Adaptation, Learning, and Optimization, Volume 12

Series Editor-in-Chief

Meng-Hiot Lim
Nanyang Technological University, Singapore
E-mail: emhlim@ntu.edu.sg

Yew-Soon Ong
Nanyang Technological University, Singapore
E-mail: asysong@ntu.edu.sg

Further volumes of this series can be found on our homepage: springer.com

Adaptive Differential Evolution, 2009
ISBN 978-3-642-01526-7

Vol. 2. Yoel Tenne and Chi-Keong Goh (Eds.)
Computational Intelligence in
Expensive Optimization Problems, 2010
ISBN 978-3-642-10700-9

Vol. 3. Ying-ping Chen (Ed.)
Exploitation of Linkage Learning in Evolutionary Algorithms, 2010
ISBN 978-3-642-12833-2

Vol. 4. Anyong Qing and Ching Kwang Lee
Differential Evolution in Electromagnetics, 2010
ISBN 978-3-642-12868-4

Vol. 5. Ruhul A. Sarker and Tapabrata Ray (Eds.)
Agent-Based Evolutionary Search, 2010
ISBN 978-3-642-13424-1

Vol. 6. John Seiffertt and Donald C. Wunsch
Unified Computational Intelligence for Complex Systems, 2010
ISBN 978-3-642-03179-3

Vol. 7. Yoel Tenne and Chi-Keong Goh (Eds.)
Computational Intelligence in Optimization, 2010
ISBN 978-3-642-12774-8

Vol. 8. Bijaya Ketan Panigrahi, Yuhui Shi, and Meng-Hiot Lim (Eds.)
Handbook of Swarm Intelligence, 2011
ISBN 978-3-642-17389-9

Vol. 9. Lijuan Li and Feng Liu
Group Search Optimization for Applications in Structural Design, 2011
ISBN 978-3-642-20535-4

Vol. 10. Jeffrey W. Tweedale and Lakhmi C. Jain
Embedded Automation in Human-Agent Environment, 2011
ISBN 978-3-642-22675-5

Vol. 11. Hitoshi Iba and Claus C. Aranha
Practical Applications of Evolutionary Computation to Financial Engineering, 2012
ISBN 978-3-642-27647-7

Vol. 12. Marco Wiering and Martijn van Otterlo (Eds.)
Reinforcement Learning, 2012
ISBN 978-3-642-27644-6
‘Good and evil, reward and punishment, are the only motives to a rational creature: these are the spur and reins whereby all mankind are set on work, and guided.’ (Locke)
Foreword

Reinforcement learning has been a subject of study for over fifty years, but its modern form—highly influenced by the theory of Markov decision processes—emerged in the 1980s and became fully established in textbook treatments in the latter half of the 1990s. In Reinforcement Learning: State-of-the-Art, Martijn van Otterlo and Marco Wiering, two respected and active researchers in the field, have commissioned and collected a series of eighteen articles describing almost all the major developments in reinforcement learning research since the start of the new millennium. The articles are surveys rather than novel contributions. Each authoritatively treats an important area of Reinforcement Learning, broadly conceived as including its neural and behavioral aspects as well as the computational considerations that have been the main focus. This book is a valuable resource for students wanting to go beyond the older textbooks and for researchers wanting to easily catch up with recent developments.

As someone who has worked in the field for a long time, two things stand out for me regarding the authors of the articles. The first is their youth. Of the eighteen articles, sixteen have as their first author someone who received their PhD within the last seven years (or who is still a student). This is surely an excellent sign for the vitality and renewal of the field. The second is that two-thirds of the authors hail from Europe. This is only partly due to the editors being from there; it seems to reflect a real shift eastward in the center of mass of reinforcement learning research, from North America toward Europe. Vive le temps et les différences!

October 2011

Richard S. Sutton
Preface

A question that pops up quite often among reinforcement learning researchers is on what one should recommend if a student or a colleague asks for

"some good and recent book that can introduce me to reinforcement learning".

The most important goal in creating this book was to provide at least a good answer to that question.

A Book about Reinforcement Learning

A decade ago the answer to our leading question would be quite easy to give; around that time two dominant books existed that were fully up-to-date. One is the excellent introduction\(^1\) to reinforcement learning by Rich Sutton and Andy Barto from 1998. This book is written from an artificial intelligence perspective, has a great educational writing style and is widely used (around ten thousand citations at the time of writing). The other book was written by Dimitri Bertsekas and John Tsitsiklis in 1996 and was titled neuro-dynamic programming\(^2\). Written from the standpoint of operations research, the book rigorously and in a mathematically precise way describes dynamic programming and reinforcement learning with a particular emphasis on approximation architectures. Whereas Sutton and Barto always maximize rewards, talk about value functions, rewards and are biased to the \(\{V,Q,S,A,T,R\}\) part of the alphabet augmented with \(\pi\), Bertsekas and Tsitsiklis talk about cost-to-go-functions, always minimize costs, and settle on the \(\{J,G,I,U\}\) part of the alphabet augmented with the greek symbol \(\mu\). Despite these superficial (notation) differences, the distinct writing styles and backgrounds, and probably also the audience for which these books were written, both tried to give a thorough introduction

to this exciting new research field and succeeded in doing that. At that time, the big merge of insights in both operations research and artificial intelligence approaches to behavior optimization was still ongoing and many fruitful cross-fertilization happened. Powerful ideas and algorithms such as Q-learning and TD-learning had been introduced quite recently and so many things were still unknown.

For example, questions about convergence of combinations of algorithms and function approximators arose. Many theoretical and experimental questions about convergence of algorithms, numbers of required samples for guaranteed performance, and applicability of reinforcement learning techniques in larger intelligent architectures were largely unanswered. In fact, many new issues came up and introduced an ever increasing pile of research questions waiting to be answered by bright, young PhD students. And even though both Sutton & Barto and Bertsekas & Tsitsiklis were excellent at introducing the field and eloquently describing the underlying methodologies and issues of it, at some point the field grew so large that new texts were required to capture all the latest developments. Hence this book, as an attempt to fill the gap.

This book is the first book about reinforcement learning featuring only state-of-the-art surveys on the main subareas. However, we can mention several other interesting books that introduce or describe various reinforcement learning topics too. These include a collection\(^3\) edited by Leslie Kaelbling in 1996 and a new edition of the famous Markov decision process handbook\(^4\) by Puterman. Several other books\(^5,6\) deal with the related notion of approximate dynamic programming. Recently additional books have appeared on Markov decision processes\(^7\), reinforcement learning\(^8\), function approximation\(^9\) and relational knowledge representation for reinforcement learning\(^10\). These books just represent a sample of a larger number of books relevant for those interested in reinforcement learning of course.

