Welcome to the proceedings of the 4th International Conference on Social Robotics (ICSR). The conference was held during October 29–31, 2012, at Chengdu, China. Since its inception in 2009, the ICSR series of conferences have brought researchers together to report and discuss the latest progress in the field of social robotics in a collegial, supportive, and constructive atmosphere.

The ICSR conferences focus on the interaction between humans and robots, and the integration of robots into our society. The theme of the 2012 conference was “Wellness.” This theme highlights the potential and capabilities of social robots to assist humans in achieving better physical, mental, and emotional health and wellness. The conference aims to foster discussion on the development of computational models, robotic embodiments, and behaviors that enable social robots to have an impact on the human partner’s health and well-being.

The conference website was viewed by visitors from at least 70 countries. We received paper submissions from Asia, Europe, North America, South America, and Australia—a confirmation of the global interest being generated by the field of Social Robotics. The submitted papers were subjected to a rigorous peer-review selection. All the papers were reviewed with the help of the 31-member Program Committee, who were carefully selected from the international community of social robotics researchers for their expertise.

This volume contains the papers at the forefront of social robotics research in the areas of affective and cognitive sciences for socially interactive robots; situated interaction and embodiment; robots to assist the elderly and persons with disabilities; artificial empathy; interaction and collaboration among robots, humans, and environments; socially assistive robots to improve quality of life; socially appealing design methodologies; social acceptance; and robot ethics.

The conference also featured invited talks by four distinguished researchers in the field: Paolo Dario (Scuola Superiore Sant’Anna), Cynthia Breazeal (Massachusetts Institute of Technology), Hong Zhou (General Logistics Department of China Armed Force), and Etienne Burdet (Imperial College).

The continuing success of ICSR would not have been possible without the contributions of our colleagues, to whom we would like to express our gratitude. We are indebted to the members of the International Advisory Board, Organizing Committee, and the Program Committee for their dedication and support. We thank Hongsheng He (NUS) and Martin Saerbeck (A*STAR) for their valuable contributions in the publication of this volume; Ravindra de Silva (Toyohashi), Guido Herrmann (University of Bristol) and Caihua Xiong (HUST) for the publicity efforts; Adrian Tay (A*STAR) and Ho Seok Ahn (ATR) for the robot design competition; Wei He (UESTC) for the finance; Kaiyu Qin (UESTC) for the local organization, and Zhengchen Zhang (NUS) for the Web services.
We also would like to acknowledge the Special Session Chairs Gordon Cheng (TUM) and Adriana Tapus (ENSTA); and the special session organizers: Ben Robins and Kerstin Dautenhahn (University of Hertfordshire) for the session on situated interaction and embodiment; Luisa Damiano (University of Bergamo), Paul Dumouchel (Ritsumeikan University) and Hagen Lehmann (University of Hertfordshire) for the session on artificial empathy; and Ryad Chellali (Italian Institute of Technology) for HRI through non-verbal communication and control. Finally, we wish to thank the authors for sending their best work, the referees, student helpers, sponsors, and delegates for their valuable contributions to this growing community.

October 2012

Shuzhi Sam Ge
Oussama Khatib
John-John Cabibihan
Reid Simmons
Mary-Anne Williams
ICSR 2012 was organized by the University of Electronic Science and Technology of China, and the National University of Singapore.

International Advisory Board

Ronald Arkin
School of Interactive Computing, College of Computing, Georgia Institute of Technology, USA

Jong-Hwan Kim
Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Korea

Haizhou Li
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

Hideaki Kuzuoka
Department of Intelligent Interaction Technologies, University of Tsukuba, Japan

Maja J. Matarić
Viterbi School of Engineering, University of Southern California, USA

Tzyh Jong Tarn
Electrical and Systems Engineering Department, Washington University in St. Louis, USA

JinSong Wang
School of Mechatronics Engineering, University of Electronics Science and Technology of China, China

Tianran Wang
Shenyang Institute of Automation, Chinese Academy of Sciences, China

Youlun Xiong
College of Mechanical Science and Engineering, Huazhong University of Science & Technology, China

Organizing Committee

General Chairs
Shuzhi Sam Ge
National University of Singapore, Singapore, and University of Electronic Science and Technology of China, China

