Preface

During ACCV 2010 in Queenstown, New Zealand, a series of eight high-quality workshops were held that reflect the full range of recent research topics in computer vision. The workshop themes ranged from established research areas like visual surveillance (the 10th edition) and subspace methods (third edition) to innovative vehicle technology (From Earth to Mars), from vision technology for world e-heritage preservation and mixed and augmented reality to aesthetic features in computational photography and human computer interaction.

From a total of 167 submissions, 89 presentations were selected by the individual workshop committees, yielding an overall acceptance rate of 53%. The reported attendance was quite attractive, between 40 and 60 participants in each of the workshops, sometimes over 70.

The two-volume proceedings contain a short introduction to each workshop, followed by all workshop contributions arranged according to the workshops.

We hope that you will enjoy reading the contributions which may inspire you to further research.

November 2010

Reinhard Koch
Fay Huang
Visual surveillance remains a challenging application area for computer vision. The large number of high-quality submissions is a testament to the continuing attention it attracts from research groups around the world. Within this area, the segmentation of the foreground (moving objects) from the background (residual scene) remains a core problem. Approximately half of the papers accepted for publication propose innovative segmentation processes. These include the modeling of photometric variations using local polynomials, the exploitation of geometric and temporal constraints, and the explicit modeling of foreground properties. The segmentation of foregrounds consisting of slowly moving objects is explored and there are two investigations into the improvements in segmentation that can be obtained using feedback from a subsequent tracking process.

Nonetheless, there is also an increasing interest in the detection of pedestrians, faces and vehicles using methods that do not rely on foreground–background segmentation. Several enhancements to the histogram of gradients method for pedestrian detection are proposed, leading to an improved efficiency and invariance of the results under rotations of the image. A method to improve the efficiency of the boosted cascade classifier is also proposed. A key problem for visual surveillance scene understanding is the tracking of pedestrians in arbitrarily crowded scenes across multiple cameras: there are several papers that offer contributions to the solution of this problem, including the modeling of pedestrian appearance as observed from multiple cameras in a network.

In the 12 years in which the Visual Surveillance workshops have been running, algorithms have become more sophisticated and more effective, more data sets have become available and experimental techniques and the reporting of results have improved. In spite of these advances, many of the classic problems in computer vision, such as optic flow estimation, object detection and object recognition, are still as relevant to the visual surveillance community as they have ever been.