Reinforcement Learning: A Field Becoming Mature

In the past one and a half decade, the field of reinforcement learning has grown tremendously. New insights from this recent period – having much to deal with richer, and firmer, theory, increased applicability, scaling up, and connections to (probabilistic) artificial intelligence, brain theory and general adaptive systems – are not reflected in any recent book. Richard Sutton, one of the founders of modern reinforcement learning described in 1999 three distinct areas in the development of reinforcement learning; past, present and future.

The RL past encompasses the period until approximately 1985 in which the idea of trial-and-error learning was developed. This period emphasized the use of an active, exploring agent and developed the key insight of using a scalar reward signal to specify the goal of the agent, termed the reward hypothesis. The methods usually only learned policies and were generally incapable of dealing effectively with delayed rewards.

The RL present was the period in which value functions were formalized. Value functions are at the heart of reinforcement learning and virtually all methods focus on approximations of value functions in order to compute (optimal) policies. The value function hypothesis says that approximation of value functions is the dominant purpose of intelligence.

At this moment, we are well underway in the reinforcement learning future. Sutton made predictions about the direction of this period and wrote “Just as reinforcement learning present took a step away from the ultimate goal of reward to focus on value functions, so reinforcement learning future may take a further step away to focus on the structures that enable value function estimation [...] In psychology, the idea of a developing mind actively creating its representations of the world is called constructivism. My prediction is that for the next tens of years reinforcement learning will be focused on constructivism.” Indeed, as we can see in this book, many new developments in the field have to do with new structures that enable value function approximation. In addition, many developments are about properties, capabilities and guarantees about convergence and performance of these new structures. Bayesian frameworks, efficient linear approximations, relational knowledge representation and decompositions of hierarchical and multi-agent nature all constitute new structures employed in the reinforcement learning methodology nowadays.

Reinforcement learning is currently an established field usually situated in machine learning. However, given its focus on behavior learning, it has many connections to other fields such as psychology, operations research, mathematical optimization and beyond. Within artificial intelligence, there are large overlaps with probabilistic and decision-theoretic planning as it shares many goals with the planning community (e.g. the international conference on automated planning systems, ICAPS). In very recent editions of the international planning competition (IPC), methods originating from the reinforcement learning literature have entered the

competitions and did very well, in both probabilistic planning problems, and a recent "learning for planning" track.

Reinforcement learning research is published virtually everywhere in the broad field of artificial intelligence, simply because it is both a general methodology for behavior optimization as well as a set of computational tools to do so. All major artificial intelligence journals feature articles on reinforcement learning nowadays, and have been doing so for a long time. Application domains range from robotics and computer games to network routing and natural language dialogue systems and reinforcement learning papers appear at fora dealing with these topics. A large portion of papers appears every year (or two year) at the established top conferences in artificial intelligence such as IJCAI, ECAI and AAAI, and many also at top conferences with a particular focus on statistical machine learning such as UAI, ICML, ECML and NIPS. In addition, conferences on artificial life (Alife), adaptive behavior (SAB), robotics (ICRA, IROS, RSS) and neural networks and evolutionary computation (e.g. IJCNN and ICANN) feature much reinforcement learning work. Last but not least, in the past decade many specialized reinforcement learning workshops and tutorials have appeared at all the major artificial intelligence conferences.

But even though the field has much to offer to many other fields, and reinforcement learning papers appear everywhere, the current status of the field renders it natural to introduce fora with a specific focus on reinforcement learning methods. The European workshop on reinforcement learning (EWRL) has gradually become one such forum, growing every two years considerably and most recently held in Nancy (2008) and co-located with ECML (2011). Furthermore, the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) has become yet another meeting point for researchers to present and discuss their latest research findings. Together EWRL and ADPRL show that the field has progressed a lot and requires its own community and events.

Concerning practical aspects of reinforcement learning, and more importantly, concerning benchmarking, evaluation and comparisons, much has happened. In addition to the planning competitions (e.g. such as the IPC), several editions of the reinforcement learning competitions\footnote{http://www.rl-competition.org/} have been held with great success. Contestants competed in several classic domains (such as pole balancing) but also new and exciting domains such as the computer games Tetris and Super Mario. Competitions can promote code sharing and reuse, establish benchmarks for the field and be used to evaluate and compare methods on challenging domains. Another initiative for promoting more code and solution reuse is the RL-Glue framework\footnote{glue.rl-community.org/}, which provides an abstract reinforcement learning framework that can be used to share methods and domains among researchers. RL-Glue can connect to most common programming languages and thus provides a system- and language-independent software framework for experimentation. The competitions and RL-Glue help to further mature the field of reinforcement learning, and enable better scientific methods to test, compare and reuse reinforcement learning methods.
Preface

XIII

Goal of the Book and Intended Audience

As said before, we have tried to let this book be an answer to the question "what book would you recommend to learn about current reinforcement learning?". Every person who could pose this question is contained in the potential audience for this book. This includes PhD and master students, researchers in reinforcement learning itself, and researchers in any other field who want to know about reinforcement learning. Having a book with 17 surveys on the major areas in current reinforcement learning provides an excellent starting point for researchers to continue expanding the field, applying reinforcement learning to new problems and to incorporate principled behavior learning techniques in their own intelligent systems and robots.

When we started the book project, we first created a long list of possible topics and grouped them, which resulted in a list of almost twenty large subfields of reinforcement learning in which many new results were published over the last decade. These include established subfields such as evolutionary reinforcement learning, but also newer topics such as relational knowledge representation approaches and Bayesian frameworks for learning and planning. Hierarchical approaches, about which a chapter is contained in this book, form the first subfield that basically emerged right after the appearance of two mentioned books, and for that reason, were not discussed at that time.

Our philosophy when coming up with this book was to let the pool of authors reflect the youth and the active nature of the field. To that end, we selected and invited mainly young researchers in the start of their careers. Many of them finished their PhD studies in recent years, and that ensured that they were active and expert in their own sub-field of reinforcement learning, full of ideas and enthusiastic about that sub-field. Moreover, it gave them an excellent opportunity to promote that sub-field within the larger research area. In addition, we also invited several more experienced researchers who are recognized for their advances in several subfields of reinforcement learning. This all led to a good mix between different views on the subject matter. The initial chapter submissions were of very high quality, as we had hoped for. To complete the whole quality assurance procedure, we – the editors – together with a group of leading experts as reviewers, provided at least three reviews for each chapter. The results were that chapters were improved even further and that the resulting book contains a huge number of references to work in each of the subfields.

