NanoScience and Technology

Series Editors:

P. Avouris B. Bhushan D. Bimberg K. von Klitzing H. Sakaki R. Wiesendanger

The series NanoScience and Technology is focused on the fascinating nano-world, mesoscopic physics, analysis with atomic resolution, nano and quantum-effect devices, nanomechanics and atomic-scale processes. All the basic aspects and technology-oriented developments in this emerging discipline are covered by comprehensive and timely books. The series constitutes a survey of the relevant special topics, which are presented by leading experts in the field. These books will appeal to researchers, engineers, and advanced students.

Please view available titles in *NanoScience and Technology* on series homepage http://www.springer.com/series/3705/
Bharat Bhushan
Editor

Scanning Probe Microscopy in Nanoscience and Nanotechnology

With 419 Figures
Preface

The emergence and proliferation of proximal probes, in particular tip-based microscopies, has found applications in a large number of fields of scientific and industrial interest. These allow investigations down to the atomic scale. The recent focus on nanotechnology has made probe-based methods indispensible. The present editor coedited with Prof. H. Fuchs 13 volumes on applied scanning probe methods (SPM) from 2004 to 2009. These volumes have provided a timely comprehensive overview of SPM applications.

The success of the Springer Series Applied Scanning Probe Methods and the rapidly expanding activities in scanning probe development and applications in nanoscience and nanotechnology worldwide make it a natural step to collect further specific results in the fields of development of scanning probe microscopy techniques, characterization, and industrial applications, particularly in nanoscience, nanotechnology, and biomimetics. In 2010, the editor launched a series of volumes on Scanning Probe Microscopy in Nanoscience and Nanotechnology. This third volume provides insight into the recent work by leading specialists in their respective fields.

This volume introduces many technical concepts and improvements of existing scanning probe techniques and covers a broad and impressive spectrum of recent SPM development and application in many fields of technology, biology, and medicine. The chapters are broken down under three major headings: Scanning Probe Microscopy Techniques, Characterization, and Industrial Applications. After introducing new developments in scanning probe microscopy, characterization data in various applications of scientific and technological interest are presented. Next, chapters on various industrial applications are presented. Characterization data and industrial applications include studies of biological materials, nanostructures, and nanotubes.

The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective. The field is progressing so fast that there is a need for a set of volumes every 12–18 months to capture the latest developments.
We gratefully acknowledge the support of all authors representing leading scientists in academia and industry for the highly valuable contribution to this volume. We also cordially thank the series editor Claus Ascheron and his staff member Adelheid Duhm from Springer for their continued support during the publication process.

We sincerely hope that readers will find this volume to be scientifically stimulating and rewarding.

Columbus, OH, USA

Bharat Bhushan
Part I Scanning Probe Microscopy Techniques

1 Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN) ... 3
 Luohan Peng, Huiliang Zhang, Philip Hemmer, and Hong Liang
 1.1 A Brief Review of Scanning Probe-Based Nanolithography 3
 1.1.1 Introduction .. 3
 1.1.2 Laser-Assisted Process 4
 1.1.3 Stimulated Nanoalloying and Nanocrystallization 4
 1.2 LASPAN System Configuration 5
 1.2.1 AFM Writing at Room Temperature 5
 1.2.2 Laser System Attachment 5
 1.2.3 Integration of Laser and AFM Systems 7
 1.3 LASPAN Processes and Applications 8
 1.3.1 Principles of LASPAN Process 8
 1.3.2 Optimization of LASPAN Generic Process 9
 1.3.3 LASPAN in an Au-Si System: A Case Study 14
 1.4 Conclusions .. 20
 References .. 20

2 Characterization and Optimization of Quartz Tuning Fork-Based Force Sensors for Combined STM/AFM 23
 Andres Castellanos-Gomez, Nicolás Agrait, and Gabino Rubio-Bollinger
 2.1 Introduction .. 23
 2.1.1 Why Study the Dynamics of Quartz Tuning Fork Force Sensors? .. 24
 2.1.2 Why Develop Novel Tips? 25
2.2 Dynamics of Quartz Tuning Fork-Based Force Sensors 25
 2.2.1 Modeling the Tuning Fork Dynamics .. 25
 2.2.2 Effective Spring Constant .. 27
 2.2.3 Linearity of the Relationship Between the Force Gradient and the Resonance Frequency Shift ... 34
 2.2.4 Oscillation Amplitude Calibration ... 36
2.3 Carbon Fiber Tips to Optimize the Performance of Tuning Fork-Based Sensors ... 40
 2.3.1 Advantages of Carbon Fiber-Based Tips in Combined STM/AFM .. 40
 2.3.2 Electrochemical Etching of the Tips .. 43
 2.3.3 Performance in STM/AFM Microscopes .. 44
2.4 Conclusions .. 50
References .. 51

