Preface

This volume contains the proceedings of the first international conference on “The Impact of Virtual, Remote and Real Labs in Logistics” 2012 (ImViReLL 2012). The conference took place in combination with the “International Conference of Dynamics in Logistics” 2012 (LDIC 2012) in Bremen, Germany.

The importance of logistics labs in supporting the transition from fundamental to applied research is undisputed. Lately, the Internet (of Things) has changed the scope of these labs. Firstly, the Internet of Things is addressed as a research topic in these labs. Secondly, the Internet supports virtualization of testing infrastructures and remote access to logistics labs for increased collaboration between researchers across different research disciplines and locations. The goal of the conference was to focus on lab-based research and education, evaluate their impact in research and education and investigate specific demands, opportunities and challenges.

The idea to have a conference focusing on the role of logistics labs and their relevance for research and education has largely been influenced by corresponding research on labs in other disciplines, such as chemistry, electronics, engineering and automation. Collaborations, such as the Virtual and Remote Labs Community (www.vrlcom.com), lab2go (www.lab2go.net), Global Online Laboratory Consortium (online-lab.org) as well as conferences (e.g., Remote Engineering and Virtual Instrumentation – REV) and journals, such as the International Journal of Online Engineering – iJOE, have provided different platforms to exchange ideas and research results about lab-based research. However, logistics labs have spread during the last years without an established information exchange community.

The ImViReLL conference tries to fill this gap. On the one hand, it provides a platform for information exchange between lab researchers in logistics. It thus supports and complements the work of the Global RF Lab Alliance (www.grlfa.org), RFID in Europe and the International Journal of RF Technologies, which are focused on radio-frequency-based research and applications in logistics. On the other hand, ImViReLL invites researchers from other disciplines to support interdisciplinary research and information exchange. This approach is not without problems, however. Some reviews, for example, have been declined by scientific committee members from other disciplines if papers were too domain-specific to logistics. It will take further efforts to differentiate domain-specific from domain-independent topics.

ImViReLL 2012 provided a venue for researchers from academia and industry interested in future-oriented logistics labs as a nucleus for innovation. The conference covered research in logistics from a wide range of fields, for instance, engineering, computer science, distributed education and collaborative research.
The conference addressed numerous specific areas of interest, such as lab-based technology and feasibility studies, pilots and demonstrators, lab-centric specifics of logistic labs, virtual and remote research environments and communities, the role of RFID, sensors, actuators, robots, intelligent material handling, and (de-) centralized data processing in logistic labs, architecture developments for multiple (networked) demonstrators, social networking technology in research and educational implications. This diversity of topics is reflected in the conference papers.

We would like to thank all authors, Scientific Committee members and reviewers for their work. Additionally, we would like to thank RFID in Europe, Concord, LogDynamics, the Global RF Lab Alliance and *RFID Journal* for their helpful support.

March 2012

Dieter Uckelmann
Bernd Scholz-Reiter
Ingrid Rügge
Bonghee Hong
Antonio Rizzi
Organization

Conference Chairs

Dieter Uckelmann
LogDynamics Lab, University of Bremen, Germany

Bernd Scholz-Reiter
University of Bremen, Germany

Ingrid Rügge
University of Bremen, Germany

Bonghee Hong
Institute of Logistics Information Technology (LIT), Pusan National University, Korea

Antonio Rizzi
RFid Lab, University of Parma, Italy

Scientific Committee and Reviewers

Gisele Bennett
Electro-Optical Systems Laboratory, Georgia Tech Research Institute, USA

Shing-Chi Cheung
RFID Center, Hong Kong University of Science and Technology, China

