louis Xech (Microsoft France), for arranging the venue at Microsoft France Technology Center, and smoothing out many small details that would otherwise have become incredibly time-consuming; Pietro Zanoni (Reactive Search Inc.), for setting up and diligently maintaining the conference Web site; Mireille Moulin (INRIA Saclay Île-de-France, Finance Department), for taking care of all the financial details with efficiency and flexibility; Esther Slamitz (INRIA Saclay Île-de-France, Events Department), for looking up and planning all local arrangements; Emmanuelle Perrot (INRIA Saclay Île-de-France, Communication Department), for providing many goodies, …including the printing of the conference booklet; Chantal Girodon (INRIA Rocquencourt, Conferences & Seminars Office), for managing the registration system; and last but not least, Marie-Carol Lopes, for her tremendous help in gathering and formatting the material for these proceedings.

Finally, we would like to thank our sponsors, Microsoft Research, Microsoft France, and INRIA Saclay Île-de-France, for their financial support, which helped to keep the registration fees reasonable.
Organization

LION Steering Committee

Roberto Battiti (Chair) Università degli Studi di Trento, Italy
Christian Blum Universitat Politècnica de Catalunya, Spain
Mauro Brunato Università degli Studi di Trento, Italy
Martin Charles Columbic University of Haifa, Israel
Holger Hoos University of British Columbia, Canada
Thomas Stützle Université Libre de Bruxelles, Belgium
Benjamin W. Wah The Chinese University of Hong Kong, China
Xin Yao University of Birmingham, UK

Scientific Liaison with Springer

Thomas Stützle Université Libre de Bruxelles, Belgium

Web Chair

Pietro Zanoni Reactive Search SrL, Italy

Program Committee

Patrick Albert IBM France
Ethem Alpaydın Bogazici University, Turkey
Carlos Ansótegui Universitat de Lleida, Spain
Josep Argelich Universitat de Lleida, Spain
AnneAuger INRIA Saclay Île-de-France, France
Ender Özcan University of Nottingham, UK
Roberto Battiti University of Trento, Italy
Mauro Birattari Université Libre de Bruxelles, Belgium
Christian Blum Universitat Politècnica de Catalunya, Spain
Lucas Bordeaux Microsoft Research Cambridge, UK
Peter Bosman CWI, Amsterdam, The Netherlands
Jürgen Branke University of Warwick, UK
Dimo Brockhoff INRIA Lille Nord-Europe, France
Mauro Brunato Università di Trento, Italy
Alba Cabiscol Universitat de Lleida, Spain
Philippe Codognet Japanese-French Laboratory for Informatics, and Université Paris 6, France
Carlos Coello Coello CINVESTAV, Mexico
VIII Organization

Pierre Collet
Université de Strasbourg, France
Carlos Cotta
Universidad de Malaga, Spain
Peter Demeester
KaHo Sint-Lieven, Belgium
Clarisse Dhaenens
University of Lille 1 and INRIA Lille Nord-Europe, France
Luca Di Gaspero
DIEGM - Università degli Studi di Udine, Italy
Karl F. Doerner
Johannes Kepler University Linz, Austria
Andries Engelbrecht
University of Pretoria, South Africa
Antonio J. Fernandez Leiva
Universidad de Málaga, Spain
Álvaro Fialho
Nokia Institute of Technology, Brazil
Valerio Freschi
University of Urbino, Italy
Cyril Furtlehner
INRIA Saclay Île-de-France, France
Ruben Ruiz Garcia
Universidad Politécnica de Valencia, Spain
Walter J. Gutjahr
University of Vienna, Austria
Nikolaus Hansen
INRIA Saclay Île-de-France, France
Jin-Kao Hao
University of Angers, France
Geir Hasle
SINTEF Applied Mathematics, Oslo, Norway
Federico Heras
University College Dublin, Ireland
Francisco Herrera
University of Granada, Spain
Tomio Hirata
Nagoya University, Japan
Holger Hoos
University of British Columbia, Canada
Frank Hutter
University of British Columbia, Canada
Matthew Hyde
University of Nottingham, UK
Mark Jelasity
University of Szeged, Hungary
Yaochu Jin
University of Surrey, UK
Laetitia Jourdan
LIFL and INRIA Lille Nord-Europe, France
Narendra Jussien
Ecole des Mines de Nantes, France
Zeynep Kiziltan
University of Bologna, Italy
Jiri Kubalik
Czech Technical University in Prague, Czech Republic
Arnaud Lallouet
Université de Caen, France
Frédéric Lardeux
Université d’Angers, France
Manuel López-Ibáñez
IRIDIA, CoDE, Université Libre de Bruxelles, Belgium
Jordi Levy
IIIa-CSIC, Spain
Chu-Min Li
Université de Picardie Jules Verne, France
Arnaud Liefooghe
Université Lille 1, France
Vittorio Maniezzo
University of Bologna, Italy
Felip Manya
IIIa-CSIC, Spain
Ruben Martins
INESC-ID Lisboa, Portugal
Bernd Meyer
Monash University, Australia
Zbigniew Michalewicz
University of Adelaide, Australia
Nicolas Monmarché
Université de Tours, France
Nysret Musliu
Vienna University of Technology, Austria
Amir Nakib
University of Paris-Est Créteil, France
Gabriela Ochoa
Djamila Ouelhadj
Gisele Pappa
Panos M. Pardalos
Marcello Pelillo
Vincenzo Piuri
Jordi Planes
Günther R. Raidl
Celso C. Ribeiro
Florian Richoux
Andrea Roli