3 Exploring Mesoscale Contact Mechanics by Atomic Force Microscopy ... 55
Renato Buzio
 3.1 Introduction .. 56
 3.1.1 Fundamental and Technological Relevance of Mesoscale Contact Junctions ... 56
 3.1.2 Probing MCM by Depth-Sensing Indentation Experiments ... 59
 3.2 Experiments on MCM by Elastically Stiff AFM Probes: The Role of Nanoroughness ... 61
 3.3 Experiments on MCM by Elastomer Colloidal AFM Probes 63
 3.3.1 Fabrication of Probes .. 63
 3.3.2 Experiments with Atomically Smooth Interfaces 65
 3.3.3 Experiments with Rough Interfaces .. 70
 3.4 Conclusions .. 72
References .. 73

Part II Characterization

4 Atomic Force Microscopy for DNA SNP Identification 79
Ugo Valbusa and Vincenzo Ierardi
 4.1 Introduction .. 79
 4.2 DNA and MutS AFM Imaging .. 82
 4.2.1 Mismatch Tagging .. 82
 4.2.2 DNA Deposition Process: Chemical Environment Effects 85
 4.2.3 Morphological Characterization of DNA Filaments and MutS Protein by AFM ... 87
4.3 DNA-MutS Complex Investigation 91
 4.3.1 Experimental Condition of the Formation of Homoduplex DNA-MutS Complexes 92
 4.3.2 Heteroduplex ds-DNA-MutS Complexes 92
4.4 Conclusions ... 95
References ... 96

5 Atomic Force Microscopy of Isolated Nanostructures: Biomolecular Imaging in Hydrated Environments – Status and Future Prospects ... 99
Sergio Santos and Neil H. Thomson
5.1 Introduction to Atomic Force Microscopy (AFM) in Biology 99
5.2 Imaging Biomolecules in Liquid and Ambient Dynamic AFM: An Overview .. 105
5.3 Bistability, Average and Peak Forces 109
5.4 Imaging Biomolecules in the Attractive and Repulsive Regimes .. 116
5.5 The True Non-contact Mode of Operation 119
5.6 The Relevance of Peak Forces .. 119
5.7 Instrument Stability: Reproducible Operation 121
5.8 What Controls High Resolution of Soft Matter in AFM 122
5.9 Understanding and Interpreting Apparent Height in AFM 124
5.10 Conclusions and Future Prospects 126
References ... 129

6 Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells .. 137
Robert H. Eibl
6.1 Introduction .. 138
 6.1.1 Principles of AFM ... 145
 6.1.2 Integrins in Cell Adhesion and Leukocyte Homing 147
6.2 Force Spectroscopy of Living Cells 152
 6.2.1 Preparation of Cells and Reagents for AFM Measurements .. 152
 6.2.2 Placing a Cell onto the Tip of a Cantilever 154
 6.2.3 Force Measurements on Cells 155
 6.2.4 Blocking Experiments at the Single-Bond Level 158
 6.2.5 Pharmacology Measurements 158
6.3 AFM Force Measurements of Integrins 158
 6.3.1 Integrin VLA-4 .. 159
 6.3.2 Integrin LFA-1 .. 162
 6.3.3 Integrin α4β7 .. 164
 6.3.4 Integrin α5β1 .. 165
 6.3.5 Integrin α5β3 .. 165
6.4 Conclusion .. 166
References ... 167
7 Nanomechanics of Yeast Surfaces Revealed by AFM