The resulting book contains 19 chapters, of which one contains introductory material on reinforcement learning, dynamic programming, Markov decision processes and foundational algorithms such as Q-learning and value iteration. The last chapter reflects on the material in the book, discusses things that were left out, and points out directions for further research. In addition, this chapter contains personal reflections and predictions about the field. The 17 chapters that form the core of the book are each self-contained introductions and overviews of subfields of reinforcement learning.

14 That is not to say that there were no hierarchical approaches, but the large portion of current hierarchical techniques appeared after the mid-nineties.
learning. In the next section we will give an overview of the structure of the book and its chapters. In total, the book features 30 authors, from many different institutes and different countries.

The Structure of This Book

The book consists of 18 surveys of sub-fields of reinforcement learning which are grouped together in four main categories which we will describe briefly in the following. The first chapter, Reinforcement Learning and Markov Decision Processes by Martijn van Otterlo and Marco Wiering, contains introductory material on basic concepts and algorithms. It discusses Markov decision processes and model-based and model-free algorithms for solving them. The goal of this chapter is to provide a quick overview of what constitute the main components of any reinforcement learning method, and it provides the necessary background for all other chapters. All surveys were written assuming this background was provided beforehand. The last chapter of the book, Conclusions, Future Directions and Outlook by Marco Wiering and Martijn van Otterlo, reflects on the material in the chapters and lists topics that were not discussed and directions for further research. In addition, it contains a list of personal reflections and predictions on the field, in the form of short statements written by several authors of chapters in the book. The main part of the book contains four groups of chapters and we will briefly introduce them individually in the following.

Efficient Solution Frameworks

The first part of the book contains several chapters on modern solution frameworks used in contemporary reinforcement learning. Most of these techniques can be understood in the light of the framework defined in the introduction chapter, yet these new methods emphasize more sophisticated use of samples, models of the world, and much more.

The first chapter in this part, Batch Reinforcement Learning by Sascha Lange, Thomas Gabel, and Martin Riedmiller surveys techniques for batch learning in the context of value function approximation. Such methods can make use of highly optimized regression techniques to learn robust and accurate value functions from huge amounts of data. The second chapter, Least-Squares Methods for Policy Iteration by Lucian Buşoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos, Robert Babuška, and Bart De Schutter surveys a recent trend in reinforcement learning on robust linear approximation techniques for policy learning. These techniques come with a solid set of mathematical techniques with which one can establish guarantees about learning speed, approximation accuracy and bounds. The third chapter, Learning and Using Models by Todd Hester and Peter Stone describes many ways in which models of the world can be learned and how they can speed up reinforcement learning. Learned models can be used for more efficient value updates, for planning, and for more effective exploration. World models
represent general knowledge about the world and are, because of that, good candidates to be transferred to other, related tasks. More about the transfer of knowledge in reinforcement learning is surveyed in the chapter **Transfer in Reinforcement Learning: a Framework and a Survey** by Alessandro Lazaric. When confronted with several related tasks, various things can, once learned, be reused in a subsequent task. For example, policies can be reused, but depending on whether the state and/or action spaces of the two related tasks differ, other methods need to be applied. The chapter not only surveys existing approaches, but also tries to put them in a more general framework. The remaining chapter in this part, **Sample Complexity Bounds of Exploration** by Lihong Li surveys techniques and results concerning the sample complexity of reinforcement learning. For all algorithms it is important to know how many samples (examples of interactions with the world) are needed to guarantee a minimal performance on a task. In the past decade many new results have appeared that study this vital aspect in a rigorous and mathematical way and this chapter provides an overview of them.

CONSTRUCTIVE-REPRESENTATIONAL DIRECTIONS

This part of the book contains several chapters in which either representations are central, or their construction and use. As mentioned before, a major aspect of constructive techniques are the structures that enable value function approximation (or policies for that matter). Several major new developments in reinforcement learning are about finding new representational frameworks to learn behaviors in challenging new settings.

In the chapter **Reinforcement Learning in Continuous State and Action Spaces** by Hado van Hasselt many techniques are described for problem representations that contain continuous variables. This has been a major component in reinforcement learning for a long time, for example through the use of neural function approximators. However, several new developments in the field have tried to either more rigorously capture the properties of algorithms dealing with continuous states and actions or have applied such techniques in novel domains. Of particular interest are new techniques for dealing with continuous actions, since this effectively renders the amount of applicable actions infinite and requires sophisticated techniques for computing optimal policies. The second chapter, **Solving Relational and First-Order Logical Markov Decision Processes: A Survey** by Martijn van Otterlo describes a new representational direction in reinforcement learning which started around a decade ago. It covers all representations strictly more powerful than propositional (or; attribute-value) representations of states and actions. These include modelings as found in logic programming and first-order logic. Such representations can represent the world in terms of objects and relations and open up possibilities for reinforcement learning in a much broader set of domains than before. These enable many new ways of generalization over value functions, policies and world models and require methods from logical machine learning and knowledge representation to do so. The next chapter, **Hierarchical Approaches** by Bernhard Hengst too surveys a representational direction, although here representation refers to the structural decomposition of a task, and with that implicitly of the underlying Markov decision
processes. Many of the hierarchical approaches appeared at the end of the nineties, and since then a large number of techniques has been introduced. These include new decompositions of tasks, value functions and policies, and many techniques for automatically learning task decompositions from interaction with the world. The final chapter in this part, *Evolutionary Computation for Reinforcement Learning* by Shimon Whiteson surveys evolutionary search for good policy structures (and value functions). Evolution has always been a good alternative for iterative, incremental reinforcement learning approaches and both can be used to optimize complex behaviors. Evolution is particularly well suited for non-Markov problems and policy structures for which gradients are unnatural or difficult to compute. In addition, the chapter surveys evolutionary neural networks for behavior learning.

Probabilistic Models of Self and Others

Current artificial intelligence has become more and more *statistical* and *probabilistic*. Advances in the field of *probabilistic graphical models* are used virtually everywhere, and results for these models – both theoretical as computational – are effectively used in many sub-fields. This is no different for reinforcement learning. There are several large sub-fields in which the use of probabilistic models, such as Bayesian networks, is common practice and the employment of such a universal set of representations and computational techniques enables fruitful connections to other research employing similar models.