The Workshop Chairs would like to thank the Program Committee for their valuable input into the reviewing process, and Reinhard Koch and Fay Huang for providing efficient liaison on behalf of the ACCV. The Chairs would also like to thank Graeme Jones, who dealt with many of the organizational aspects of this workshop.
# Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francois Bremond</td>
<td>INRIA Sophia-Antipolis Research Unit, France</td>
</tr>
<tr>
<td>Andrea Cavallaro</td>
<td>Queen Mary, University of London, UK</td>
</tr>
<tr>
<td>Patrick Courtney</td>
<td>PerkinElmer Life and Analytical Sciences, UK</td>
</tr>
<tr>
<td>Roy Davies</td>
<td>Royal Holloway, University of London, UK</td>
</tr>
<tr>
<td>Rogerio Feris</td>
<td>IBM Research, USA</td>
</tr>
<tr>
<td>Gustavo Fernandez Dominguez</td>
<td>AIT Austrian Institute of Technology Gmb, Austria</td>
</tr>
<tr>
<td>Gian Luca Foresti</td>
<td>University of Udine, Italy</td>
</tr>
<tr>
<td>Xiang Gao</td>
<td>Siemens Corporate Research, USA</td>
</tr>
<tr>
<td>Shaogang Gong</td>
<td>Queen Mary University London, UK</td>
</tr>
<tr>
<td>Riad Hammoud</td>
<td>Delphi Corporation, USA</td>
</tr>
<tr>
<td>R. Ismail Haritaoglu</td>
<td>Polar Rain Inc, USA</td>
</tr>
<tr>
<td>Janne Heikkila</td>
<td>Dept. of Electrical Engineering, Finland</td>
</tr>
<tr>
<td>Wei Ming Hu</td>
<td>NLPRI, China</td>
</tr>
<tr>
<td>Kaiqi Huang</td>
<td>Institute of Automation CAS, China</td>
</tr>
<tr>
<td>Graeme Jones</td>
<td>DIRC, Kingston University, UK</td>
</tr>
<tr>
<td>Kyoung Mu Lee</td>
<td>Seoul National University, Korea</td>
</tr>
<tr>
<td>Peihua Li</td>
<td>Hei Long Jiang University, China</td>
</tr>
<tr>
<td>Stan Li</td>
<td>National Laboratory of Pattern Recognition, China</td>
</tr>
<tr>
<td>Xuelong Li</td>
<td>Birkbeck College, University of London, UK</td>
</tr>
<tr>
<td>Dimitrios Makris</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Steve Maybank</td>
<td>Birkbeck College, UK</td>
</tr>
<tr>
<td>James Orwell</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Vasudev Parameswaran</td>
<td>Siemens Corporate Research, USA</td>
</tr>
<tr>
<td>Federico Pernici</td>
<td>Università di Firenze, Italy</td>
</tr>
<tr>
<td>Justus Piater</td>
<td>Université de Liège, Belgium</td>
</tr>
<tr>
<td>Massimo Piccardi</td>
<td>University of Technology, Sydney, Australia</td>
</tr>
<tr>
<td>lan Reid</td>
<td>University of Oxford, UK</td>
</tr>
<tr>
<td>Paolo Remagnino</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Gerhard Rigoll</td>
<td>Munich University of Technology, Germany</td>
</tr>
<tr>
<td>Neil Robertson</td>
<td>Heriot-Watt University, UK</td>
</tr>
<tr>
<td>Gerald Schaefer</td>
<td>Loughborough University, UK</td>
</tr>
<tr>
<td>Vinay Shet</td>
<td>Siemens Corporate Research, USA</td>
</tr>
<tr>
<td>Nils T Siebel</td>
<td>HTW University of Applied Sciences, Germany</td>
</tr>
<tr>
<td>Lauro Snidaro</td>
<td>Università degli Studi di Udine, Italy</td>
</tr>
<tr>
<td>Zoltan Szlavik</td>
<td>MTA SzTAKI, Hungary</td>
</tr>
<tr>
<td>Tieniu Tan</td>
<td>National Laboratory of Pattern Recognition, China</td>
</tr>
<tr>
<td>Dacheng Tao</td>
<td>Birkbeck College, University of London, UK</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Geoffrey Taylor</td>
<td>ObjectVideo, Inc., USA</td>
</tr>
<tr>
<td>Stefano Tubaro</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Sergio Velastin</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Roberto Vezzani</td>
<td>D.I.I. - University of Modena and R.E., Modena,</td>
</tr>
<tr>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Ramesh Visvanathan</td>
<td>Siemens Corporate Research, USA</td>
</tr>
<tr>
<td>Guangyou Xu</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>Wei Yun Yau</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Fei Yin</td>
<td>Digital imaging Research Centre, UK</td>
</tr>
</tbody>
</table>
Introduction to the Second International Workshop on Video Event Categorization, Tagging and Retrieval (VECTaR)

One of the remarkable capabilities of the human visual perception system is to interpret and recognize thousands of events in videos, despite a high level of video object clutter, different types of scene context, variability of motion scales, appearance changes, occlusions and object interactions. As an ultimate goal of computer vision systems, the interpretation and recognition of visual events is one of the most challenging problems and has increasingly become very popular in the last few decades. This task remains exceedingly difficult because of several reasons:

1. There still remain large ambiguities in the definition of different levels of events.
2. A computer model should be capable of capturing a meaningful structure for a specific event. At the same time, the representation (or recognition process) must be robust under challenging video conditions.
3. A computer model should be able to understand the context of video scenes to have meaningful interpretation of a video event. Despite these difficulties, in recent years steady progress has been made toward better models for video event categorization and recognition, e.g., from modeling events with a bag of spatial temporal features to discovering event context, from detecting events using a single camera to inferring events through a distributed camera network, and from low-level event feature extraction and description to high-level semantic event classification and recognition.

This workshop served to provide a forum for recent research advances in the area of video event categorization, tagging and retrieval. A total of 11 papers were selected for publication, dealing with theories, applications and databases of visual event recognition.