Wheeler Rumil
Thomas Runarsson
Ilya Safro
Lakhdar Sais
Horst Samulowitz
Frédéric Saubion
Pierre Savéant
Andrea Schaerf
Michèle Sebag
Yaroslav D. Sergeyev
Patrick Siarry
Thomas Stützle
Ke Tang

Olivier Teytaud
Dirk Thierens
Jose Torres Jimenez
Tamara Ulrich
Greet Vanden-Berghe
Sébastien Vérèl
Stefan Voss
Toby Walsh
David L. Woodruff
Shin Yoo
Zhu Zhu

University of Nottingham, UK
University of Portsmouth, UK
Universidade Federal de Minas Gerais, Brazil
University of Florida, USA
University of Venice, Italy
Università degli Studi di Milano, Italy
Universitat de Lleida, Spain
Vienna University of Technology, Austria
Universidade Federal Fluminense, Brazil
CNRS / University of Tokyo, Japan
Alma Mater Studiorum Università di Bologna, Italy
University of New Hampshire, USA
University of Iceland, Iceland
Argonne National Laboratory, USA
Université de Lens, France
IBM Research, USA
Université d’Angers, France
Thalès Research & Technology, France
University of Udine, Italy
CNRS - LRI, Université Paris-Sud, France
Università della Calabria, Italy
Université Paris-Est Créteil, France
Université Libre de Bruxelles, Belgium
University of Science and Technology of China, China
INRIA Saclay Île-de-France, France
Utrecht University, The Netherlands
CINVESTAV, Mexico
ETH Zurich, Switzerland
CODES - KAHO Sint-Lieven, Belgium
Université de Nice, France
University of Hamburg, Germany
NICTA and UNSW, Australia
University of California, Davis, USA
University College London, UK
Université de Picardie, France
Invited Talks

Optimization problems and algorithms for the high-level control of dynamic systems
Gérard Verfaillie
ONERA, France

Abstract: The high-level control of dynamic systems, such as aircraft, airports, air traffic, or spacecraft, consists in deciding at each control step on which action(s) to be performed as a function of current observations and objectives. Successive decisions must entail that the dynamics of the controlled system satisfies user objectives as best as possible. To do so, a usual approach, inspired from the Model Predictive Approach in Automatic Control consists at each control step in (i) collecting current observations and objectives (ii) solving a deterministic planning problem over a given horizon ahead, (iii) extracting the first action from the best plan produced, (iv) applying it, and (v) considering the next step. From the optimization point of view, this implies to be able to solve quickly many successive similar planning problems over a sliding horizon, maybe not in an optimal way. I will try to present and illustrate this approach and to explain the potential impact of learning techniques.

Short bio:
Graduated from école Polytechnique (Paris) in 1971 and from SUPAéro (French national engineering school in aeronautics and space, Computer science specialization, Toulouse) in 1985, Gérard Verfaillie is now Research supervisor at ONERA (The French Aerospace Lab). His research activity is related to models, methods, and tools for combinatorial optimization and constrained optimization, especially for planning and decision-making.