Volker Coors
HFT Stuttgart, Germany

Farideh Ganji
BIBA GmbH, Germany

Javier García-Zubia
Deusto Institute of Technology, Spain

Christian Gorldt
BIBA GmbH, Germany

Willibald Günthner
TU Munich, Germany

Bill C. Hardgrave
Auburn University, Bremen

Hamid Reza Karimi
University of Agder, Norway

Dietmar Kennepohl
Athabasca University, Canada

Michael Lawo
University of Bremen, Germany

Yu Liu, RFID Lab
Chinese Academy of Science (CASIA), Beijing, China

José Machado
University of Minho, Portugal

Thomas Makuschewitz
BIBA GmbH, Germany

Florian Michahelles
Auto-ID Lab, ETH Zurich, Switzerland

Kaj Nummila
VTT Technical Research Center of Finland

Justin Patton
University of Arkansas RFID Research Center, USA

Katerina Pramatari
ELTRUN Laboratory (AUEB), Athens
University of Economics and Business, Greece
VIII Organization

Michael Schenk
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF, Magdeburg, Germany

Samuel Bloch da Silva
Flextronics Institute of Technology – RFID CoE, Brazil

Klaus-Dieter Thoben
University of Bremen, Germany

Keith Ulrich
DHL Solutions & Innovations, Germany

Markus Witte
Lufthansa Cargo AG, Germany

Local Organization

Aleksandra Himstedt
University of Bremen, Germany

Irena Weinhold
University of Bremen, Germany
Table of Contents

Fundamentals and Historic Background of Lab-Based Research in Logistics

The Role of Logistics Labs in Research and Higher Education 1
Dieter Uckelmann

Infrastructure and Design of Virtual, Remote and Real Labs

A Concept for a Flexible and Scalable Infrastructure for Remote Laboratories: Robustness in Remote Engineering Laboratories 13
Karsten Henke, Steffen Ostendorff, and Heinz-Dietrich Wuttke

Virtual Logistics Lab: A Framework for Rapid Prototyping and Remote Experimentation .. 25
Carl Franz, Tobias Fritz, André Kreis, Maurice Meyer, Maik Müller, Andreas Nawroth, Christoph Schröder, Afshad Syed-Ahmed, and Igor Zhuchenko

A Living Lab for Internet of Things Vending Machines 35
Sauro Vicini, Alberto Sanna, and Sara Bellini

Educational Implications of Virtual, Remote and Real Labs

Integrating Remote Laboratories in Post-secondary Science Education .. 44
Dietmar Karl Kennepohl, Jit Baran, and Ron Currie

Enterprise Portal Technology in Computer-Supported Collaborative Learning .. 54
Juha Ensio Kareinen and Jyri Pötry

Web-Assisted Laboratory for Control Education: Remote and Virtual Environments ... 62
Celina P. Leão, Filomena Soares, Helena Rodrigues, Eurico Seabra, José Machado, Pedro Farinha, and Sandra Costa
Test-Beds and Demonstrators

Developing Future Logistics Applications with the Saxony-Anhalt Galileo Test Bed 73
Klaus Richter and Olaf Poenicke

Prototyping in Research Domains: A Prototype for Autonomous Production Logistics .. 81
Farideh Ganji, Marius Veigt, and Bernd Scholz-Reiter

Agent-Based Emulation of an Electric Overhead Monorail System Pilot Plant: Testing and Virtual Extension of an Existing Test Facility 90
Willibald A. Günthner and Peter Tenerowicz-Wirth

Combining Machine-to-Machine Communications with Intelligent Objects in Logistics .. 102
Javier Palafox-Albarran, Alexander Dannies,
Bala Krishna Sanjeeva, Walter Lang, and Reiner Jedermann

Lab-Based Process Improvements in Logistics

Augmented Traceability with Internet of Things: A Demonstrator for Seafood Supply Chains 113
Nicolas Pauvre, Jacques Madelaine, Jérôme Le Moulec, and Adrien Laurence

From TagID to eVIN – Structured Data Exchange Based on RFID 122
Bernd Scholz-Reiter and Jeanette Mansfeld

How AutoID Processes Shape the Internet of Things:
The OpenID-Center Development Process 134
Benedikt Mättig, Martin Fiedler, Alexander Hille, and Björn Anderseck

Lab-Supported Product Developments

Dennis Brandwein, Dieter Uckelmann, and Björn Beenken

The Internet of Drinks: Lab-Based Research for the Taste of It 156
Marco Lewandowski, Kolja Schmidt, Christoph Kielhorn, and Dieter Uckelmann

Author Index .. 167