November 2010

Ling Shao
Jianguo Zhang
Tieniu Tan
Thomas S. Huang
## Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faisal Bashir</td>
<td>Heartland Robotics, USA</td>
</tr>
<tr>
<td>Xu Chen</td>
<td>University of Michigan, USA</td>
</tr>
<tr>
<td>Ling-Yu Duan</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>GianLuca Foresti</td>
<td>University of Udine, Italy</td>
</tr>
<tr>
<td>Kaiqi Huang</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Thomas S. Huang</td>
<td>University of Illinois at Urbana-Champaign, USA</td>
</tr>
<tr>
<td>Yu-Gang Jiang</td>
<td>City University of Hong Kong, China</td>
</tr>
<tr>
<td>Graeme A. Jones</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Ivan Laptev</td>
<td>INRIA, France</td>
</tr>
<tr>
<td>Jianmin Li</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>Xuelong Li</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Zhu Li</td>
<td>Hong Kong Polytechnic University, China</td>
</tr>
<tr>
<td>Xiang Ma</td>
<td>IntuVision, USA</td>
</tr>
<tr>
<td>Paul Miller</td>
<td>Queen’s University Belfast, UK</td>
</tr>
<tr>
<td>Shin’ichi Satoh</td>
<td>National Institute of Informatics, Japan</td>
</tr>
<tr>
<td>Ling Shao</td>
<td>The University of Sheffield, UK</td>
</tr>
<tr>
<td>Peter Sturm</td>
<td>INRIA, France</td>
</tr>
<tr>
<td>Tieniu Tan</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Xin-Jing Wang</td>
<td>Microsoft Research Asia, China</td>
</tr>
<tr>
<td>Tao Xiang</td>
<td>Queen Mary University London, UK</td>
</tr>
<tr>
<td>Jian Zhang</td>
<td>Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Jianguo Zhang</td>
<td>Queen’s University Belfast, UK</td>
</tr>
</tbody>
</table>
The goal of this workshop is to bring researchers from academia and industry in the field of computer vision and other closely related fields such as robotics and human–computer interaction together to share recent advances and discuss future research directions and opportunities for gaze sensing technologies and their applications to human–computer interactions and human–robot interactions. The workshop included two keynote speeches by Ian Reid at the University of Oxford, UK, and Chen Yu at Indiana University, USA, who are world-leading experts on gaze–sensing technologies and their applications for interactions, and seven oral presentations selected from submitted papers by blind review. This workshop was supported by the Japan Science and Technology Agency (JST) and CREST. We would like to thank Yusuke Sugano, Yoshihiko Mochizuki and Sakie Suzuki for their support in organizing this event.

November 2010
Yoichi Sato
Akihiro Sugimoto
Yoshihiro Kuno
Hideki Koike

Program Committee

Andrew T. Duchowski
Shaoqang Gong
Qiang Ji
Kris Kitani
Yoshinori Kobayashi
Yukie Nagai
Takahiro Okabe
Kazuhiko Otsuka
Ian Reid
Yusuke Sugano
Yasuyuki Sumi
Roel Vertegaal

Clemson University, USA
Queen Mary, University of London, UK
Rensselaer Polytechnic Institute, USA
The University of Electro-Communications, Japan
Saitama University, Japan
Osaka University, Japan
University of Tokyo, Japan
Nippon Telegraph and Telephone Corporation, Japan
University of Oxford, UK
University of Tokyo, Japan
Kyoto University, Japan
Queen’s University, Canada
Introduction to the Workshop on Application of Computer Vision for Mixed and Augmented Reality

The computer vision community has already provided numerous technical breakthroughs in the field of mixed reality and augmented reality (MR/AR), particularly in camera tracking, human behavior understanding, object recognition, etc. The way of designing an MR/AR system based on computer vision research is still a difficult research and development issue. This workshop focuses on the recent trends in applications of computer vision to MR/AR systems.

We were proud to organize the exciting and stimulating technical program consisting of ten oral presentations and five poster presentations. We were very happy to have a distinguished invited speaker, Hideyuki Tamura, who has led the MR/AR research field since the 1990s. Finally, we would like to thank all of the authors who kindly submitted their research achievements to ACVMAR 2010 and all members of the Program Committee for their voluntarily efforts.

ACVMAR 2010 organized in collaboration with SIG-MR(VRSJ) and the GCOE Program at Keio University.