Autonomous Search
Frédéric Saubion
Université d'Angers, France

Abstract: Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex, which means that they are hard to reproduce and often harder to fine tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools became out of reach for practitioners. Autonomous search represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis
of the performances of the solving process – including short-term reactive reconfig-
uration and long-term improvement through self-analysis of the performance,
offline tuning and online control, and adaptive control and supervised control.
Autonomous search “crosses the chasm” and provides engineers and practition-
ers with systems that are able to autonomously self-tune their performance while
effectively solving problems. In this talk, we review existing works and we at-
ttempt to classify the different paradigms that have been proposed during past
years to build more autonomous solvers. We also draw some perspectives and
futures directions.

Short bio: Frédéric Saubion coheads the Metaheuristics, Optimization and Ap-
plications team at the Université d’Angers (France); his research topics include
hybrid and adaptive evolutionary algorithms and applications of metaheuristics
to various domains such as information retrieval, nonmonotonic reasoning and
biology. www.info.univ-angers.fr/pub/saubion

Surrogate-Assisted Evolutionary Optimisation: Past, Present and Future
Yaochu Jin
Nature-Inspired Computing and Engineering Group, Department
of Computing,
University of Surrey, UK

Abstract: Surrogate-assisted (or meta-model based) evolutionary computation
uses efficient computational models, often known as surrogates or meta-models,
for approximating the fitness function in evolutionary algorithms. Research on
surrogate-assisted evolutionary computation began over a decade ago and has re-
ceived considerably increasing interest in recent years. Very interestingly, surrogate-
assisted evolutionary computation has found successful applications not only in
solving computationally expensive single- or multi-objective optimization prob-
lems, but also in addressing dynamic optimization problems, constrained opti-
mization problems and multi-modal optimization problems. This talk provides
an up-to-date overview of the history and recent developments in surrogate-
assisted evolutionary computation and suggests a few future trends in this re-
search area.

Short bio: Yaochu Jin received the B.Sc., M.Sc., and Ph.D. degrees from Zhe-
jiang University, China, in 1988, 1991, and 1996, respectively, and the Dr.-Ing.
Degree from Ruhr University Bochum, Germany, in 2001. He is a Professor of
Computational Intelligence and Head of the Nature Inspired Computing and
Engineering (NICE) Group, Department of Computing, University of Surrey,
UK. He was a Principal Scientist with the Honda Research Institute Europe in
Germany. His research interests include understanding evolution, learning and
development in biology and bio-inspired approaches to solving engineering prob-
lems. He (co)authored over 130 peer-reviewed journal and conference papers. He
is an Associate Editor of BioSystems, IEEE Transactions on Neural Networks, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on Nanobioscience, and IEEE Computational Intelligence Magazine. He has delivered over ten Plenary/Keynote speeches at international conferences on multi-objective machine learning, computational modeling of neural development, morphogenetic robotics and evolutionary design optimization. He is the General Chair of the 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. He presently chairs the Intelligent System Applications Technical Committee of the IEEE Computational Intelligence Society. Professor Jin is a Fellow of BCS and Senior Member of IEEE.
Addressing Numerical Black-Box Optimization: CMA-ES
Anne Auger and Nikolaus Hansen
INRIA Saclay Île-de-France

Abstract: Evolution Strategies (ESs) and many continuous domain Estimation of Distribution Algorithms (EDAs) are stochastic optimization procedures that sample a multivariate normal (Gaussian) distribution in the continuous search space, \mathbb{R}^n. Many of them can be formulated in a unified and comparatively simple framework. This introductory tutorial focuses on the most relevant algorithmic question: how should the parameters of the sample distribution be chosen and, in particular, updated in the generation sequence? First, two common approaches for step-size control are reviewed, one-fifth success rule and path length control. Then, Covariance Matrix Adaptation (CMA) is discussed in depth: rank-one update, the evolution path, rank-mu update. Invariance properties and the interpretation as natural gradient descent are touched upon. In the beginning, general difficulties in solving non-linear, non-convex optimization problems in continuous domain are revealed, for example non-separability, ill-conditioning and ruggedness. Algorithmic design aspects are related to these difficulties. In the end, the performance of the CMA-ES is related to other well-known evolutionary and non-evolutionary optimization algorithms, namely BFGS, DE, PSO,...

