Managing Safety of Heterogeneous Systems

Decisions under Uncertainties and Risks
Preface

The aim of the series of workshops on *Coping with Uncertainty (CwU)* organized since over a decade at the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, has been to provide researchers and practitioners from different areas with an interdisciplinary forum for discussing various ways of effective dealing with uncertainties and risks in diverse areas, including environmental and social sciences, economics, policy making, management, and engineering. The workshops proved to be successful, especially in cross-disciplinary sharing methods, ideas, and open problems.

Science-based support for effective coping with uncertainties and risks in complex policy-making and engineering problems needs practical solutions for fundamentally new scientific problems that in turn require new concepts and tools. A key issue concerns a vast variety of practically irreducible uncertainties, including potential extreme events of high multidimensional consequences, which challenge traditional models, and thus require new concepts and analytical tools. Robust decisions for problems exposed to extreme events are essentially different from over-simplified decisions that ignore such events. Specifically, a proper treatment of extreme/rare events requires new paradigms of rational decisions, new performance indicators, and new spatio-temporal dimensions of heterogeneous interdependencies, including network externalities and risks.

Traditional scientific approaches usually rely on real observations and experiments. Yet no sufficient observations exist for new problems; “pure” experiments and “learning by doing” are dangerous, very expensive, and thus practically impossible. Moreover, the available historical observations are often contaminated by “experimentator,” i.e., past actions or policies. The complexity of new problems does not allow to achieve enough certainty, e.g., by increasing the resolution of models or by bringing in more links. Such problems require explicit treatment of uncertainties using “synthetic” information derived by integration of “hard” elements, including available data, results of possible experiments, and formal representations of scientific facts, as well as “soft” elements based on diverse representations of scenarios, and opinions of public, stakeholders, and experts.
However, even a best possible integration of all these factors results in assessments having poor estimates. Therefore, the science-based support for addressing the new class of problems summarized above needs to replace the traditional “deterministic predictions” analysis by new methods and tools for designing strategies that are robust against the involved uncertainties and risks, and is also suitable for effectively coping with new challenges, such as spatiotemporal heterogeneities, interdependencies, externalities, and endogenous (i.e., caused by possible future actions) risks.

Contributions to this volume are based on selected presentations at the CwU 2009 workshop. The workshop aimed at contributing to a better understanding between practitioners dealing with safety of complex heterogeneous systems under uncertainty, and scientists working on either corresponding modeling approaches, or on methods that can be adapted for improving the understanding and management of uncertainty. The focus of the CwU 2009 was on novel approaches to supporting robust decision making and design, especially when uncertainty is irreducible, consequences might be enormous, and the decision process involves stakeholders with diverse interests. Presentations dealt with open problems in this field, limitations of known approaches, novel methods and techniques, or lessons from applications of various approaches.

The workshop was organized at IIASA in December 2009, jointly by:

- International Institute for Applied Systems Analysis, Laxenburg, Austria, and
- Federal Armed Forces University Munich, Germany.

The scientific Program Committee included:

- Yuri Ermoliev, IIASA, Laxenburg (A),
- Marek Makowski, IIASA, Laxenburg (A),
- Kurt Marti, Federal Armed Forces University Munich (D), and
- Gerhard I. Schueller, University of Innsbruck (A).

This volume is composed of chapters based on selected contributions to the CwU 2009 workshop. The first chapter summarizes key issues related to supporting decision-making under uncertainties and risks, in particular for managing safety of heterogeneous systems. The other 17 chapters are organized into the following five parts:

1. *Decisions under systemic risks and uncertainties* discusses support of robust decisions involving threats generated by intelligent agents, and under lack of imprecise probabilities, as well as decision analysis through combining second-order belief distributions with qualitative statements, and an econometric model based on the max–min expected utility concept.

2. *Modeling uncertainties of heterogeneous systems* presents effective approaches to cope with diverse types heterogeneous systems, such as technological change under increasing returns and uncertainty, an agency problems, as well as sustainable agriculture, food security, socioeconomic risks, and water management.
3. *Uncertainty and optimization* deals with novel optimization methods for analysis of uncertainties; in particular in global optimization, fuzzy linear programming, and clustering of uncertain data.