The first chapter, *Bayesian Reinforcement Learning* by Nikos Vlassis, Mohammad Ghavamzadeh, Shie Mannor and Pascal Poupart surveys Bayesian techniques for reinforcement learning. Learning sequential decision making under uncertainty can be cast in a Bayesian universe where interaction traces provide samples (evidence), and Bayesian inference and learning can be used to find optimal decision strategies in a rigorous probabilistic fashion. The next chapter, *Partially Observable Markov Decision Processes* by Matthijs Spaan surveys representations and techniques for partially observable problems which are very often cast in a probabilistic framework such as a dynamic Bayesian network, and where probabilistic inference is needed to infer underlying hidden (unobserved) states. The chapter surveys both model-based as well as model-free methods. Whereas POMDPs are usually modeled in terms of belief states that capture some form of history (or memory), a more recent class of methods that focuses on the future is surveyed in the chapter *Predictively Defined Representations of State* by David Wingate. These techniques maintain a belief state used for action selection in terms of probabilistic predictions about future events. Several techniques are described in which these predictions are represented compactly and where these are updated based on experience in the world. So far, most methods focus on the prediction (or; evaluation) problem, and less on control. The fourth chapter, *Game Theory and Multi-agent Reinforcement Learning* by Ann Nowé, Peter Vrancx and Yann-Michaël De Hauwere moves to a more general set of problems in which multiple agents learn and interact. It surveys game-theoretic and multi-agent approaches in reinforcement learning and shows techniques used to optimize agents in the context of other (learning) agents. The final chapter in this part, *Decentralized POMDPs* by Frans Oliehoek surveys
model-based (dynamic programming) techniques for systems consisting of multiple agents that have to cooperatively solve a large task that is decomposed into a set of POMDPs. Such models for example appear in domains where multiple sensors in different locations together may provide essential information on how to act optimally in the world. This chapter builds on methods found in both POMDPs and multi-agent situations.

Domains and Background

As we have said in the beginning of this preface, reinforcement learning appears as a method in many other fields of artificial intelligence, to optimize behaviors. Thus, in addition to the many algorithmic advances as described in the previous three parts of the book, we wanted to include surveys of areas in which reinforcement learning has been applied successfully. This part features chapters on robotics and games. In addition, a third chapter reflects the growing interest in connecting reinforcement learning and cognitive neuroscience.

The first chapter, **Psychological and Neuroscientific Connections with Reinforcement Learning** by Ashvin Shah surveys the connection between reinforcement learning methods on the one hand and cognition and neuroscience on the other. Originally many reinforcement learning techniques were derived from insights developed in psychology by for example Skinner, Thorndike and Watson, and still much cross-fertilization between psychology and reinforcement learning can happen. Lately, due to advances in theory about the brain, and especially because testing and measuring of brain activity (fMRI, EEG, etc.) has become much better, much research tries to either 1) explain research findings about the brain in terms of reinforcement learning techniques, i.e. which algorithms do really happen in the brain or 2) get inspired by the inner workings of the brain to come up with new algorithms.

The second chapter in this part, **Reinforcement Learning in Games** by István Szita surveys the use of reinforcement learning in games. Games is more a general term here than as used in one of the previous chapters on game theory. Indeed, games in this chapter amount to board games such as Backgammon and Checkers, but also computer games such as role-playing and real-time strategy games. Games are often an exciting test bed for reinforcement learning algorithms (see for example also Tetris and Mario in the mentioned reinforcement learning competitions), and in addition to giving many examples, this chapter also tries to outline the main important aspects involved when applying reinforcement learning in game situations.

The third chapter in this part, **Reinforcement Learning in Robotics: a Survey** by Jens Kober and Jan Peters rigorously describes the application of reinforcement learning to robotics problems. Robotics, because it works with the real, physical world, features many problems that are challenging for the robust application of reinforcement learning. Huge amounts of noisy data, slow training and testing on real robots, the reality gap between simulators and the real world, and scaling up to high-dimensional state spaces are just some of the challenging problems discussed here. Robotics is an exciting area also because of the added possibilities of putting humans in the loop which can create extra opportunities for imitation learning, learning from demonstration, and using humans as teachers for robots.
ACKNOWLEDGEMENTS

Crafting a book such as this can not be done overnight. Many people have put a lot of work in it to make it happen. First of all, we would like to give a big thanks to all the authors who have put in all their expertise, time and creativity to write excellent surveys of their sub-fields. Writing a survey usually takes some extra effort, since it requires that you know much about a topic, but in addition that you can put all relevant works in a more general framework. As editors, we are very happy with the way the authors have accomplished this difficult, yet very useful, task.

A second group of people we would like to thank are the reviewers. They have provided us with very thorough, and especially very constructive, reviews and these have made the book even better. We thank these reviewers who agreed to put their names in the book; thank you very much for all your help: Andrea Bonarini, Prasad Tadepalli, Sarah Ostentoski, Rich Sutton, Daniel Kudenko, Jesse Hoey, Christopher Amato, Damien Ernst, Remi Munos, Johannes Fuernkrantz, Juergen Schmidhuber, Thomas Rückstiess, Joelle Pineau, Dimitri Bertsekas, John Asmuth, Lisa Torrey, Yael Niv, Te Thamrongrattanarit, Michael Littman and Csaba Szepesvari.

Thanks also to Rich Sutton who was so kind to write the foreword to this book. We both consider him as one of the main figures in reinforcement learning, and in all respects we admire him for all the great contributions he has made to the field. He was there in the beginning of modern reinforcement learning, but still he continuously introduces novel, creative new ways to let agents learn. Thanks Rich!

Editing a book such as this is made much more convenient if you can fit it in your daily scientific life. In that respect, Martijn would like to thank both the Katholieke Universiteit Leuven (Belgium) as well as the Radboud University Nijmegen (The Netherlands) for their support. Marco would like to thank the University of Groningen (The Netherlands) for the same kind of support.

Last but not least, we would like to thank you, the reader, to having picked this book and having started to read it. We hope it will be useful to you, and hope that the work you are about to embark on will be incorporated in a subsequent book on reinforcement learning.