Short bios: Anne Auger is a permanent researcher at the French National Institute for Research in Computer Science and Control (INRIA). She received her diploma (2001) and PhD (2004) in mathematics from the Paris VI University. Before to join INRIA, she worked for two years (2004–2006) at ETH in Zurich. Her main research interest is stochastic continuous optimization including theoretical aspects and algorithm designs. She is a member of ACM-SIGECO executive committee and of the editorial board of Evolutionary Computation. She has been organizing the biannual Dagstuhl seminar “Theory of Evolutionary Algorithms” in 2008 and 2010. Nikolaus Hansen is researcher at The French National Institute for Research in Computer Science and Control (INRIA). He received a Ph.D. in civil engineering in 1998 from the Technical University Berlin under Ingo Rechenberg. Before joining INRIA, he has been working in applied artificial intelligence and in genomics, and he has been researching in evolutionary computation and computational science at the Technical University Berlin and the ETH Zurich. His main research interests are learning and adaptation in evolutionary computation and the development of algorithms applicable in
practice. He has been a main driving force behind the development of CMA-ES over many years.

Intelligent Optimization with Submodular Functions

Andreas Krause
ETH Zurich, Switzerland

Abstract: In recent years, submodularity, a discrete analogue of convexity, has emerged as very useful in a variety of machine learning problems. Similar to convexity, submodularity allows to efficiently find provably (near-) optimal solutions. In this tutorial, I will introduce the notion of submodularity, discuss examples and properties of submodular functions, and review algorithms for submodular optimization. I will also cover recent extensions to the online (no-regret) and adaptive (closed-loop) setting. A particular focus will be on relevant applications such as active learning and optimized information gathering, ranking and algorithm portfolio optimization.

Short bio: Andreas Krause received his Diplom in Computer Science and Mathematics from the Technical University of Munich, Germany (2004) and his Ph.D. in Computer Science from Carnegie Mellon University (2008). He joined the California Institute of Technology as an assistant professor of computer science in 2009, and is currently assistant professor in the Department of Computer Science at the Swiss Federal Institute of Technology Zurich. His research is in adaptive systems that actively acquire information, reason and make decisions in large, distributed and uncertain domains, such as sensor networks and the Web. Dr. Krause is a 2010 Kavli Frontiers Fellow, and received an NSF CAREER award, the Okawa Foundation Research Grant recognizing top young researchers in telecommunications, as well as awards at several premier conferences (AAAI, KDD, IPSN, ICML, UAI) and the ASCE Journal of Water Resources Planning and Management.

Symmetry in Mathematical Programming

Leo Liberti
Ecole Polytechnique, Palaiseau, France

Abstract: This tutorial will introduce some basic concepts about group theory and how it applies to mathematical programming. We shall give an overview of the main existing research streams on this subjects, and then discuss the latest developments. We shall show how to put together existing computational tools (GAP, AMPL, CPLEX, Couenne, Rose, kept together using shell scripts) in order to automatically detect and exploit symmetry in a given mathematical programming instance.
Short bio: Leo Liberti received his PhD in 2004 from Imperial College, London. He then obtained a postdoctoral fellowship at Politecnico di Milano, and has been at LIX, Ecole Polytechnique ever since 2006, where he is an associate professor. He co-founded (and currently heads) the System Modelling and Optimization (SYSMO) team, he is co-director of the Optimization and Sustainable Development (OSD) Microsoft-CNRS sponsored chair, and is vice-president of the Computer Science department. He is Editor-in-Chief of 4OR, and holds associate editorships with several international journals (DAM, JOGO, ITOR, EURJCO, CMS). He has published more than 100 papers on mathematical programming and optimization techniques and applications.
Table of Contents

Long Papers

Iterative-Deepening Search with On-Line Tree Size Prediction 1
 Ethan Burns and Wheeler Rumml

A Learning Optimization Algorithm in Graph Theory: Versatile Search
for Extremal Graphs Using a Learning Algorithm 16
 Gilles Caporossi and Pierre Hansen

A Math-Heuristic Dantzig-Wolfe Algorithm for the Capacitated Lot
Sizing Problem .. 31
 Marco Caserta and Stefan Voss

Application of the Nested Rollout Policy Adaptation Algorithm
 to the Traveling Salesman Problem with Time Windows 42
 Tristan Cazenave and Fabien Teytaud

Parallel Algorithm Configuration ... 55
 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown

Community Detection in Social and Biological Networks Using
Differential Evolution ... 71
 Guanbo Jia, Zixing Cai, Mirco Musolesi, Yong Wang,
 Dan A. Tennant, Ralf J.M. Weber, John K. Heath, and Shan He

A Study on Large Population MOEA Using Adaptive ε-Box Dominance
and Neighborhood Recombination for Many-Objective Optimization ...
 Naoya Kowatari, Akira Oyama, Hernán E. Aguirre, and
 Kiyoshi Tanaka

A Non-adaptive Stochastic Local Search Algorithm for the
CHeSC 2011 Competition .. 101
 Franco Mascia and Thomas Stützle

Local Search and the Traveling Salesman Problem: A Feature-Based
Characterization of Problem Hardness 115
 Olaf Mersmann, Bernd Bischl, Jakob Bossek, Heike Trautmann,
 Markus Wagner, and Frank Neumann

Evaluating Tree-Decomposition Based Algorithms for Answer Set
Programming ... 130
 Michael Morak, Nysret Musliu, Reinhard Pichler,
 Stefan Rüdmele, and Stefan Woltran
High-Dimensional Model-Based Optimization Based on Noisy Evaluations of Computer Games ... 145
Mike Preuss, Tobias Wagner, and David Ginsbourger

Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling ... 160
Thomas Philip Runarsson, Marc Schoenauer, and Michèle Sebag

Minimizing Time When Applying Bootstrap to Contingency Tables Analysis of Genome-Wide Data 175
Francesco Sambo and Barbara Di Camillo

Quantifying Homogeneity of Instance Sets for Algorithm Configuration ... 190
Marius Schneider and Holger H. Hoos

Automatically Configuring Algorithms for Scaling Performance 205
James Styles, Holger H. Hoos, and Martin Müller

Upper Confidence Tree-Based Consistent Reactive Planning Application to MineSweeper .. 220
Michèle Sebag and Olivier Teytaud

Bounding the Effectiveness of Hypervolume-Based \((\mu + \lambda) \)-Archiving Algorithms ... 235
Tamara Ulrich and Lothar Thiele

Optimization by \(\ell_1 \)-Constrained Markov Fitness Modelling ... 250
Gabriele Valentini, Luigi Malagò, and Matteo Matteucci

Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework .. 265
James D. Walker, Gabriela Ochoa, Michel Gendreau, and Edmund K. Burke

Quasi-elementary Landscapes and Superpositions of Elementary Landscapes ... 277
Darrell Whitley and Francisco Chicano

Fast Permutation Learning ... 292
Tony Wauters, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe

Parameter-Optimized Simulated Annealing for Application Mapping on Networks-on-Chip .. 307
Bo Yang, Liang Guang, Tero Säntti, and Juha Plosila

Learning Algorithm Portfolios for Parallel Execution 323
Xi Yun and Susan L. Epstein
Short Papers

Bayesian Optimization Using Sequential Monte Carlo
Romain Benassi, Julien Bect, and Emmanuel Vazquez 339

Influence of the Migration Period in Parallel Distributed GAs for Dynamic Optimization
Yesnier Bravo, Gabriel Luque, and Enrique Alba 343

A Hyper-Heuristic Inspired by Pearl Hunting
C.Y. Chan, Fan Xue, W.H. Ip, and C.F. Cheung 349

Five Phase and Genetic Hive Hyper-Heuristics for the Cross-Domain Search
Tomasz Cichowicz, Maciej Drozdowski, Michał Frankiewicz, Grzegorz Pawlak, Filip Rytwiński, and Jacek Wasilewski 354

Implicit Model Selection Based on Variable Transformations in Estimation of Distribution
Emanuele Corsano, Davide Cucci, Luigi Malagò, and Matteo Matteucci 360

Improving the Exploration in Upper Confidence Trees
Adrien Couëtoux, Hassen Doghmen, and Olivier Teytaud 366

Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem
Audrey Delévacq, Pierre Delisle, and Michaël Krajecki 372

Constraint-Based Local Search for the Costas Array Problem
Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and Salvador Abreu 378

Evaluation of a Family of Reinforcement Learning Cross-Domain Optimization Heuristics
Luca Di Gaspero and Tommaso Urli 384

Autonomous Local Search Algorithms with Island Representation
Adrien Goëffon and Frédéric Lardeux 390

An Approach to Instantly Use Single-Objective Results for Multi-objective Evolutionary Combinatorial Optimization
Christian Grimme and Joachim Lepping 396