4. *Analysis and optimization of technical systems and structures under stochastic uncertainty* discusses optimal open-loop feedback control of dynamic structural systems, and deals with problems in civil engineering and large spatial trusses.

5. *Analysis and optimization of economic systems under uncertainty* presents approaches to estimation and reduction of environmental impacts for sustainable agriculture, portfolio analysis of financial and insurance instruments, and pricing catastrophe bonds.

The organizers gratefully acknowledge the generous support IIASA provided for the workshop logistics, which enabled the participation of many researchers who otherwise could not have attended this meeting.

The editors express gratitude to all referees who have helped the authors to improve their contributions by providing constructive comments, in several cases on a short notice. We thank the authors for delivering their contributions that conformed to the substantive comments by the reviewers, and the technical guidelines that were necessary to prepare this volume with limited resources for technical edition. Furthermore, we thank Ms Suchitra Subramanian of the Integrated Modeling Environment (IME) Project at IIASA for her support in the preparation of this volume.

Finally, we thank the Springer-Verlag for including the Proceedings into the Springer Lecture Notes Series in *Economics and Mathematical Systems (LNEMS)*.

Laxenburg
Laxenburg
Munich

Yuri Ermoliev
Marek Makowski
Kurt Marti
Contents

Robust Management of Heterogeneous Systems under Uncertainties 1
Yuri Ermoliev, Marek Makowski, and Kurt Marti

Part I Decisions Under Systemic Risk and Uncertainties

Systemic Risk and Security Management 19
Yuri Ermoliev and Detlof von Winterfeldt

Robust Decisions under Risk for Imprecise Probabilities 51
Włodzimierz Ogryczak

Combining Second-Order Belief Distributions with Qualitative
Statements in Decision Analysis ... 67
Ola Caster and Love Ekenberg

An Econometric Model Based on the Maxmin Expected Utility
Model: An Application to Earthquake Insurance 89
Toshio Fujimi and Hirokazu Tatano

Part II Modeling Uncertainties of Heterogeneous Systems

Modeling Technological Change Under Increasing Returns
and Uncertainty ... 109
Andrei Gritsevskyi and Yuri Ermoliev

Stochastic Programming Perspective
on the Agency Problems Under Uncertainty 137
Alexei A. Gaivoronski and Adrian Werner
Sustainable Agriculture, Food Security, and Socio-Economic Risks in Ukraine ... 169
Oleksandra Borodina, Elena Borodina, Tatiana Ermolieva, Yuri Ermoliev, Günther Fischer, Marek Makowski, and Harrij van Velthuizen

Multiple-Criteria Decision Support System for Siemianówka Reservoir under Uncertainties 187
Adam Kiczko and Tatiana Ermolieva

Part III Uncertainty and Optimization

A Deterministic Algorithm for Global Optimization 205
Yury Evtushenko and Mikhail Posypkin

Robust Optimization by Fuzzy Linear Programming 219
Masahiro Inuiguchi

Various Types of Objective Functions of Clustering for Uncertain Data ... 241
Yasunori Endo and Sadaaki Miyamoto

Part IV Analysis and Optimization of Technical Systems Under Uncertainty

Stochastic Optimal Open-Loop Feedback Control of Dynamic Structural Systems under Stochastic Uncertainty 263
Kurt Marti and Ina Stein

Modeling and Processing of Uncertainty in Civil Engineering by Means of Fuzzy Randomness .. 291
Uwe Reuter, Jan-Uwe Sickert, Wolfgang Graf, and Michael Kaliske

Optimal Design and Sensitivity of Large Spatial Trusses Under Uncertainty ... 307
Simone Zier

Part V Analysis and Optimization of Economic Systems Under Uncertainty

Sustainable Agriculture in China: Estimation and Reduction of Nitrogen Impacts ... 327
Günther Fischer, Wilfried Winiwarter, Tatiana Ermolieva, Gui-Ying Cao, Harrij van Velthuizen, Zbigniew Klimont, Wolfgang Schoepp, Wim van Veen, David Wiberg, and Fabian Wagner
Evaluation of Portfolio of Financial and Insurance Instruments: Simulation of Uncertainty ... 351
Piotr Nowak, Maciej Romaniuk, and Tatiana Ermolieva