Etienne Dague, Audrey Beaussart, and David Alsteens

7.1 Introduction

7.2 Preparation of AFM Sample and Tips

7.2.1 AFM Force Measurements

7.2.2 Sample Preparation

7.2.3 Tip Functionalization

7.3 Nanostructure and Elasticity of Yeast Cell Wall

7.4 Nanomechanical Behavior of the Als5p Cell Adhesion Protein

7.4.1 Unfolding Behavior Confers Toughness to Als5p

7.4.2 Force-Induced Als Nanodomains

7.5 Conclusion

References

8 Recent Developments in In Situ SFM of Block Copolymers: 3D Volume Structures and Dynamics

Markus Hund, Clemens Liedel, Larisa Tsarkova, and Alexander Böker

8.1 Introduction

8.2 In Situ SFM Imaging of Block Copolymer Nanostructures Under Annealing

8.3 Quasi In Situ Scanning Probe Microscopy

8.3.1 In Situ and Ex Situ

8.3.2 The Quasi In Situ Setup

8.3.3 Operation of the QIS-SFM

8.3.4 Quasi In Situ Solvent Vapor Annealing in the Presence of a High Electric Field

8.4 Quasi In Situ Investigation of Block Copolymer Alignment Mechanisms

8.4.1 Alignment Mechanism of a Lamella Forming ABC Triblock Copolymer

8.4.2 Defect Annihilation in a Lamella Forming ABC Triblock Copolymer

8.4.3 Alignment Mechanism of a Cylinder Forming ABC Triblock Copolymer

8.5 In Situ SFM Imaging After Successive Plasma Etching for the Structure Reconstruction

8.6 Conclusion and Perspective

References

9 Surface Morphology and Crystallinity of Polyamides Investigated by Atomic Force Microscopy

Tamara Elzein, Maurice Brogly, and Sophie Bistac

9.1 Introduction

9.2 Experimental Part

9.2.1 Functionalized Substrates
9.2.2 Polymer Thin Films Deposition 239
9.2.3 AFM Analysis .. 240
9.3 Results and Discussion ... 241
 9.3.1 PA Chains Orientation at Interface 241
 9.3.2 AFM Analysis of Thin PA Films Adsorbed on
 Functionalized Substrates .. 242
9.4 Conclusion .. 246
References .. 246

10 Application of Atomic Force Microscopy in Natural Polymers 249
Alessandra Luzia Da Róz, Carolina de Castro Bueno, Fabio
Minoru Yamaji, Ana Lucia Brandl, and Fabio de Lima Leite
10.1 Introduction .. 249
10.2 AFM and Polymer Naturals ... 249
 10.2.1 Cellulose ... 250
 10.2.2 Starch ... 259
 10.2.3 Chitin and Chitosan .. 270
 10.2.4 Natural Rubber ... 277
10.3 Conclusions ... 288
References .. 288

11 Investigation of Nanopatterned Functional Polymer
Surfaces by AFM in Pulsed Force Mode 291
Olivier Soppera, Ali Dirani, Safi Jradi, Vincent Roucoules, and
Hamidou Haidara
11.1 Investigation of Photopolymers with SPM 292
 11.1.1 Photopolymers: Interest, Micro- and Nanopatterning 292
 11.1.2 Methods for Analyzing Polymer
 Nano-Objects’ Geometry .. 293
 11.1.3 Local Nanoscale Mechanical Analysis:
 Mapping the Chemical Properties at Polymer
 Surfaces .. 294
11.2 Pulsed Force Mode .. 294
 11.2.1 Interest of PFM in Polymer Science 294
 11.2.2 Principle of PFM .. 295
 11.2.3 Methods ... 295
11.3 Recent Applications of PFM in Photopolymer Science 298
 11.3.1 Mapping of Stiffness in a Photopolymer for
 Holographic Data Storage .. 298
 11.3.2 Chemical Titration on Plasma Polymer
 Modified by DUV Irradiation .. 304
11.4 Conclusion ... 312
References .. 313
12 Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality 317
Ronen Berkovich, Joseph Klafter, and Michael Urbakh
12.1 Introduction ... 317
12.2 The Jarzynski Equality .. 319
12.3 From Force Traces to Free-Energy Landscapes 324
References .. 332

13 Contact and Friction of One- and Two-Dimensional Nanostructures .. 335
Yin Zhang and Ya-pu Zhao
13.1 Introduction ... 335
13.2 Classical Contact Theories ... 338
13.2.1 Surface Interaction Force and Derjaguin Approximation ... 338
13.2.2 Contact Pressure and Equilibrium 339
13.3 Flexural Contact .. 341
13.3.1 Three-Point Bending Test 343
13.3.2 Indentation Test ... 348
13.4 Friction of the Flexural 1D and 2D Structures 351
References .. 359

14 Van der Waals and Capillary Adhesion of Polycrystalline Silicon Micromachined Surfaces .. 363
Frank W. DelRio, Martin L. Dunn, and Maarten P. de Boer
14.1 Introduction ... 363
14.2 Experiments .. 365
14.2.1 Cantilever Design and Fabrication 366
14.2.2 Cantilever Deflection Measurements 366
14.3 Model ... 372
14.3.1 Description of the Interface 373
14.3.2 Attractive Interfacial Forces 374
14.3.3 Repulsive Contact Forces: Elastic and Plastic Deformation ... 379
14.3.4 Calculation Procedure 382
14.4 Results ... 384
14.4.1 Below the Threshold RH 384
14.4.2 Above the Threshold RH 385
14.5 Discussion .. 387
14.6 Summary and Future Work .. 389
References .. 390
Part III Industrial Applications