Lower Bounds and Upper Bounds for MaxSAT
Federico Heras, Antonio Moryado, and Joao Marques-Silva 402

Determining the Characteristic of Difficult Job Shop Scheduling Instances for a Heurisic Solution Method
Helga Ingimundardottir and Thomas Philip Runarsson 408
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges</td>
<td>413</td>
</tr>
<tr>
<td>Janis Janusevskis, Rodolphe Le Riche, David Ginsbourger, and Ramunus Girdziusas</td>
<td></td>
</tr>
<tr>
<td>Effect of SMS-EMOA Parameterizations on Hypervolume Decreases</td>
<td>419</td>
</tr>
<tr>
<td>Leonard Judt, Olaf Mersmann, and Boris Naujoks</td>
<td></td>
</tr>
<tr>
<td>Effects of Speciation on Evolution of Neural Networks in Highly Dynamic Environments</td>
<td>425</td>
</tr>
<tr>
<td>Peter Krčah</td>
<td></td>
</tr>
<tr>
<td>Natural Max-SAT Encoding of Min-SAT</td>
<td>431</td>
</tr>
<tr>
<td>Adrian Kügel</td>
<td></td>
</tr>
<tr>
<td>A New Hyperheuristic Algorithm for Cross-Domain Search Problems</td>
<td>437</td>
</tr>
<tr>
<td>Andreas Lehrbaum and Nysret Musliu</td>
<td></td>
</tr>
<tr>
<td>Brain Cine-MRI Sequences Registration Using B-Spline Free-Form Deformations and MLSDO Dynamic Optimization Algorithm</td>
<td>443</td>
</tr>
<tr>
<td>Julien Lepagnot, Amir Nakib, Hamouche Oulhadj, and Patrick Siarry</td>
<td></td>
</tr>
<tr>
<td>Global Optimization for Algebraic Geometry – Computing Runge–Kutta Methods</td>
<td>449</td>
</tr>
<tr>
<td>Ivan Martino and Giuseppe Nicosia</td>
<td></td>
</tr>
<tr>
<td>Clause Sharing in Parallel MaxSAT</td>
<td>455</td>
</tr>
<tr>
<td>Ruben Martins, Vasco Manquinho, and Inês Lynce</td>
<td></td>
</tr>
<tr>
<td>An Intelligent Hyper-Heuristic Framework for CHeSC 2011</td>
<td>461</td>
</tr>
<tr>
<td>Mustafa Mısır, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe</td>
<td></td>
</tr>
<tr>
<td>An Efficient Meta-heuristic Based on Self-control Dominance Concept for a Bi-objective Re-entrant Scheduling Problem with Outsourcing</td>
<td>467</td>
</tr>
<tr>
<td>Atefeh Moghaddam, Farouk Yalaoui, and Lionel Amodeo</td>
<td></td>
</tr>
<tr>
<td>A Tree Search Approach to Sparse Coding</td>
<td>472</td>
</tr>
<tr>
<td>Rui Rei, João P. Pedroso, Hideitsu Hino, and Noboru Murata</td>
<td></td>
</tr>
<tr>
<td>Adaptive Control of the Number of Crossed Genes in Many-Objective Evolutionary Optimization</td>
<td>478</td>
</tr>
<tr>
<td>Hiroyuki Sato, Carlos A. Coello Coello, Hernán E. Aguirre, and Kiyoshi Tanaka</td>
<td></td>
</tr>
<tr>
<td>Counter Implication Restart for Parallel SAT Solvers</td>
<td>485</td>
</tr>
<tr>
<td>Tomohiro Sonobe and Mary Inaba</td>
<td></td>
</tr>
<tr>
<td>Learning the Neighborhood with the Linkage Tree Genetic Algorithm</td>
<td>491</td>
</tr>
<tr>
<td>Dirk Thierens and Peter A.N. Bosman</td>
<td></td>
</tr>
</tbody>
</table>
A Comparison of Operator Utility Measures for On-Line Operator Selection in Local Search .. 497
Nadarajen Veerapen, Jorge Maturana, and Frédéric Saubion

Monte Carlo Methods for Preference Learning 503
Paolo Viappiani

Hybridizing Reactive Tabu Search with Simulated Annealing 509
Stefan Voß and Andreas Fink

Author Index .. 513