Oussama Khatib
Stanford University, USA
VIII Organization

Program Chairs
John-John Cabibihan National University of Singapore, Singapore
Reid Simmons Carnegie Mellon University, USA
Mary-Anne Williams University of Technology, Sydney, Australia

Organizing Committee Chair
Kaiyu Qin University of Electronic Science and Technology of China, China

Publicity Chairs
Ravindra De Silva Toyohashi University of Technology, Japan
Guido Herrmann University of Bristol, UK
Caihua Xiong Huazhong University of Science and Technology, China

Publication Chairs
Martin Saerbeck Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore
Hongsheng He National University of Singapore, Singapore

Special Session Chairs
Gordon Cheng Technical University of Munich, Germany
Adriana Tapus Ecole Nationale Superieure de Techniques Avancees, Paris, France

Robot Design Competition Chairs
Ho Seok Ahn ATR Intelligent Robotics and Communication Laboratories, Japan
Adrian Hwang Jian Tay Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

Finance Chair
Wei He National University of Singapore, Singapore

International Sponsorship Chairs
Xiaolin Dai University of Electronics Science and Technology of China, China
Michio Okada Toyohashi University of Technology, Japan

Registration Chair
Yang Su University of Electronics Science and Technology of China, China
International Program Committee

Arvin Agah
Marcelo H. Ang, Jr.
Brenna Argall
Kai O. Arras
Luca Brayda
Frank Broz
Maria Chiara Carrozza
So Wing Chee, Catherine
Ryad Chellali
Xiaoping Chen
Gamini Dissanayake
Kerstin Severinson-Eklundh
Dieter Fox
Jaap Ham
Takayuki Kanda
Kolja Kühnlenz
Zhijun Li
Bruce MacDonald
Cai Meng
Ben Robins
Selma Šabanović
Miguel A. Salichs
Siddhartha Srinivasa
Aaron Steinfeld
Yeow Kee Tan
Keng Peng Tee
Andrea Thomaz
Astrid Weiss
Agnieszka Wykowska
Wenzeng Zhang
Xianggang Zhang

The University of Kansas Lawrence, USA
National University of Singapore, Singapore
Northwestern University, USA
Albert Ludwig University of Freiburg, Germany
Italian Institute of Technology, Italy
University of Hertfordshire, UK
Scuola Superiore Sant’Anna Pisa, Italy
National University of Singapore
Italian Institute of Technology, Italy
University of Science and Technology of China, China
University of Technology, Sydney, Australia
KTH Royal Institute of Technology, Sweden
University of Washington, USA
Eindhoven University of Technology, The Netherlands
ATR Intelligent Robotics and Communication Laboratories, Kyoto, Japan
Technische Universitaet Muenchen, Germany
Shanghai Jiao Tong University, China
University of Auckland, New Zealand
Beihang University, China
The University of Hertfordshire, UK
Indiana University, USA
University Carlos III of Madrid, Spain
Carnegie Mellon University, USA
Carnegie Mellon University, USA
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore
Georgia Institute of Technology, USA
University of Salzburg, Austria
Ludwig-Maximilians-Universität München, Germany
Tsinghua University, China
University of Electronic Science and Technology of China
Reviewers

Gabriel Aguirre-Ollinger
Morana Alac
Alen Alempijević
Muh Anshar

Eleanor Avrunin
Pengyu Bao
Emilia Barakova
Lykke Brogaard Bertel
Serenella Besio
Rohit Srinath
Bharadwaj
Joydeep Biswas
Laura E. Boccanfuso
Elizabeth Broadbent
Wolfram Burgard
Sylvain Calinon
Ryan Calo
Lola Cañamero
Zhenfeng Chen
Chin Kiang Terence Cher
Chee-Meng Chew
Sandra Cristina Cunha Costa

Luisa Damiano
Thi-hai-ha Dang
Jente De Pee
Ravindra S. De Silva
Davide De Tommaso
Lone Gaedt
Anais Garrell
Philippe Gaussier