November 2010

Hideo Saito
Masayuki Kanbara
Itaru Kitahara
Yuko Uematsu
Program Committee

Toshiyuki Amano NAIST, Japan
Jean-Yves Guillemaut University of Surrey, UK
Ryosuke Ichikari Ritsumeikan University, Japan
Sei Ikeda NAIST, Japan
Daiske Iwai Osaka University, Japan
Yoshinari Kameda University of Tsukuba, Japan
Hansung Kim University of Surrey, UK
Kiyoshi Kiyokawa Osaka University, Japan
Takeshi Kurata AIST, Japan
Vincent Lepetit EPFL, Switzerland
Walterio Mayol-Cuevas University of Bristol, UK
Jong-Il Park Hanyang University, Korea
Gerhard Reitmayr TU Graz, Austria
Chiristian Sandor South Australia University, Australia
Tomokazu Sato NAIST, Japan
Fumihisa Shibata Ritsumeikan University, Japan
Ryuhei Tenmoku AIST, Japan
Yuki Uranishi NAIST, Japan
Daniel Wagner TU Graz, Austria
Woontack Woo GIST, Korea
Computational photography is now well-established as a field of research that examines what lies beyond the conventional boundaries of digital photography. The newer field of computational aesthetics has seen much interest within the realm of computer graphics, art history and cultural studies. This workshop is intended to provide an opportunity for researchers working in both areas, photography as well as aesthetics, to meet and discuss their ideas in a collegial and interactive format.

The papers contained in these workshop proceedings make important contributions to our understanding of computational aspects of photography and aesthetics. The first paper, by Valente and Klette, describes a technique for blending artistic filters together. Their method allows users to define their own painting style, by choosing any point within the area of a triangle whose vertices represent pointillism, curved strokes, and glass patterns. The second paper, by Sachs, Kakarala, Castleman, and Rajan, describes a study of photographic skill whose purpose is to establish whether that skill can be identified in a double-blind manner. They show that human judges who are themselves expert photographers are able to identify up to four skill levels with statistical significance. The third paper, by Rigau, Feixas, and Sbert, applies the information theory of Shannon to model the channel between luminosity and composition. They show how changes in depth-of-field and exposure are reflected in the information channel, and formulate measures for saliency and “entanglement” in an image. The fourth paper, by Lo, Shih, Liu, and Hong, describes how computer vision may be applied to detect a classic error in photographic composition: objects which appear to protrude from a subject’s head. Their method is able to reliably detect protruding objects in a variety of lighting conditions and backgrounds, with a detection rate of 87% and false alarm rate of 12%. The fifth paper, by Constable, shows how traditional drawing methods such as incomplete perimeters, lines that suggest colors, and lines that suggest form, can inform and improve non-photorealistic rendering (NPR). This paper provides a valuable artistic perspective to illustrate how engineering and art work collaboratively in NPR.

The workshop was fortunate to have a keynote presentation by Alfred Bruckstein. He described the problem of emulating classic engraving using non-photorealistic image rendering, and proposed to used level-set-based shape from shading techniques. The problem contains interesting mathematical challenges in connecting essential contours in natural, flowing ways, which Professor Bruckstein described.
Program Committee

Todd Sachs  
Xuemei Zhang  
Shannon Lee Castleman  
Deepu Rajan  
Soon-Hwa Oh  
Philip Ogunbona  

Aptina Imaging, USA  
HP Labs, USA  
Nanyang Technological University, Singapore  
Nanyang Technological University, Singapore  
Nanyang Technological University, Singapore  
University of Wollongong, Australia
Vision-based autonomous navigation of vehicles has a long history which goes back to the success story of Dickmanns in Munich and the Mechanical Engineering Laboratory of MITI in Japan in the 1980th. At the time, DARPA had asked us to compete with autonomous land vehicles in their GRAND Challenges. Today, computer vision techniques provide methodologies to assist in long-distance exploration projects using visual sensing systems such those with the Mars rover project. Modern cars are now driven with the assistance of various sensor data. These assisted driving systems are developed as intelligent transportation systems. Among the various types of data used for driving assistance and navigation, we find visual information as the interface between human drivers and vehicles.

Today, data captured by visual sensors mounted on vehicles provide essential information used in intelligent driving systems. For applications of computer vision methodologies in exploration, evaluation, and quality-control techniques in the absence of ground truth information, it is essential to design robust and reliable algorithms.

In this workshop, we focus on exchanging new ideas on applications of computer vision theory to vehicle technology. In computer vision for driving assistance, tracking, reconstruction, and prediction become important concepts. Furthermore, real-time and on-board processes for these problems are required.

We received 21 papers and selected 11 papers for publication based on the reviews by the Program Committee and by the additional reviewer Ali Al-Sarraf.

