Welcome to the proceedings of APPT 2011, which was held in Shanghai! With the continuity of Moore’s law in the multicore era and the emerging cloud computing, parallelism has been pervasively available almost everywhere, from traditional processor pipelines to large-scale clusters. This creates grand challenges to architectural and system designs, as well as to methods of programming these systems, which form the core theme of APPT 2011. The two-day technical program of APPT 2011 provided an excellent venue capturing the state of the art and practice in parallel architectures, parallel software and distributed and cloud computing.

This biennial event provides a forum for representing this community’s research efforts and exchanging viewpoints. We would like to express our thanks to all colleagues who submitted papers and congratulate those whose papers were accepted. As an event that has taken place for 16 years, APPT aims at providing a high-quality program for all attendees. We accepted 13 papers out of 40 submissions, presenting an acceptance rate of 32.5%.

To ensure a high-quality program and ensure interactive discussions, we made authors aware of the existence of a pre-filtering mechanism. We read all submissions, filtered those without enough technical merit before passing them to the Program Committee (PC). In total, we rejected three papers in this round. Then, each remaining submission got reviewed by at least three PC members. Many submissions were reviewed by four or five PC members, which yield high-quality reviews for each submission. Finally, an online PC meeting was held during July 4–8, to reach consensus for each submission.

In addition to the authors, we would also like to show our sincere appreciation to this year’s dream-team PC. The 36 PC members did an excellent job in returning high-quality reviews in time. This ensured timely delivery of the review results to all authors.

Finally, we would like to thank the efforts of our General Chair (Xuejun Yang), our conference coordinator (Yong Dou) and the support of our industry sponsor (Intel), the Special Interests Group of Computer Architecture in China Computer Federation, and National Laboratory for Parallel and Distributed Processing, China. Our thanks also goes to Springer for its assistance in putting the proceedings together. Their help made APPT 2011 a great success.

September 2011

Olivier Temam
Pen-chung Yew
Binyu Zang
Organization

General Chair
Xuejun Yang
NUDT, China

Program Co-chairs
Olivier Temam
INRIA, France
Pen-chung Yew
Academia Sinica and UMN, Taiwan and USA
Binyu Zang
Fudan University, China

Local Arrangements Chair
Enmei Tang
Fudan University, China

Publication Chair
Rudolf Fleischer
Fudan University, China

Financial Chair
Xiaotong Gao
Fudan University, China

Program Committee
Sanjeev Aggarwal
Indian Institute of Technology, Kanpur, India
David August
Princeton University, USA
John Cavazos
University of Delaware, USA
Wenguang Chen
Tsinghua University, China
Haibo Chen
Fudan University, China
Sangyeun Cho
University of Pittsburgh, USA
Robert Cohn
Intel, USA
Koen De Bosschere
Ghent University, Belgium
Yong Dou
National University of Defense Technology, China
Rudi Eigenmann
Purdue University, USA
Paolo Faraboschi
HP Labs
R. Govindarajan
Indian Institute of Science, Bangalore, India
Haibing Guan
Shanghai Jiaotong University, China
Yinhe Han
Chinese Academy of Sciences, China
<table>
<thead>
<tr>
<th>Name</th>
<th>University/Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo Huang</td>
<td>Intel, China</td>
</tr>
<tr>
<td>Axel Jantsch</td>
<td>KTH, Sweden</td>
</tr>
<tr>
<td>Keiji Kimura</td>
<td>Waseda University, Japan</td>
</tr>
<tr>
<td>Jingfei Kong</td>
<td>AMD, USA</td>
</tr>
<tr>
<td>Jaejin Lee</td>
<td>Seoul National University, Korea</td>
</tr>
<tr>
<td>Xiaofei Liao</td>
<td>Huazhong University of Science & Technology, China</td>
</tr>
<tr>
<td>Xiang Long</td>
<td>Beihang University, China</td>
</tr>
<tr>
<td>Zhonghai Lu</td>
<td>KTH, Sweden</td>
</tr>
<tr>
<td>Yinwei Luo</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Mike O’Boyle</td>
<td>University of Edinburgh, UK</td>
</tr>
<tr>
<td>Alex Ramirez</td>
<td>Barcelona Supercomputing Center, Spain</td>
</tr>
<tr>
<td>Lawrence Rauchwerger</td>
<td>Texas A&M University, USA</td>
</tr>
<tr>
<td>Vivek Sarkar</td>
<td>Rice University, USA</td>
</tr>
<tr>
<td>Per Stenstrom</td>
<td>Chalmers University, Sweden</td>
</tr>
<tr>
<td>Olivier Temam</td>
<td>INRIA, France</td>
</tr>
<tr>
<td>Dongsheng Wang</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>Jon Weissman</td>
<td>University of Minnesota, USA</td>
</tr>
<tr>
<td>Chengyong Wu</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Jan-Jan Wu</td>
<td>Academia Sinica, Taiwan</td>
</tr>
<tr>
<td>Pen-Chung Yew</td>
<td>Academia Sinica and UMN, Taiwan and USA</td>
</tr>
<tr>
<td>Binyu Zang</td>
<td>Fudan University, China</td>
</tr>
<tr>
<td>Antonia Zhai</td>
<td>University of Minnesota, USA</td>
</tr>
</tbody>
</table>
Reconstructing Hardware Transactional Memory for Workload Optimized Systems ... 1
Kunal Korgaonkar, Prabhat Jain, Deepak Tomar, Kashyap Garimella, and Veezhinathan Kamakoti

Enhanced Adaptive Insertion Policy for Shared Caches 16
Chongmin Li, Dongsheng Wang, Yibo Xue, Haixia Wang, and Xi Zhang

A Read-Write Aware Replacement Policy for Phase Change Memory ... 31
Xi Zhang, Qian Hu, Dongsheng Wang, Chongmin Li, and Haixia Wang

Evaluating the Performance and Scalability of MapReduce Applications on X10 .. 46
Chao Zhang, Chenning Xie, Zhiwei Xiao, and Haibo Chen

Comparing High Level MapReduce Query Languages 58
Robert Stewart, Phil W. Trinder, and Hans-Wolfgang Loidl

A Semi-automatic Scratchpad Memory Management Framework for CMP ... 73
Ning Deng, Weixing Ji, Jaxin Li, and Qi Zuo

Parallel Binomial Valuation of American Options with Proportional Transaction Costs ... 88
Nan Zhang, Alet Roux, and Tomasz Zastawniak

A Parallel Analysis on Scale Invariant Feature Transform (SIFT) Algorithm ... 98
Donglei Yang, Lili Liu, Feiwen Zhu, and Weihua Zhang

Modality Conflict Discovery for SOA Security Policies 112
Bartosz Brodecki, Jerzy Brzeziński, Piotr Sasak, and Michał Szychowiak

FPGA Implementation of Variable-Precision Floating-Point Arithmetic ... 127
Yuanwu Lei, Yong Dou, Song Guo, and Jie Zhou

Optimization of N-Queens Solvers on Graphics Processors 142
Tao Zhang, Wei Shu, and Min-You Wu
Table of Contents

ParTool: A Feedback-Directed Parallelizer ... 157
 Varun Mishra and Sanjeev K. Aggarwal

MT-Profiler: A Parallel Dynamic Analysis Framework Based on
Two-Stage Sampling ... 172
 Zhibin Yu, Weifu Zhang, and Xuping Tu

Author Index ... 187