Gert Jan Gelderblom
Weian Guo
Sajjad Haider
Markus Häring
Evan Herbst
Iolanda Iacono
Benjamin Johnston
Heather Knight
Kheng-lee Koay
Thomas Kollar
Tony Kuo
Dong Soo Kwon
Min Kyung Lee
Hagen Lehmann
Iolanda Leite
Yanan Li
Haizhou Li
Ning Li
Yvonne Limpens
Chao Liu
Sibang Liu
Wei Lu
Jianjun Ma
Maxim Makatchev
Juan Pablo Mendoza
Marek Michalowski
Cees J. Midden
Rony Novianto
Hirotaka Osawa
Gavin Paul
Kenneth Pinpin
Nima Ramezani
Renato Ramos
Stephanie Rosenthal
Majd F. Sakr
Maha Salem
Hooman Aghaebrahimi
Samani
Paul Scerri
Matthias Scheutz
Brennan Sellner
Mohammad Shayganfar
Filomena Soares
Kenji Suzuki
Dag Sverre Syrdal
Mirjam Van Esch
Bram Vanderborght
Hosmane Ramakrishna
Venkatesh
Michael Walters
Wei Wang
Xun Wang
Gregor Wolbring
Luke Wood
Haibin Yan
Haoyong Yu
Lihao Zhang
Zheng Zhang
Jie Zhang
Qun Zhang
Chao Zhang
Zhen Zhao
Hong Zhou

Sponsoring Partner

Aldebaran Robotics
Table of Contents

Affective and Cognitive Sciences for Socially Interactive Robots

- Manipulating Mental States through Physical Action 1
 Jesse Gray and Cynthia Breazeal

- The Automaticity of Social Behavior towards Robots: The Influence of Cognitive Load on Interpersonal Distance to Approachable versus Less Approachable Robots .. 15
 Jaap Ham, Mirjam van Esch, Yvonne Limpens, Jente de Pee, John-John Cabibihan, and Shuzhi Sam Ge

- How to Make a Robot Smile? Perception of Emotional Expressions from Digitally-Extracted Facial Landmark Configurations 26
 Caixia Liu, Jaap Ham, Eric Postma, Cees Midden, Bart Joosten, and Martijn Goudbeek

- A Cross-Cultural Study on Generation of Culture Dependent Facial Expressions of Humanoid Social Robot 35
 Gabriele Trovato, Tatsuhiro Kishi, Nobutsuna Endo, Kenji Hashimoto, and Atsuo Takanishi

- Robot Social Intelligence ... 45
 Mary-Anne Williams

- Android Emotions Revealed .. 56
 Evgenios Vlachos and Henrik Schärfe

Situated Interaction and Embodiment

 Ben Robins, Kerstin Dautenhahn, and Paul Dickerson

- A User Trial Study to Understand Play Behaviors of Autistic Children Using a Social Robot ... 76
 Alvin Wong, Yeow Kee Tan, Adrian Tay, Anthony Wong, Dilip Kumar Limbu, Tran Anh Dung, Yuanwei Chua, and Ai Ping Yow