November 2010

Steven Beauchemin
Atsushi Imiya
Tomas Pajdla
Program Committee

Hanno Ackermann Leibniz Universität Hannover, Germany
Yousun Kang National Institute of Informatics, Japan
Kazuhiko Kawamoto Chiba University, Japan
Lars Krüger Daimler AG, Germany
Norbert Krüger University of Southern Denmark, Denmark
Ron Li The Ohio State University, USA
Yoshihiko Mochizuki Chiba University, Japan
Hiroshi Murase Nagoya University, Japan
Gerhard Paar Joanneum Research, Austria
Bodo Rosenhahn University Hannover, Germany
Jun Sato Nagoya Institute of Technology, Japan
Akihiko Torii Tokyo Institute of Technology, Japan
Tobi Vaudrey The University of Auckland, New Zealand
Introduction to the Workshop on e-Heritage

Digitally archived world heritage sites are broadening their value for preservation and access. Many valuable objects have been decayed by time due to weathering, natural disasters, even man-made disasters such as the Taliban destruction of the great Buddhas in Afghanistan, or the recent destruction by fire of a 600-year-old South Gate in Seoul. Cultural heritage also includes music, language, dance, and customs that are fast becoming extinct as the world moves toward a global village. Furthermore, most of the sites still face a problem of accessibility. Digital access projects are necessary to overcome those problems.

Computer vision research and practices have, and will continue, to play a central role in such cultural heritage preservation efforts. The proposed Workshop on e-Heritage and Digital Art Preservation aims to bring together computer vision researchers as well as interdisciplinary researchers that are related to computer vision, in particular computer graphics, image and audio research, image and haptic (touch) research, as well as presentation of visual content over the Web and education.

In this workshop, seven contributions to the field of e-heritage were presented, covering the areas of on-site augmented-reality applications, three-dimensional modeling and reconstruction, shape and image analysis, and interactive haptic systems. All submissions were double-blind reviewed by at least two experts. We thank all the authors who submitted their work. It was a special honor to have In So Kweon (KASIT, Korea), Hongbin Zha (Peking University, China) and Yasuyuki Matsushita (Microsoft Research Asia) as the invited speakers at the workshop. We are especially grateful to the members of the Program Committee for their remarkable efforts and the quality of the reviews.

November 2010

Katsushi Ikeuchi
Takeshi Oishi
Rei Kawakami
Michael S. Brown
Moshe Ben-Ezra
Ryusuke Sagawa
Program Committee

Yasutaka Furukawa  Google, USA  
Luc Van Gool  ETH Zurich, Switzerland  
Yi Ping Hung  National Taiwan University, Taiwan  
Asanobu Kitamoto  NII, Japan  
In So Kweon  KAIST, Korea  
Kok-Lim Low  NUS, Singapore  
Yasuyuki Matsushita  MSRA, China  
Daisuke Miyazaki  Hiroshima University, Japan  
Tomokazu Sato  NAIST, Japan  
David Suter  University of Adelaide, Australia  
Jun Takamatsu  NAIST, Japan  
Ping Tan  NUS, Singapore  
Robby T. Tan  University of Utrecht, The Netherlands  
Lior Wolf  Tel Aviv University, Israel  
Toshihiko Yamasaki  University of Tokyo, Japan  
Naokazu Yokoya  NAIST, Japan  
Hongbin Zha  Peking University, China
Introduction to the Third International Workshop on Subspace Methods

We welcome you to the proceedings of the Third International Workshop of Subspace 2010 held in conjunction with ACCV 2010.

Subspace 2010 was held in Queenstown, New Zealand, on November 9, 2010. For the technical program of Subspace 2010, a total of 30 full-paper submissions underwent a rigorous review process. Each of these submissions was evaluated in a double-blind manner by a minimum of two reviewers. In the end, ten papers were accepted and included in this volume of proceedings.

The goal of the workshop is to share the potential of subspace-based methods, such as the subspace methods, with researchers working on various problems in computer vision; and to encourage interactions which could lead to further developments of the subspace-based methods. The fundamental theories of subspace-based methods and their applications in computer vision were discussed at the workshop.

Subspace-based methods are important for solving many theoretical problems in pattern recognition and computer vision. Also they have been widely used as a practical methodology in a large variety of real applications. During the last three decades, the area has become one of the most successful underpinnings of diverse applications such as classification, recognition, pose estimation, motion estimation. At the same time, there are many new and evolving research topics: nonlinear methods including kernel methods, manifold learning, subspace update and tracking. In addition to regular presentations, to overview these developments, we provided a historical survey talk of the subspace methods.