15 Atomic Force Microscopy in Bioengineering Applications 397
R. Colaço and P.A. Carvalho
 15.1 Introduction .. 397
 15.2 Fundamentals of the AFM .. 400
 15.2.1 Working Principles ... 400
 15.2.2 Resolution .. 402
 15.2.3 Probe Selection ... 403
 15.3 Imaging .. 404
 15.3.1 Contact Mode .. 404
 15.3.2 Dynamic Modes ... 405
 15.4 Nanotribology, Nanomechanics, and Force Spectroscopy 407
 15.4.1 Nanotribology .. 407
 15.4.2 Nanomechanical Properties 407
 15.4.3 Force Spectroscopy ... 412
 15.5 Imaging Applications in Bioengineering 416
 15.6 Nanotribological Experiments in Biomaterials Using the AFM ... 418
 15.7 Nanomechanical Characterization of Biomaterials
 and Biological Structures ... 420
 15.8 Conclusions .. 425
References .. 425

16 Bridging Nano- and Microtribology in Mechanical and
 Biomolecular Layers .. 431
Agnieszka Tomala, Hakan Göçerler, and Ille C. Gebeshuber
 16.1 Introduction to Nanotribology and Microtribology 432
 16.1.1 Monomolecular Thin Films 433
 16.1.2 Additive-Derived Reaction Layers 434
 16.1.3 Hard Coatings .. 435
 16.1.4 Biomolecular Layers ... 435
 16.2 Experimental Approach ... 439
 16.2.1 AFM .. 439
 16.2.2 AR-XPS ... 445
 16.2.3 Microtribometer ... 447
 16.3 Results and Discussion ... 452
 16.3.1 Monomolecular Thin Films 452
 16.3.2 Tribochemical Additive-Derived Reaction Layer 455
 16.3.3 Hard Coatings .. 460
 16.3.4 Biomolecular Layers: Tribological
 Investigation on Human Stratum Corneum
 Epidermis Using Atomic Force Microscopy 462
16.3.5 Staining Experiments Related to the Interactions Between Contact Lenses and Ocular Tissues .. 473
16.4 Conclusion and Outlook: Bridging the Gap 479
References .. 480

17 Thin Films for Thermoelectric Applications .. 485
17.1 Introduction .. 485
17.1.1 Thermoelectricity ... 486
17.1.2 Thermoelectric Devices ... 488
17.1.3 Motivation .. 493
17.2 Thermoelectricity .. 494
17.2.1 Thermoelectricity Theory .. 494
17.2.2 Thermoelectric Materials ... 502
17.2.3 Thermoelectric Converters Modeling 503
17.2.4 Thermoelectric Energy Scavenging Microsystem 503
17.2.5 Voltage Converters .. 504
17.3 Deposition and Characterization Technology 505
17.3.1 Measurement System of the Thermoelectric Properties 505
17.3.2 Thin-Film Deposition Technology 508
17.3.3 Thermoelectric Thin Films by Co-Evaporation 513
17.3.4 Device Patterning Techniques 515
17.4 Thermoelectric Thin Films by Co-Evaporation 518
17.4.1 N-Type Thermoelectric Thin Films Made of Bismuth Telluride 519
17.4.2 P-Type Thermoelectric Thin Films Made of Bismuth Telluride 519
17.4.3 Thermoelectric Devices ... 519
17.4.4 Why Scanning Probe? .. 520
References .. 525

18 Evaluation of the Nanoimprinting Process Using Scanning Probe Microscopy (SPM) .. 529
Makoto Okada and Shinji Matsui
18.1 Introduction ... 529
18.2 Use of SPM to Characterize an Antisticking Layer and a UV-Curable Resin ... 530
18.3 Evaluation of an Antisticking Layer by SPM 532
18.3.1 Evaluation of the Fluorinated Self-Assembled Monolayer (F-SAM) Antisticking Layer ... 533
18.3.2 Evaluation of a Thin Polydimethylsiloxane (PDMS) Layer ... 535
18.4 Evaluation of a UV-Curable Resin by SPM 538
18.4.1 The Effect of Oxygen Inhibition on UV-Curable Resins 538
18.4.2 Fluorine Additive UV-Curable Resin 542
18.4.3 Evaluating the Viscoelasticity of a UV-Curable Resin by SPM 545
18.5 Conclusions ... 548
References ... 549