- Collecting Heart Rate Using a High Precision, Non-contact, Single-Point Infrared Temperature Sensor .. 86
 Laura Boccanfuso, Eva Juarez Perez, Myra Robinson, and Jason M. O’Kane
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Can a Social Robot Facilitate Children’s Collaboration?</td>
<td>98</td>
</tr>
<tr>
<td>Michihiro Shimada, Takayuki Kanda, and Satoshi Koizumi</td>
<td></td>
</tr>
<tr>
<td>Emotional Robotics in Elder Care - A Comparison of Findings in the</td>
<td>108</td>
</tr>
<tr>
<td>UK and Germany</td>
<td></td>
</tr>
<tr>
<td>Barbara Klein and Glenda Cook</td>
<td></td>
</tr>
<tr>
<td>Dorothy Robotubby: A Robotic Nanny</td>
<td>118</td>
</tr>
<tr>
<td>Haibin Yan, Marcelo H. Ang Jr., and Aun Neow Poo</td>
<td></td>
</tr>
<tr>
<td>Robots to Assist the Elderly and Persons with Disabilities</td>
<td></td>
</tr>
<tr>
<td>Would Granny Let an Assistive Robot into Her Home?</td>
<td>128</td>
</tr>
<tr>
<td>Susanne Frennert, Britt Östlund, and Håkan Eftring</td>
<td></td>
</tr>
<tr>
<td>How Social Robots Make Older Users Really Feel Well – A Method to</td>
<td>138</td>
</tr>
<tr>
<td>Assess Users’ Concepts of a Social Robotic Assistant</td>
<td></td>
</tr>
<tr>
<td>Tobias Körtner, Alexandra Schmid, Daliah Batko-Klein,</td>
<td></td>
</tr>
<tr>
<td>Christoph Gisinger, Andreas Huber, Lara Lammer, and Markus Vincze</td>
<td></td>
</tr>
<tr>
<td>Identifying Specific Reasons Behind Unmet Needs May Inform More</td>
<td>148</td>
</tr>
<tr>
<td>Specific Eldercare Robot Design</td>
<td></td>
</tr>
<tr>
<td>Rebecca Q. Stafford, Bruce A. MacDonald, and Elizabeth Broadbent</td>
<td></td>
</tr>
<tr>
<td>Various Foods Handling Movement of Chopstick-Equipped Meal</td>
<td>158</td>
</tr>
<tr>
<td>Assistant Robot and There Evaluation</td>
<td></td>
</tr>
<tr>
<td>Akira Yamazaki and Ryosuke Masuda</td>
<td></td>
</tr>
<tr>
<td>Imagery of Disabled People within Social Robotics Research</td>
<td>168</td>
</tr>
<tr>
<td>Sophya Yumakulov, Dean Yergens, and Gregor Wolbring</td>
<td></td>
</tr>
<tr>
<td>HRI Evaluation of a Healthcare Service Robot</td>
<td>178</td>
</tr>
<tr>
<td>I-Han Kuo, Chandimal Jayawardena, Elizabeth Broadbent,</td>
<td></td>
</tr>
<tr>
<td>Rebecca Q. Stafford, and Bruce A. MacDonald</td>
<td></td>
</tr>
<tr>
<td>Automated Behavioral Mapping for Monitoring Social Interactions</td>
<td>188</td>
</tr>
<tr>
<td>among Older Adults</td>
<td></td>
</tr>
<tr>
<td>Claudia B. Rebola, Gbolabo Ogunmakin, and Patricio A. Vela</td>
<td></td>
</tr>
<tr>
<td>Social Acceptance of Robots and Their Impact to the Society</td>
<td></td>
</tr>
<tr>
<td>Anthropomorphism and Human Likeness in the Design of Robots and</td>
<td>199</td>
</tr>
<tr>
<td>Human-Robot Interaction</td>
<td></td>
</tr>
<tr>
<td>Julia Fink</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies in Public Places as a Means to Positively Influence People’s Attitude towards Robots</td>
<td>209</td>
</tr>
<tr>
<td>Nicole Mirnig, Ewald Strasser, Astrid Weiss, and Manfred Tscheligi</td>
<td></td>
</tr>
<tr>
<td>Difference of Efficiency in Human-Robot Interaction According to Condition of Experimental Environment</td>
<td>219</td>
</tr>
<tr>
<td>Ho Seok Ahn, Dong-Wook Lee, Dongwoon Choi, Duk-Yeon Lee, Manhong Hur, and Hogil Lee</td>
<td></td>
</tr>
<tr>
<td>Programming Behaviour of a Personal Service Robot with Application to Healthcare</td>
<td>228</td>
</tr>
<tr>
<td>Chandan Datta, Bruce A. MacDonald, Chandimal Jayawardena, and I-Han Kuo</td>
<td></td>
</tr>
<tr>
<td>Investigating the Effects of Robotic Displays of Protest and Distress</td>
<td>238</td>
</tr>
<tr>
<td>Gordon Briggs and Matthias Scheutz</td>
<td></td>
</tr>
<tr>
<td>Motion Synchronization for Human-Robot Collaboration</td>
<td>248</td>
</tr>
<tr>
<td>Shuzhi Sam Ge and Yanan Li</td>
<td></td>
</tr>
<tr>
<td>Human-Robot Handshaking: A Hybrid Deliberate/Reactive Model</td>
<td>258</td>
</tr>
<tr>
<td>Yingzi Zeng, Yanan Li, Pengxuan Xu, and Shuzhi Sam Ge</td>
<td></td>
</tr>
<tr>
<td>Artificial Empathy</td>
<td></td>
</tr>
<tr>
<td>Should Empathic Social Robots Have Interiority?</td>
<td>268</td>
</tr>
<tr>
<td>Luisa Damiano, Paul Dumouchel, and Hagen Lehmann</td>
<td></td>
</tr>
<tr>
<td>Why Not Artificial Sympathy?</td>
<td>278</td>
</tr>
<tr>
<td>Minoru Asada, Yukie Nagai, and Hisashi Ishihara</td>
<td></td>
</tr>
<tr>
<td>How Can a Robot Attract the Attention of Its Human Partner?</td>
<td>288</td>
</tr>
<tr>
<td>A Comparative Study over Different Modalities for Attracting Attention</td>
<td></td>
</tr>
<tr>
<td>Elena Torta, Jim van Heumen, Raymond H. Cuijpers, and James F. Juola</td>
<td></td>
</tr>
<tr>
<td>Long-Term Interactions with Empathic Robots: Evaluating Perceived Support in Children</td>
<td>298</td>
</tr>
<tr>
<td>Iolanda Leite, Ginevra Castellano, André Pereira, Carlos Martinho, and Ana Paiva</td>
<td></td>
</tr>
<tr>
<td>Robot Drama Research: From Identification to Synchronization</td>
<td>308</td>
</tr>
<tr>
<td>Zaven Paré</td>
<td></td>
</tr>
<tr>
<td>Talking-Ally: Intended Persuasiveness by Utilizing Hearership and Addressivity</td>
<td>317</td>
</tr>
<tr>
<td>Naoki Ohshima, Yusuke Ohyama, Yuki Odahara, P. Ravindra S. De Silva, and Michio Okada</td>
<td></td>
</tr>
</tbody>
</table>
HRI through Non-verbal Communication and Control