Groningen, Nijmegen, November 2011

Marco Wiering
Martijn van Otterlo
Contents

Part I Introductory Part

1 Reinforcement Learning and Markov Decision Processes 3
 Martijn van Otterlo, Marco Wiering
 1.1 Introduction ... 3
 1.2 Learning Sequential Decision Making 5
 1.3 A Formal Framework ... 10
 1.3.1 Markov Decision Processes 10
 1.3.2 Policies .. 13
 1.3.3 Optimality Criteria and Discounting 13
 1.4 Value Functions and Bellman Equations 15
 1.5 Solving Markov Decision Processes 17
 1.6 Dynamic Programming: Model-Based Solution Techniques 19
 1.6.1 Fundamental DP Algorithms 20
 1.6.2 Efficient DP Algorithms 24
 1.7 Reinforcement Learning: Model-Free Solution Techniques 27
 1.7.1 Temporal Difference Learning 29
 1.7.2 Monte Carlo Methods 33
 1.7.3 Efficient Exploration and Value Updating 34
 1.8 Conclusions .. 39
 References .. 39

Part II Efficient Solution Frameworks

2 Batch Reinforcement Learning .. 45
 Sascha Lange, Thomas Gabel, Martin Riedmiller
 2.1 Introduction .. 45
 2.2 The Batch Reinforcement Learning Problem 46
 2.2.1 The Batch Learning Problem 46
 2.2.2 The Growing Batch Learning Problem 48
 2.3 Foundations of Batch RL Algorithms 49
Contents

2.4 Batch RL Algorithms ... 52
 2.4.1 Kernel-Based Approximate Dynamic Programming 53
 2.4.2 Fitted Q Iteration 55
 2.4.3 Least-Squares Policy Iteration 57
 2.4.4 Identifying Batch Algorithms 58
2.5 Theory of Batch RL .. 60
2.6 Batch RL in Practice 61
 2.6.1 Neural Fitted Q Iteration (NFQ) 61
 2.6.2 NFQ in Control Applications 63
 2.6.3 Batch RL for Learning in Multi-agent Systems 65
 2.6.4 Deep Fitted Q Iteration 67
 2.6.5 Applications/ Further References 69
2.7 Summary .. 70
References ... 71

3 Least-Squares Methods for Policy Iteration 75
Lucian Buşoniu, Alessandro Lazaric, Mohammad Ghavamzadeh,
Rémi Munos, Robert Babuška, Bart De Schutter
 3.1 Introduction ... 76
 3.2 Preliminaries: Classical Policy Iteration 77
 3.3 Least-Squares Methods for Approximate Policy Evaluation ... 79
 3.3.1 Main Principles and Taxonomy 79
 3.3.2 The Linear Case and Matrix Form of the Equations ... 81
 3.3.3 Model-Free Implementations 85
 3.3.4 Bibliographical Notes 89
 3.4 Online Least-Squares Policy Iteration 89
 3.5 Example: Car on the Hill 91
 3.6 Performance Guarantees 94
 3.6.1 Asymptotic Convergence and Guarantees 95
 3.6.2 Finite-Sample Guarantees 98
 3.7 Further Reading ... 104
References ... 106

4 Learning and Using Models 111
Todd Hester, Peter Stone
 4.1 Introduction ... 112
 4.2 What Is a Model? 113
 4.3 Planning ... 115
 4.3.1 Monte Carlo Methods 115
 4.4 Combining Models and Planning 118
 4.5 Sample Complexity 120
 4.6 Factored Domains 122
 4.7 Exploration .. 126
 4.8 Continuous Domains 130
 4.9 Empirical Comparisons 133
 4.10 Scaling Up ... 135
5 Transfer in Reinforcement Learning: A Framework and a Survey

5.1 Introduction ...143
5.2 A Framework and a Taxonomy for Transfer in Reinforcement Learning ...145
5.2.1 Transfer Framework145
5.2.2 Taxonomy ..148
5.3 Methods for Transfer from Source to Target with a Fixed State-Action Space ..155
5.3.1 Problem Formulation155
5.3.2 Representation Transfer156
5.3.3 Parameter Transfer158
5.4 Methods for Transfer across Tasks with a Fixed State-Action Space ..159
5.4.1 Problem Formulation159
5.4.2 Instance Transfer ..160
5.4.3 Representation Transfer161
5.4.4 Parameter Transfer162
5.5 Methods for Transfer from Source to Target Tasks with a Different State-Action Spaces164
5.5.1 Problem Formulation164
5.5.2 Instance Transfer ..166
5.5.3 Representation Transfer166
5.5.4 Parameter Transfer167
5.6 Conclusions and Open Questions168
References ..169

6 Sample Complexity Bounds of Exploration

6.1 Introduction ...175
6.2 Preliminaries ...176
6.3 Formalizing Exploration Efficiency178
6.3.1 Sample Complexity of Exploration and PAC-MDP178
6.3.2 Regret Minimization180
6.3.3 Average Loss ..182
6.3.4 Bayesian Framework183
6.4 A Generic PAC-MDP Theorem184
6.5 Model-Based Approaches186
6.5.1 Rmax ...186
6.5.2 A Generalization of Rmax188
6.6 Model-Free Approaches196
6.7 Concluding Remarks ..199
References ..200
Part III Constructive-Representational Directions

7 Reinforcement Learning in Continuous State and Action Spaces . . . 207
 Hado van Hasselt
 7.1 Introduction ... 207
 7.1.1 Markov Decision Processes in Continuous Spaces 208
 7.1.2 Methodologies to Solve a Continuous MDP 211
 7.2 Function Approximation 212
 7.2.1 Linear Function Approximation 213
 7.2.2 Non-linear Function Approximation 217
 7.2.3 Updating Parameters 218
 7.3 Approximate Reinforcement Learning 223
 7.3.1 Value Approximation 223
 7.3.2 Policy Approximation 229
 7.4 An Experiment on a Double-Pole Cart Pole 238
 7.5 Conclusion ... 242
 References ... 243

8 Solving Relational and First-Order Logical Markov Decision
 Processes: A Survey .. 253
 Martijn van Otterlo
 8.1 Introduction to Sequential Decisions in Relational Worlds . . 253
 8.1.1 MDPs: Representation and Generalization 254
 8.1.2 Short History and Connections to Other Fields 256
 8.2 Extending MDPs with Objects and Relations 257
 8.2.1 Relational Representations and Logical Generalization . 257
 8.2.2 Relational Markov Decision Processes 258
 8.2.3 Abstract Problems and Solutions 259
 8.3 Model-Based Solution Techniques 261
 8.3.1 The Structure of Bellman Backups 262
 8.3.2 Exact Model-Based Algorithms 263
 8.3.3 Approximate Model-Based Algorithms 266
 8.4 Model-Free Solutions 268
 8.4.1 Value-Function Learning with Fixed Generalization . 269
 8.4.2 Value Functions with Adaptive Generalization 270
 8.4.3 Policy-Based Solution Techniques 274
 8.5 Models, Hierarchies, and Bias 276
 8.6 Current Developments 280
 8.7 Conclusions and Outlook 283
 References ... 283