Pricing Catastrophe Bonds under Safety Constraints 367
Shuo Liu and Liyan Han
Contributors

Elena Borodina Institute of Economics and Forecasting, P. Mirnogo 26, 01011 Kiev, Ukraine, oborodina@ief.org.ua

Oleksandra Borodina Institute of Economics and Forecasting, P. Mirnogo 26, 01011 Kiev, Ukraine, oleksandra.borodina@gmail.com

Gui-Ying Cao International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, cao@iiasa.ac.at

Ola Caster Uppsala Monitoring Centre, WHO Collaborating Centre for International Drug Monitoring, Box 1051, 751 40 Uppsala, Sweden Department of Computer and Systems Sciences, Stockholm University, ola.caster@who-umc.org

Love Ekenberg Department of Computer and Systems Sciences, Stockholm University, Forum 100, 164 46 Kista, Sweden, lovek@dsv.su.se

Yasunori Endo Faculty of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, endo@risk.tsukuba.ac.jp

Yuri Ermoliev International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, ermoliev@iiasa.ac.at

Tatiana Ermolieva International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, ermol@iiasa.ac.at

Yury Evtushenko Institution of Russian Academy of Sciences, Dorodnicyn Computing Centre of RAS, Vavilov st. 40, 119333 Moscow, Russia, evt@ccas.ru

Günther Fischer International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, fisher@iiasa.ac.at

Toshio Fujimi Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, Japan, fujimi@kumamoto-u.ac.jp
Alexei Gaivoronski Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway, Alexei.Gaivoronski@iot.ntnu.no

Wolfgang Graf Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany, Wolfgang.Graf@tu-dresden.de

Andrei Gritsevskyi International Atomic Energy Agency, Vienna International Centre, POBox 100, A-1400 Vienna, Austria, A.Gritsevskyi@IAEA.org

Liyan Han School of Economics and Management, Beihang University, Xueyuan Road 37, Haidian District 100191, Beijing, hanly1@163.com

Masahiro Inuiguchi Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan, inuiguti@sys.es.osaka-u.ac.jp

Michael Kaliske Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany, Michael.Kaliske@tu-dresden.de

Adam Kiczko Institute of Geophysics, Polish Academy of Science, ul. Ksiecia Janusza 64, Warsaw, Poland, akiczko@igf.edu.pl

Zbigniew Klimont International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, klimont@iiasa.ac.at

Shuo Liu School of Economics and Management, Beihang University, Xueyuan Road 37, Haidian District 100191, Beijing, liushuo.buaa@gmail.com

Marek Makowski International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, marek@iiasa.ac.at

Kurt Marti Federal Armed Forces University Munich, Aerospace Engineering and Technology, 85577 Neubiberg/Munich, Germany, kurt.marti@unibw-muenchen.de

Sadaaki Miyamoto Faculty of Systems and Information Engineering, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan, miyamoto@risk.tsukuba.ac.jp

Piotr Nowak Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland, pnowak@ibspan.waw.pl

Włodzimierz Ogryczak Warsaw University of Technology, 00-665 Warsaw, Poland, wogrycz@ia.pw.edu.pl

Mikhail Posypkin Institution of Russian Academy of Sciences, Institute for Systems Analysis RAS, pr-t. 60-ljetja Oktjabrja, Moscow, Russia, mposypkin@mail.ru

Uwe Reuter Department of Civil Engineering, Technische Universität Dresden, Dresden, Germany Uwe.Reuter@tu-dresden.de
Maciej Romaniuk Systems Research Institute Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland, mroman@ibspan.waw.pl

Wolfgang Schöpp International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, schoepp@iiasa.ac.at

Jan-Uwe Sickert Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany, Jan-Uwe.Sickert@tu-dresden.de

Ina Stein Federal Armed Forces University Munich, Aerospace Engineering and Technology, 85577 Neubiberg/Munich, Germany, ina.stein@online.de

Hirokazu Tatano Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, Japan, tatano@imdr.mbox.media.kyoto-u.ac.jp

Harrij van Velthuizen International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, velt@iiasa.ac.at

W.C.M. van Ween International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, W.C.M.vanVeen@sow.vu.nl

Fabian Wagner International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, fwagner@iiasa.ac.at