19 Electrical Characterization of Solar Cell Materials Using Scanning Probe Microscopy ... 551
Stefan A.L. Weber, Hans-Jürgen Butt, and Rüdiger Berger
19.1 Introduction .. 551
19.2 SPM Methods .. 553
19.2.1 Conductive Scanning Force Microscopy 554
19.2.2 Kelvin Probe Force Microscopy 555
19.3 Solar Cell Materials ... 556
19.3.1 Inorganic Solar Cells .. 557
19.3.2 Organic Solar Cells .. 558
19.3.3 Dye-Sensitized Solar Cells 559
19.4 SPM on Inorganic and Hybrid Solar Cells 559
19.5 SPM on Organic Solar Cells ... 562
19.5.1 Kelvin Probe Force Microscopy 562
19.5.2 New SFM-Based Methods for Organic Solar Cells 564
19.6 Outlook ... 567
19.6.1 Future Challenges I: Material Issues 568
19.6.2 Future Challenges II: Sample Preparation Issues 568
19.6.3 Future Challenges III: Instrumental Issues 569
References ... 570

20 Solid-State Thin-Film Lithium Batteries for Integration in Microsystems ... 575
J.F. Ribeiro, M.F. Silva, J.P. Carmo, L.M. Gonçalves,
M.M. Silva, and J.H. Correia
20.1 Introduction ... 576
20.1.1 Thin-Film Batteries .. 576
20.1.2 Battery Evolution ... 576
20.1.3 Motivation For Thin-Film Batteries 579
20.1.4 Applications .. 580
20.2 Lithium Batteries ... 581
20.2.1 Solid-State Batteries 581
20.2.2 State of the Art .. 581
20.2.3 Materials for Lithium Batteries 584
20.3 Deposition and Characterization Techniques 590
20.3.1 Thin-Film Deposition 590
20.3.2 Material Characterization 593
20.3.3 Other Physical Measurements on Thin-Film Batteries .. 594
20.3.4 Cyclic Voltammetry ... 599

20.4 Fabrication and Characterization .. 600
20.4.1 Electrical Contacts .. 600
20.4.2 Cathode ... 601
20.4.3 Electrolyte ... 603
20.4.4 Anode ... 610
20.4.5 Battery Fabrication ... 611

20.5 Conclusions .. 613
20.5.1 LiCoO$_2$... 614
20.5.2 LIPON ... 614
20.5.3 Lithium ... 614

20.6 Future Trends for Thin-Film Batteries .. 615

References .. 615

Index .. 621
Contributors

Nicolás Agraït C\ Fco. Tomas y Valiente, 7, Facultad de Ciencias, Dpto. Física de la Materia Condensada (C-III), Lab. 201, Madrid, Spain

David Alsteens Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Audrey Beaussart Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Rüdiger Berger Max-Planck-Institute for Polymer Research, Mainz, Germany

Ronen Berkovich Department of Biological Sciences, Columbia University, New York, NY, USA

Sophie Bistac Equipe Chimie et Physico-Chimie des Polymères – Enscmu, Université de Haute Alsace, Mulhouse, France

Maarten P. de Boer Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Alexander Böker Lehrstuhl für Makromolekulare Materialien und Oberflächen (IPC) Pauwelsstraße 8, DWI an der RWTH Aachen e.V., Aachen, Germany

Ana Lucia Brandl University of São Carlos (UFSCar) – Campus Sorocaba, São Paulo, Brazil

Maurice Brogley Equipe Chimie et Physico-Chimie des Polymères – Enscmu, Université de Haute Alsace, Mulhouse, France

Carolina de Castro Bueno University of São Carlos (UFSCar) – Campus Sorocaba, São Paulo, Brazil

Hans-Jürgen Butt Max-Planck-Institute for Polymer Research, Mainz, Germany

Renato Buzio National Research Council CNR, CNR-SPIN Institute for Superconductivity, Innovative Materials and Devices, Genova, Italy
J.P. Carmo Algoritmi Center, University of Minho, Azurem, Guimaraes, Portugal

P.A. Carvalho NanoLab – Nanostructured Materials and Nanotechnologies Laboratory, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal

Andres Castellanos-Gomez Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands

R. Colaço NanoLab – Nanostructured Materials and Nanotechnologies Laboratory, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal

J.H. Correia Algoritmi Center, University of Minho, Azurem, Guimaraes, Portugal

Etienne Dague CNRS UPR8001, LAAS, Toulouse, France

Antonio José Felix de Carvalho Escola de Engenharia de São Carlos, University of São Paulo (USP) – Campus São Carlos, São Carlos – São Paulo, Brazil

Frank W. DelRio Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA

Ali Dirani Institut de Sciences des Materiaux de Mulhouse – IS2M, CNRS LRC 7228, Mulhouse, France

Martin L. Dunn Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA

Robert H. Eibl, M.D. Institute of Pathology, Technical University of Munich, Munich, Germany

Tamara Elzein Equipe Chimie et Physico-Chimie des Polymères – Enscmu, Université de Haute Alsace, Mulhouse, France

Ille C. Gebeshuber Institute of Applied Physics, Vienna University of Technology, Wien, Austria

L.M. Gonçalves Algoritmi Center, University of Minho, Azurem, Guimaraes, Portugal

Hakan Göçerler AC2T Research GmbH, Austrian Center of Competence for Tribology, Neustadt, Austria

Hamidou Haidara Institut de Sciences des Materiaux de Mulhouse – IS2M, CNRS LRC 7228, Mulhouse, France

Philip Hemmer 214 Zachry Engineering Center, Electrical Engineering, Texas A&M University, College Station, TX, USA

Markus Hund Lehrstuhl für Physikalische Chemie II, Universität Bayreuth, Bayreuth, Germany
Vincenzo Ierardi Nanomed Lab, Physics Department, UNIGE
Nanobiotechnologies, National Institute for Cancer Research IST, Genoa, Italy

Safi Jradi Institut de Sciences des Matériaux de Mulhouse – IS2M, CNRS LRC 7228, Mulhouse, France

Joseph Klafter Orenstein 209, School of Chemistry, Tel-Aviv University, Tel Aviv, Israel

Hong Liang Mechanical Engineering, Texas A&M University, College Station, TX, USA

Clemens Liedel Lehrstuhl für Makromolekulare Materialien und Oberflächen (IPC) Pauwelsstraße 8, DWI an der RWTH Aachen e.V., Aachen, Germany

Fabio de Lima Leite University of São Carlos (UFSCar) – Campus Sorocaba, São Paulo, Brazil

Alessandra Luzia Da Róz University of São Carlos (UFSCar) – Campus Sorocaba, São Paulo, Brazil

Shinji Matsui Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Ako, Hyogo, Japan

Makoto Okada Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo, Japan

Luohsan Peng Materials Science and Engineering, Texas A&M University, College Station, TX, USA

Allesandro Podesta Department of Physics, Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, Milano, Italy

J.F. Ribeiro Algoritmi Center, University of Minho, Azurem, Guimaraes, Portugal

Vincent Roucoules Institut de Sciences des Matériaux de Mulhouse – IS2M, CNRS LRC 7228, Mulhouse, France

Gabino Rubio-Bollinger C\ Fco. Tomas y Valiente, 7, Facultad de Ciencias, Dpto. Física de la Materia Condensada (C-III), Lab. 201, Madrid, Spain

Sergio Santos Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, UK

M.F. Silva Chemistry Center, University of Minho, Gualtar, Braga, Portugal

M.M. Silva Chemistry Center, University of Minho, Gualtar, Braga, Portugal

Olivier Soppera Institut de Sciences des Matériaux de Mulhouse – IS2M, CNRS LRC 7228, Mulhouse, France
Neil H. Thomson Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, UK

Agnieszka Tomala AC2T Research GmbH, Austrian Center of Competence for Tribology, Neustadt, Austria

Larisa Tsarkova Lehrstuhl für Makromolekulare Materialien und Oberflächen (IPC) Pauwelsstraße 8, DWI an der RWTH Aachen e.V., Aachen, Germany

Michael Urbakh Orenstein 207, School of Chemistry, Tel-Aviv University, Tel Aviv, Israel

Ugo Valbusa Nanomed Lab, Physics Department, UNIGE Nanobiotechnologies, National Institute for Cancer Research IST, Genova I, Italy

Stefan A.L. Weber Max-Planck-Institute for Polymer Research, Mainz, Germany

Fabio Minoru Yamaji University of São Carlos (UFSCar) – Campus Sorocaba, São Paulo, Brazil

Huiliang Zhang Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

Yin Zhang State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Beijing, China

Ya-pu Zhao State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Beijing, China