9 Hierarchical Approaches 293
 Bernhard Hengst
 9.1 Introduction ... 293
 9.2 Background ... 296
 9.2.1 Abstract Actions 297
11.3.2 Bayesian RL via Dynamic Programming 373
11.3.3 Approximate Online Algorithms 376
11.3.4 Bayesian Multi-Task Reinforcement Learning 377
11.3.5 Incorporating Prior Knowledge 379
11.4 Finite Sample Analysis and Complexity Issues 380
11.5 Summary and Discussion 382
References .. 382

12 Partially Observable Markov Decision Processes 387
Matthijs T.J. Spaan
12.1 Introduction .. 387
12.2 Decision Making in Partially Observable Environments 389
 12.2.1 POMDP Model ... 389
 12.2.2 Continuous and Structured Representations 391
 12.2.3 Memory for Optimal Decision Making 391
 12.2.4 Policies and Value Functions 394
12.3 Model-Based Techniques 395
 12.3.1 Heuristics Based on MDP Solutions 396
 12.3.2 Value Iteration for POMDPs 397
 12.3.3 Exact Value Iteration 400
 12.3.4 Point-Based Value Iteration Methods 401
 12.3.5 Other Approximate Methods 403
12.4 Decision Making Without a-Priori Models 404
 12.4.1 Memoryless Techniques 405
 12.4.2 Learning Internal Memory 405
12.5 Recent Trends ... 408
References .. 409

13 Predictively Defined Representations of State 415
David Wingate
13.1 Introduction .. 416
 13.1.1 What Is “State”? .. 416
 13.1.2 Which Representation of State? 418
 13.1.3 Why Predictions about the Future? 419
13.2 PSRs .. 420
 13.2.1 Histories and Tests 421
 13.2.2 Prediction of a Test 422
 13.2.3 The System Dynamics Vector 422
 13.2.4 The System Dynamics Matrix 423
 13.2.5 Sufficient Statistics 424
 13.2.6 State ... 424
 13.2.7 State Update ... 425
 13.2.8 Linear PSRs ... 425
 13.2.9 Relating Linear PSRs to POMDPs 426
 13.2.10 Theoretical Results on Linear PSRs 427
13.3 Learning a PSR Model .. 428
<table>
<thead>
<tr>
<th>Contents</th>
<th>XXV</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.1 The Discovery Problem</td>
<td>428</td>
</tr>
<tr>
<td>13.3.2 The Learning Problem</td>
<td>429</td>
</tr>
<tr>
<td>13.3.3 Estimating the System Dynamics Matrix</td>
<td>429</td>
</tr>
<tr>
<td>13.4 Planning with PSRs</td>
<td>429</td>
</tr>
<tr>
<td>13.5 Extensions of PSRs</td>
<td>431</td>
</tr>
<tr>
<td>13.6 Other Models with Predictively Defined State</td>
<td>432</td>
</tr>
<tr>
<td>13.6.1 Observable Operator Models</td>
<td>433</td>
</tr>
<tr>
<td>13.6.2 The Predictive Linear-Gaussian Model</td>
<td>433</td>
</tr>
<tr>
<td>13.6.3 Temporal-Difference Networks</td>
<td>434</td>
</tr>
<tr>
<td>13.6.4 Diversity Automaton</td>
<td>435</td>
</tr>
<tr>
<td>13.6.5 The Exponential Family PSR</td>
<td>435</td>
</tr>
<tr>
<td>13.6.6 Transformed PSRs</td>
<td>436</td>
</tr>
<tr>
<td>13.7 Conclusion</td>
<td>436</td>
</tr>
<tr>
<td>References</td>
<td>437</td>
</tr>
<tr>
<td>14 Game Theory and Multi-agent Reinforcement Learning</td>
<td>441</td>
</tr>
<tr>
<td>Ann Nowé, Peter Vrancx, Yann-Michaël De Hauwere</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>441</td>
</tr>
<tr>
<td>14.2 Repeated Games</td>
<td>445</td>
</tr>
<tr>
<td>14.2.1 Game Theory</td>
<td>445</td>
</tr>
<tr>
<td>14.2.2 Reinforcement Learning in Repeated Games</td>
<td>449</td>
</tr>
<tr>
<td>14.3 Sequential Games</td>
<td>454</td>
</tr>
<tr>
<td>14.3.1 Markov Games</td>
<td>455</td>
</tr>
<tr>
<td>14.3.2 Reinforcement Learning in Markov Games</td>
<td>456</td>
</tr>
<tr>
<td>14.4 Sparse Interactions in Multi-agent System</td>
<td>461</td>
</tr>
<tr>
<td>14.4.1 Learning on Multiple Levels</td>
<td>461</td>
</tr>
<tr>
<td>14.4.2 Learning to Coordinate with Sparse Interactions</td>
<td>462</td>
</tr>
<tr>
<td>14.5 Further Reading</td>
<td>467</td>
</tr>
<tr>
<td>References</td>
<td>467</td>
</tr>
<tr>
<td>15 Decentralized POMDPs</td>
<td>471</td>
</tr>
<tr>
<td>Frans A. Oliehoek</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>471</td>
</tr>
<tr>
<td>15.2 The Decentralized POMDP Framework</td>
<td>473</td>
</tr>
<tr>
<td>15.3 Histories and Policies</td>
<td>475</td>
</tr>
<tr>
<td>15.3.1 Histories</td>
<td>475</td>
</tr>
<tr>
<td>15.3.2 Policies</td>
<td>476</td>
</tr>
<tr>
<td>15.3.3 Structure in Policies</td>
<td>477</td>
</tr>
<tr>
<td>15.3.4 The Quality of Joint Policies</td>
<td>479</td>
</tr>
<tr>
<td>15.4 Solution of Finite-Horizon Dec-POMDPs</td>
<td>480</td>
</tr>
<tr>
<td>15.4.1 Brute Force Search and Dec-POMDP Complexity</td>
<td>480</td>
</tr>
<tr>
<td>15.4.2 Alternating Maximization</td>
<td>481</td>
</tr>
<tr>
<td>15.4.3 Optimal Value Functions for Dec-POMDPs</td>
<td>481</td>
</tr>
<tr>
<td>15.4.4 Forward Approach: Heuristic Search</td>
<td>485</td>
</tr>
<tr>
<td>15.4.5 Backwards Approach: Dynamic Programming</td>
<td>489</td>
</tr>
<tr>
<td>15.4.6 Other Finite-Horizon Methods</td>
<td>493</td>
</tr>
</tbody>
</table>
15.5 Further Topics ... 493
15.5.1 Generalization and Special Cases 493
15.5.2 Infinite-Horizon Dec-POMDPs 495
15.5.3 Reinforcement Learning 496
15.5.4 Communication .. 497
References ... 498