Adrian Tobias Werner Department of Applied Economics and Operations Research, SINTEF Technology and Society, Trondheim, Norway, Adrian.Tobias.Werner@sintef.no

David Wiberg International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, wiberg@iiasa.ac.at

Wilfried Winiwarter International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, winiwarter@iiasa.ac.at

Detlof von Winterfeldt International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria, detlof@iiasa.ac.at

Simone Zier Federal Armed Forces University Munich, Aerospace Engineering and Technology, 85577 Neubiberg/Munich, Germany, simone.zier@unibw.de
List of Figures

Fig. 1 Results from Example 1, where the considered decision tree contains two utilities whose unconstrained belief distributions were both standard uniform. Following the constraint $\tilde{U}_a \leq \tilde{U}_b$, the resulting (constrained) belief \tilde{U}_b over the second utility is now Beta(2, 1) 74

Fig. 2 Decision tree considered in Example 2 76

Fig. 3 Decision tree considered in Example 4 84

Fig. 4 Results from the simulation of Example 4. (a) Histogram over the simulated belief for the difference $E(A_1) - E(A_2)$. (b) Two-dimensional histogram over the simulated beliefs for $E(A_1)$ and $E(A_2)$. Darker color indicates a higher density of points 85

Fig. 1 Experience curves for gas turbines, windmills and photovoltaics. Cost improvements per unit installed capacity, in USD (1990) per kW, are shown against the cumulative installed capacity, in MWe, on logarithmic scale 112

Fig. 2 Cumulative costs .. 113

Fig. 3 Cost reduction for on-shore (low cost) vs. off-shore (high cost) wind energy technologies in the EU 114

Fig. 4 Diminishing (left) and increasing (right) returns 117

Fig. 5 Schematic diagram illustrating network structure of the energy model .. 122

Fig. 6 Uncertain costs (left) and worst-case solution (right) 128

Fig. 1 Dependence of the fixed upfront payment f on the average alternative profit of the agent for the optimal contract (s^*, f^*) and the optimal contract (s', f') with averaged participation constraint 145
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Robust and deterministic allocations of new rural activities (in number of jobs) in each region</td>
</tr>
<tr>
<td>2</td>
<td>Dependence of the principal’s profit $\pi (s, f)$ on the average alternative profit of the agent for the optimal contract $(s^, f^)$ and the optimal contract (s', f') with averaged participation constraint</td>
</tr>
<tr>
<td>3</td>
<td>Total costs associated with robust solution and optimal solution of the deterministic model</td>
</tr>
<tr>
<td>4</td>
<td>Schematic map of the study area</td>
</tr>
<tr>
<td>5</td>
<td>The model of Upper Narew river system</td>
</tr>
<tr>
<td>6</td>
<td>Verification of UNET model for the Upper Narew river; water levels at Suraż river gauge during a spring freshet in 1983</td>
</tr>
<tr>
<td>7</td>
<td>An example forecast obtained with k-NN method for Bondary; solid lines stand for forecasted trajectories, dashed lines for an expected ones and lines with circles for observations</td>
</tr>
<tr>
<td>8</td>
<td>Computed trajectories of reservoir storage S (upper plot) and inundation extend at wetland areas (lower plot); CS – trajectory for stochastic formulation, CD – trajectory for deterministic formulation; CP – trajectory for the “perfect” forecast</td>
</tr>
<tr>
<td>9</td>
<td>Estimation of fuzzy set Γ</td>
</tr>
<tr>
<td>10</td>
<td>Possibility and necessity</td>
</tr>
<tr>
<td>11</td>
<td>Possibility and necessity measures</td>
</tr>
<tr>
<td>12</td>
<td>An example of possibly optimal solution</td>
</tr>
<tr>
<td>13</td>
<td>An example of necessarily optimal solution</td>
</tr>
<tr>
<td>14</td>
<td>An example of necessarily optimal solution with degree 0.176471</td>
</tr>
<tr>
<td>15</td>
<td>Functions μ_{Dif} and μ_{Rat}, (a) μ_{Dif} (b) μ_{Rat}</td>
</tr>
<tr>
<td>16</td>
<td>An example of necessarily soft-optimal solution with degree 0.481481</td>
</tr>
<tr>
<td>17</td>
<td>An example of the best necessarily soft-optimal solution</td>
</tr>
<tr>
<td>18</td>
<td>Illustration of necessity measure optimization and necessity fractile optimization models</td>
</tr>
<tr>
<td>19</td>
<td>An example hyper-sphere type tolerance on the two dimensional Euclidean space: $|\varepsilon_k|^2 \leq \kappa_k^2$</td>
</tr>
<tr>
<td>20</td>
<td>An example of hyper-rectangle tolerance on the two dimensional Euclidean space: $</td>
</tr>
</tbody>
</table>
List of Figures