Does Observing Artificial Robotic Systems Influence Human Perceptual Processing in the Same Way as Observing Humans? .. 327
 Agnieszka Wykowska, Ryad Chellali, Md. Mamun Al-Amin, and Hermann J. Müller

Using Compliant Robots as Projective Interfaces in Dynamic Environments .. 338
 Davide De Tommaso, Sylvain Calinon, and Darwin G. Caldwell

Affective Tele-touch .. 348
 John-John Cabibihan, Lihao Zheng, and Chin Kiang Terence Cher

Human-Humanoid Co-working in a Joint Table Transportation 357
 Paul Evrard and Abderrahmane Kheddar

User-Defined Body Gestures for Navigational Control of a Humanoid Robot .. 367
 Mohammad Obaid, Markus Häring, Felix Kistler, René Bühling, and Elisabeth André

Studies on Grounding with Gaze and Pointing Gestures in Human-Robot-Interaction ... 378
 Markus Häring, Jessica Eichberg, and Elisabeth André

Social Telepresence Robots, Embodiments and Networks

Regulating Emotion by Facial Feedback from Teleoperated Android Robot .. 388
 Shuichi Nishio, Koichi Taura, and Hiroshi Ishiguro

Body Ownership Transfer to Teleoperated Android Robot 398
 Shuichi Nishio, Tetsuya Watanabe, Kohei Ogawa, and Hiroshi Ishiguro

A Geminoid as Lecturer .. 408
 Julie Rafn Abildgaard and Henrik Scharfe

Social Networking for Robots to Share Knowledge, Skills and Know-How .. 418
 Wei Wang, Benjamin Johnston, and Mary-Anne Williams

Social Acceptance of a Teleoperated Android: Field Study on Elderly’s Engagement with an Embodied Communication Medium in Denmark... 428
 Ryuji Yamazaki, Shuichi Nishio, Hiroshi Ishiguro, Marco Nørskov, Nobu Ishiguro, and Giuseppe Balistreri
Partially Disembodied Robot: Social Interactions with a Robot’s Virtual Body

Hirotaka Osawa, Thibault Voisin, and Michita Imai

438

Interaction and Collaboration among Robots, Humans, and Environment

Keep an Eye on the Task! How Gender Typicality of Tasks Influence Human–Robot Interactions

Dieta Kuchenbrandt, Markus Häring, Jessica Eichberg, and Friederike Eyssel

448

A Multi-modal Approach for Natural Human-Robot Interaction

Thomas Kollar, Anu Vedantham, Corey Sobel, Cory Chang, Vittorio Perera, and Manuela Veloso