Part V Domains and Background

16 Psychological and Neuroscientific Connections with Reinforcement Learning ... 507
Ashvin Shah
16.1 Introduction .. 507
16.2 Classical (or Pavlovian) Conditioning 508
16.2.1 Behavior ... 509
16.2.2 Theory .. 511
16.2.3 Summary and Additional Considerations 512
16.3 Operant (or Instrumental) Conditioning 513
16.3.1 Behavior ... 513
16.3.2 Theory .. 514
16.3.3 Model-Based Versus Model-Free Control 516
16.3.4 Summary and Additional Considerations 517
16.4 Dopamine ... 518
16.4.1 Dopamine as a Reward Prediction Error 518
16.4.2 Dopamine as a General Reinforcement Signal 520
16.4.3 Summary and Additional Considerations 521
16.5 The Basal Ganglia ... 521
16.5.1 Overview of the Basal Ganglia 522
16.5.2 Neural Activity in the Striatum 523
16.5.3 Cortico-basal Ganglia-thalamic Loops 524
16.5.4 Summary and Additional Considerations 526
16.6 Chapter Summary ... 527
References ... 528

17 Reinforcement Learning in Games 539
István Szita
17.1 Introduction .. 539
17.1.1 Aims and Structure 540
17.1.2 Scope .. 541
17.2 A Showcase of Games 541
17.2.1 Backgammon ... 542
17.2.2 Chess .. 545
17.2.3 Go ... 550
17.2.4 Tetris .. 555
17.2.5 Real-Time Strategy Games 558
17.3 Challenges of Applying Reinforcement Learning to Games 561
18 Reinforcement Learning in Robotics: A Survey

Jens Kober, Jan Peters

18.1 Introduction ... 579
18.2 Challenges in Robot Reinforcement Learning 581
 18.2.1 Curse of Dimensionality 582
 18.2.2 Curse of Real-World Samples 583
 18.2.3 Curse of Real-World Interactions 584
 18.2.4 Curse of Model Errors 584
 18.2.5 Curse of Goal Specification 585
18.3 Foundations of Robot Reinforcement Learning 585
 18.3.1 Value Function Approaches 586
 18.3.2 Policy Search .. 588
18.4 Tractability through Representation 589
 18.4.1 Smart State-Action Discretization 590
 18.4.2 Function Approximation 592
 18.4.3 Pre-structured Policies 592
18.5 Tractability through Prior Knowledge 594
 18.5.1 Prior Knowledge through Demonstrations 594
 18.5.2 Prior Knowledge through Task Structuring 596
 18.5.3 Directing Exploration with Prior Knowledge 596
18.6 Tractability through Simulation 596
 18.6.1 Role of Models 597
 18.6.2 Mental Rehearsal 598
 18.6.3 Direct Transfer from Simulated to Real Robots 599
18.7 A Case Study: Ball-in-a-Cup 599
 18.7.1 Experimental Setting: Task and Reward 599
 18.7.2 Appropriate Policy Representation 601
 18.7.3 Generating a Teacher’s Demonstration 601
 18.7.4 Reinforcement Learning by Policy Search 601
 18.7.5 Use of Simulations in Robot Reinforcement Learning 603
 18.7.6 Alternative Approach with Value Function Methods 603
18.8 Conclusion .. 603
References .. 604
List of Contributors

Robert Babuška
Delft Center for Systems and Control, Delft University of Technology,
The Netherlands
e-mail: r.babuska@tudelft.nl

Lucian Buşoniu
Research Center for Automatic Control (CRAN), University of Lorraine, France
e-mail: lucian@busoniu.net

Thomas Gabel
Albert-Ludwigs-Universität, Faculty of Engineering, Germany,
e-mail: tgabel@informatik.uni-freiburg.de

Mohammad Ghavamzadeh
Team SequeL, INRIA Lille-Nord Europe, France
e-mail: mohammad.ghavamzadeh@inria.fr

Hado van Hasselt
Centrum Wiskunde en Informatica (CWI, Center for Mathematics and Computer Science), Amsterdam, The Netherlands
e-mail: H.van.Hasselt@cwi.nl

Yann-Michaël De Hauwere
Vrije Universiteit Brussel, Belgium
e-mail: ydehauwe@vub.ac.be

Bernhard Hengst
School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia
e-mail: bernhardh@cse.unsw.edu.au
Todd Hester
Department of Computer Science, The University of Texas at Austin, USA
E-mail: todd@cs.utexas.edu

Jens Kober
1) Intelligent Autonomous Systems Institute, Technische Universitaet Darmstadt, Darmstadt, Germany; 2) Robot Learning Lab, Max-Planck Institute for Intelligent Systems, Tübingen, Germany
E-mail: jens.kober@tuebingen.mpg.de

Sascha Lange
Albert-Ludwigs-Universität Freiburg, Faculty of Engineering, Germany
E-mail: slange@informatik.uni-freiburg.de

Alessandro Lazaric
Team Sequel, INRIA Lille-Nord Europe, France
E-mail: alessandro.lazaric@inria.fr

Lihong Li
Yahoo! Research, Santa Clara, USA
E-mail: lihong@yahoo-inc.com

Shie Mannor
Technion, Haifa, Israel
E-mail: shie@ee.technion.ac.il

Rémi Munos
Team Sequel, INRIA Lille-Nord Europe, France
E-mail: remi.munos@inria.fr

Frans Oliehoek
CSAIL, Massachusetts Institute of Technology
E-mail: fao@csail.mit.edu