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Remaining time interval .. 266
Principle of active structural control 286
Modeling of a smooth transition between two complementary states 1 and 2 as fuzzy variable \(\tilde{x} \) 293
Convex fuzzy realizations \(\tilde{X}(\omega) \) of a fuzzy random variable \(\tilde{X} \), e.g. as a result of uncertain measurements 294
Fuzzy stochastic structural analysis – Variant I 297
Fuzzy stochastic structural analysis – Variant II 298
FE model of the hypar shell roof 300
R-S-plot and fuzzy failure probability \(\tilde{P}_f \) 302
Fuzzy earth pressures \(\hat{d}_k \) (\(k = 1, 2, \ldots, 8 \)) at eight measurement dates .. 303
Fuzzy failure probability \(\tilde{P}_f \) ... 305
1-storey spatial truss ... 311
n-storey spatial truss ... 312
Discretization of the normal distribution \(N \sim (10^3, 10^8) \) with 17 realizations .. 313
Optimal cross-sectional areas \(A_1 \) and \(A_8 \) in dependence on the number of storeys using the EVP 314
Optimal cross-sectional areas \(A_4, A_5, A_{12} \) and \(A_{13} \) in dependence on the number of storeys using the EVP 315
Comparison of different cross-sectional areas in dependence on the number of storeys using the EVP 315
Optimal cross-sectional areas \(A_2, A_7, A_{11} \) and \(A_{14} \) in dependence on the number of storeys using the EVP 316
Expected initial, recourse and total costs using the EVP 316
Probability of failure and expected initial (*), recourse (x) and total (+) costs using the EVP 317
Optimal cross-sectional areas in dependence on the number of storeys using the RPD .. 318
Comparison of the optimal cross-sectional areas in dependence on the number of storeys using the EVP (\(\Box, \triangle, \diamond \)) and the RPD (\(\blacksquare, \blacktriangle, \blacklozenge \)) 319
Comparison of the probability of failure and the expected initial, recourse and total costs using the EVP (\(\diamond, x, + \)) and the RPD (\(\bullet, \blacklozenge, \blacktriangleleft \)) .. 319
Optimal cross-sectional area \(A_8 \) and expected costs in dependence on the standard deviation considering the 3-storey 320
Optimal 3-storey spatial truss .. 321
Fig. 15 Optimal cross-sectional area A_8, probability of failure and expected initial (*), recourse (x) and total (+) costs in dependence on the standard deviation considering the 5-storey ... 321

Fig. 16 Optimal cross-sectional area A_8 and probability of failure in dependence on the standard deviation considering the 3- (x), 5- (*), 7- (Δ) and 10- (■) storey 322

Fig. 17 Number of variables and constraints in dependence of the number of storeys using 17 realizations 323

Fig. 1 Nitrogen cascading: Schematic structure of the model.............. 334

Fig. 2 Nitrogen leaching fraction, in percent terms 336

Fig. 3 Leaching in kg / ha cultivated land, in 2000 336

Fig. 4 Leaching in kg / ha cultivated land, in 2030 337

Fig. 5 Leaching in severity classes by number of affected counties, in kg / ha cultivated land, in 2000 (a) and 2030 (b) ... 337

Fig. 6 N2O in kg / ha cultivated land, in 2000 338

Fig. 7 N2O in kg / ha cultivated land, in 2030 338

Fig. 8 N2O emissions by size classes and number of affected counties, in kg per ha of cultivated land, for 2000 (a) and 2030 (b) .. 339

Fig. 9 Ammonia emissions from agriculture (kg ammonia/ha cultivated land) in 2000 .. 339