458

Investigation of Optimal Deployment Problem in Three-Dimensional Space Coverage for Swarm Robotic System

Hongliang Ren and Zion T.H. Tse

468

HAG-SR Hand: Highly-Anthropomorphic-Grasping Under-Actuated Hand with Naturally Coupled States

Chi Zhang, Wenzeng Zhang, Zhenguo Sun, and Qiang Chen

475

RoboASR: A Dynamic Speech Recognition System for Service Robots

Abdelaziz A. Abdelhamid, Waleed H. Abdulla, and Bruce A. MacDonald

485

Effects of Different Robot Interaction Strategies During Cognitive Tasks

Sebastian Schneider, Ingmar Berger, Nina Riether, Sebastian Wrede, and Britta Wrede

496

A Multi-path Selecting Navigation Framework with Human Supervision

Peng Liu, Guangming Xiong, Haojie Zhang, Yan Jiang, Jianwei Gong, and Huiyan Chen

506

Monocular Visual Odometry and Obstacle Detection System Based on Ground Constraints

Shude Guo and Cai Meng

516
Human Augmentation, Rehabilitation, and Medical Robots I

Impedance Control of a Rehabilitation Robot for Interactive Training .. 526
 Wei He, Shuzhi Sam Ge, Yanan Li, Effie Chew, and Yee Sien Ng

Design and Development of a Wearable Rehabilitation Robot 536
 Wei He, Shuzhi Sam Ge, Weian Guo, Zhen Zhao, Jie Zhang, Shengtao Xiao, and Fon Ping Quek Nuraisha

Development and Path Planning of a Biped Robot 546
 Rui Li and Zhijun Li

Modelling and Trajectory Planning for a Four Legged Walking Robot with High Payload 552
 Lorenzo Gagliardini, Xinghua Tian, Feng Gao, Chenkun Qi, Christine Chevallereau, and Xianchao Zhao

Combining Gait Research of the Quadruped/Biped Reconfigurable Walking Chair with Parallel Leg Mechanism 562
 Xing Hu, Hongbo Wang, Lingfeng Sang, Qifang Gu, and Lin Yuan

Design of an Automatic Rotatory Chair Prototype for BPPV Treatment .. 572
 Fei Xu, Dingguo Zhang, Xueguan Gao, and Shankai Yin

Modeling and Control of a Lower-Limb Rehabilitation Robot 581
 Yanjiao Ma, Wei He, and Shuzhi Sam Ge

Human Augmentation, Rehabilitation, and Medical Robots II

Particle Swarm Optimization Based Design for Knee Joint of Wearable Exoskeleton Robot ... 591
 Jia-yuan Zhu and Hong Zhou

The Application of Machine-Learning on Lower Limb Motion Analysis in Human Exoskeleton System 600
 Cao-yuan Zhao, Xiang-gang Zhang, and Qing Guo

Hydraulic Pressure Control System Simulation and Performance Test of Lower Extremity Exoskeleton 612
 Qing Guo, Xiang-gang Zhang, Dan Jiang, and Lu-lu Zhang

Dynamic Characteristics Study of Human Exoskeleton Based on Virtual Prototype ... 621
 Wen-ming Cheng, Fang Liu, and Jian-bing Shao
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Optimization and Finite Element Analysis of the Human</td>
<td>631</td>
</tr>
<tr>
<td>Body Exoskeletons Lower Limb Power</td>
<td></td>
</tr>
<tr>
<td>Fang Liu, Wen-ming Cheng, and Jian-bing Shao</td>
<td></td>
</tr>
<tr>
<td>Kinematics and Dynamics Modeling for Lower Limbs Rehabilitation</td>
<td>641</td>
</tr>
<tr>
<td>Robot</td>
<td></td>
</tr>
<tr>
<td>Qian Zhang, Min Chen, and Limei Xu</td>
<td></td>
</tr>
<tr>
<td>Coordinated Control Method of the Lower Extremity Exoskeleton</td>
<td>650</td>
</tr>
<tr>
<td>Based on Human Electromechanical Coupling</td>
<td></td>
</tr>
<tr>
<td>Qing Guo, Hong Zhou, and Dan Jiang</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>661</td>
</tr>
</tbody>
</table>