Ann Nowé
Vrije Universiteit Brussel, Belgium
E-mail: anowe@vub.ac.be

Martijn van Otterlo
Radboud University Nijmegen, The Netherlands
E-mail: m.vanotterlo@donders.ru.nl

Jan Peters
1) Intelligent Autonomous Systems Institute, Technische Universitaet Darmstadt, Darmstadt, Germany; 2) Robot Learning Lab, Max-Planck Institute for Intelligent Systems, Tübingen, Germany
E-mail: jan.peters@tuebingen.mpg.de

Pascal Poupart
University of Waterloo, Canada
E-mail: ppoupart@cs.uwaterloo.ca
List of Contributors

Martin Riedmiller
Albert-Ludwigs-Universität Freiburg, Faculty of Engineering, Germany
e-mail: riedmiller@informatik.uni-freiburg.de

Bart De Schutter
Delft Center for Systems and Control,
Delft University of Technology, The Netherlands
e-mail: b.deschutter@tudelft.nl

Ashvin Shah
Department of Psychology, University of Sheffield, Sheffield, UK
e-mail: ashvin@gmail.com

Matthijs Spaan
Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal
e-mail: mtjspaan@isr.ist.utl.pt

Peter Stone
Department of Computer Science, The University of Texas at Austin, USA
e-mail: pstone@cs.utexas.edu

István Szita
University of Alberta, Canada
e-mail: szityu@gmail.com

Nikos Vlassis
(1) Luxembourg Centre for Systems Biomedicine, University of Luxembourg,
and (2) OneTree Luxembourg
e-mail: nikos.vlassis@uni.lu, nikos@onetreesol.com

Peter Vrancx
Vrije Universiteit Brussel, Belgium
e-mail: pvranxc@vub.ac.be

Shimon Whiteson
Informatics Institute, University of Amsterdam, The Netherlands
e-mail: s.a.whiteson@uva.nl

Marco Wiering
Department of Artificial Intelligence, University of Groningen, The Netherlands
e-mail: m.a.wiering@rug.nl

David Wingate
Massachusetts Institute of Technology, Cambridge, USA
e-mail: wingated@mit.edu
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Actor-Critic</td>
</tr>
<tr>
<td>AO</td>
<td>Action-Outcome</td>
</tr>
<tr>
<td>BAC</td>
<td>Bayesian Actor-Critic</td>
</tr>
<tr>
<td>BEETLE</td>
<td>Bayesian Exploration-Exploitation Tradeoff in Learning</td>
</tr>
<tr>
<td>BG</td>
<td>Basal Ganglia</td>
</tr>
<tr>
<td>BQ</td>
<td>Bayesian Quadrature</td>
</tr>
<tr>
<td>BQL</td>
<td>Bayesian Q-learning</td>
</tr>
<tr>
<td>BPG</td>
<td>Bayesian Policy Gradient</td>
</tr>
<tr>
<td>BRM</td>
<td>Bellman Residual Minimization (generic; BRM-Q for Q-functions; BRM-V for V-functions)</td>
</tr>
<tr>
<td>CMA-ES</td>
<td>Covariance Matrix Adaptation Evolution Strategy</td>
</tr>
<tr>
<td>CPPN</td>
<td>Compositional Pattern Producing Network</td>
</tr>
<tr>
<td>CoSyNE</td>
<td>Cooperative Synapse Coevolution</td>
</tr>
<tr>
<td>CR</td>
<td>Conditioned Response</td>
</tr>
<tr>
<td>CS</td>
<td>Conditioned Stimulus</td>
</tr>
<tr>
<td>DA</td>
<td>Dopamine</td>
</tr>
<tr>
<td>DBN</td>
<td>Dynamic Bayesian Network</td>
</tr>
<tr>
<td>DEC-MDP</td>
<td>Decentralized Markov Decision Process</td>
</tr>
<tr>
<td>DFQ</td>
<td>Deep Fitted Q iteration</td>
</tr>
<tr>
<td>DP</td>
<td>Dirichlet process</td>
</tr>
<tr>
<td>DTR</td>
<td>Decision-Theoretic Regression</td>
</tr>
<tr>
<td>EDA</td>
<td>Estimation of Distribution Algorithm</td>
</tr>
<tr>
<td>ESP</td>
<td>Enforced SubPopulations</td>
</tr>
<tr>
<td>FODTR</td>
<td>First-Order (Logical) Decision-Theoretic Regression</td>
</tr>
<tr>
<td>FQI</td>
<td>Fitted Q Iteration</td>
</tr>
<tr>
<td>GP</td>
<td>Gaussian Process</td>
</tr>
<tr>
<td>GPI</td>
<td>Generalized Policy Iteration</td>
</tr>
<tr>
<td>GPTD</td>
<td>Gaussian Process Temporal Difference</td>
</tr>
<tr>
<td>HBM</td>
<td>Hierarchical Bayesian model</td>
</tr>
<tr>
<td>HRL</td>
<td>Hierarchical Reinforcement Learning</td>
</tr>
</tbody>
</table>
ILP Inductive Logic Programming
KADP Kernel-based Approximate Dynamic Programming
KR Knowledge Representation
KWIK Knows What It Knows
LCS Learning Classifier System
LSPE Least-Squares Policy Evaluation (generic; LSPE-Q for Q-functions; LSPE-V for V-functions)
LSPI Least-Squares Policy Iteration
LSTDQ Least-Squares Temporal Difference Q-Learning
LSTD Least-Squares Temporal Difference (generic; LSTD-Q for Q-functions; LSTD-V for V-functions)
MB Mistake Bound
MC Monte-Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
ML Machine Learning
MTL Multi-Task Learning
MTRL Multi-Task Reinforcement Learning
NEAT NeuroEvolution of Augmenting Topologies
NFQ Neural Fitted Q iteration
PAC Probably Approximately Correct
PAC-MDP Probably Approximately Correct in Markov Decision Process
PMBGA Probabilistic Model-Building Genetic Algorithm
PI Policy Iteration
PIAGeT Policy Iteration using Abstraction and Generalization Techniques
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
RMDP Relational Markov Decision Process
SANE Symbiotic Adaptive NeuroEvolution
sGA Structured Genetic Algorithm
SMDP Semi-Markov Decision Process
SR Stimulus-Response
SRL Statistical Relational Learning
TD Temporal Difference
TWEANN Topology- and Weight-Evolving Artificial Neural Network
UR Unconditioned Response
US Unconditioned Stimulus
VI Value Iteration
VPI Value of Perfect Information