Fig. 10 Ammonia emissions from agriculture, in kg ammonia/ha cultivated land, in 2030 340

Fig. 11 Ammonia emissions by size classes and number of affected counties, in kg per ha of cultivated land, for 2000 (a) and 2030 (b) .. 340

Fig. 12 Absolute (million people) and relative (share of total population) distribution of population according to classes of severity of environmental pressure (measured in terms of kg nitrogen in ammonia emitted per ha cultivated land), 2000. The label on the horizontal axis indicates the regions in China: N, NE, E, C, S, SW, NW stand for North, North-East, East, Center, South, South-West, North-West, respectively, business-as-usual scenario ... 341

Fig. 13 Number of people by classes of severity of ammonia losses (kg nitrogen in ammonia emitted per ha total area), by economic regions and scenarios (BU = business-as-usual, RA = reallocation, OM = optimized manure; MA = minimized ammonia), in 2030 ... 342

Fig. 1 Cash flow of catastrophe bonds .. 368
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Total (for the world) number of catastrophe bond issued in 1997-2007</td>
<td>368</td>
</tr>
<tr>
<td>3</td>
<td>The sequential decision selection model structure</td>
<td>371</td>
</tr>
<tr>
<td>4</td>
<td>Accepted coupon rate and issue volume combination of a simulated catastrophe bond</td>
<td>372</td>
</tr>
<tr>
<td>5</td>
<td>Accepted coupon rate and issue volume combination of Chinese typhoon catastrophe bond</td>
<td>373</td>
</tr>
<tr>
<td>6</td>
<td>Risk reserve dynamics with catastrophe bond (initial model)</td>
<td>374</td>
</tr>
<tr>
<td>7</td>
<td>Risk reserve movement of insurer with catastrophe bond (revised model)</td>
<td>376</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Comparison between sample and population means</td>
<td>93</td>
</tr>
<tr>
<td>Table 2</td>
<td>Estimation results of simple models</td>
<td>99</td>
</tr>
<tr>
<td>Table 3</td>
<td>Variables of personal characteristics</td>
<td>100</td>
</tr>
<tr>
<td>Table 4</td>
<td>Estimation results of EU and MEU including variables of personal characteristics</td>
<td>101</td>
</tr>
<tr>
<td>Table 5</td>
<td>Risk premium and ambiguity premium</td>
<td>102</td>
</tr>
<tr>
<td>Table 1</td>
<td>Values of α_I and n_I coefficients used in computations</td>
<td>198</td>
</tr>
<tr>
<td>Table 2</td>
<td>Fit measures for the U, S and A trajectories obtained for the deterministic and stochastic control in respect to the “perfect” control; dU_{mean}, dS_{mean}, dA_{mean} – respectively mean deviation and dU_{max}, dS_{max}, dA_{max} – maximal deviation</td>
<td>199</td>
</tr>
<tr>
<td>Table 1</td>
<td>Running time in seconds for random polynomial unconstrained optimization problems</td>
<td>214</td>
</tr>
<tr>
<td>Table 2</td>
<td>The comparison with other works</td>
<td>215</td>
</tr>
<tr>
<td>Table 1</td>
<td>Excerpt of joint width measurements (courtesy of Staedtisches Vermessungsamt Dresden)</td>
<td>294</td>
</tr>
<tr>
<td>Table 2</td>
<td>Uncertain input variables</td>
<td>301</td>
</tr>
<tr>
<td>Table 3</td>
<td>Excerpt of the measured earth pressure data (Franke et al. 2003) (GL = ground line)</td>
<td>303</td>
</tr>
<tr>
<td>Table 1</td>
<td>Input parameters</td>
<td>313</td>
</tr>
<tr>
<td>Table 1</td>
<td>Numerical features of Portfolio II</td>
<td>362</td>
</tr>
<tr>
<td>Table 2</td>
<td>Numerical features of Portfolio III</td>
<td>363</td>
</tr>
<tr>
<td>Table 3</td>
<td>Numerical features of Portfolio IV</td>
<td>363</td>
</tr>
<tr>
<td>Table 4</td>
<td>Numerical features of Portfolio V</td>
<td>364</td>
</tr>
</tbody>
</table>