Prior to this workshop, we successfully organized two international workshops on subspace-based methods: Subspace 2007 in conjunction with ACCV 2007 and Subspace 2009 in conjunction with ICCV 2009. We believe that Subspace 2010 stimulated fruitful discussions among the participants and provided novel ideas for future research in computer vision.

November 2010

David Suter
Kazuhiro Fukui
Toru Tamaki
Program Committee

Toshiyuki Amano
Horst Bischof
Seiji Hotta
Masakazu Iwamura
Tae-Kyun Kim
Xi Li
Yi Ma
Atsuto Maki
Shinichiro Omachi
Bisser Raytchev
Peter Roth
Hitoshi Sakano
Atsushi Sato
Yoichi Sato
Shin’ichi Satoh
Terence Sim
Bjorn Stenger
Qi Tian
Fernando De la Torre
Seiichi Uchida
Osamu Yamaguchi
Jakob Verbeek
Jing-Hao Xue

NAIST, Japan
TU Graz, Austria
Tokyo University of Agriculture and Technology, Japan
Osaka Prefecture University, Japan
University of Cambridge, UK
Xi’an Jiaotong University, China
University of Illinois at Urbana Champaign, USA
Toshiba Cambridge Research Lab, UK
Tohoku University, Japan
Hiroshima University, Japan
TU Graz, Austria
NTT CS Laboratories, Japan
NEC, Japan
The University of Tokyo, Japan
National Institute of Informatics, Japan
National University of Singapore, Singapore
Toshiba Cambridge Research Lab, UK
University of Texas at San Antonio, USA
Carnegie Mellon University, USA
Kyushu University, Japan
Toshiba, Japan
INRIA Rhône-Alpes, Grenoble, France
University College London, UK
# Table of Contents – Part II

## Workshop on Application of Computer Vision for Mixed and Augmented Reality

Computer Vision Technology Applied to MR-Based Pre-visualization in Filmmaking .......................................................... 1  

*Hideyuki Tamura, Takashi Matsuyama, Naokazu Yokoya, Ryosuke Ichikari, Shohei Nobuhara, and Tomokazu Sato*

Model Based Pose Estimation Using SURF ........................................ 11  

*Peter Decker and Dietrich Paulus*

Real-Time Camera Tracking Using a Global Localization Scheme ...... 21  

*Yue Yiming, Liang Xiaohui, Liu Chen, and Liu Jie*

Visual Mapping and Multi-modal Localisation for *Anywhere AR* Authoring ................................................................. 31  

*Andrew P. Gee, Andrew Calway, and Walterio Mayol-Cuevas*

Augmented Reality System for Visualizing 3-D Region of Interest in Unknown Environment ................................................. 42  

*Sei Ikeda, Yoshitsugu Manabe, and Kunihiro Chihara*

Interactive Video Layer Decomposition and Matting ...................... 52  

*Yanli Li, Zhong Zhou, and Wei Wu*

Removal of Moving Objects and Inconsistencies in Color Tone for an Omnidirectional Image Database ................................. 62  

*Maiya Hori, Hideyuki Takahashi, Masayuki Kanbara, and Naokazu Yokoya*

Shape Prior Embedded Geodesic Distance Transform for Image Segmentation .......................................................... 72  

*Junqiu Wang and Yasushi Yagi*

Shortest Path Based Planar Graph Cuts for Bi-layer Segmentation of Binocular Stereo Video ............................................. 82  

*Xiangsheng Huang and Lujin Gong*

Color Information Presentation for Color Vision Defective by Using a Projector Camera System ........................................... 92  

*Atsushi Yamashita, Rie Miyaki, and Toru Kaneko*
Workshop on Computational Photography and Aesthetics

Simulating Artworks through Filter Blending ................................. 102
Crystal Valente and Reinhard Klette

A Data-Driven Approach to Understanding Skill in Photographic Composition ................................................................. 112
Todd S. Sachs, Ramakrishna Kakarala, Shannon L. Castleman, and Deepu Rajan

Image Information in Digital Photography ........................................ 122
Jaume Rigau, Miquel Feixas, and Mateu Sbert

Automatically Detecting Protruding Objects When Shooting Environmental Portraits ..................................................... 132
Pei-Yu Lo, Sheng-Wen Shih, Jen-Chang Liu, and Jen-Shin Hong

Artist-Led Suggestions towards an Approach in Content Aware 3D Non-photorealistic Rendering ........................................... 142
Martin Constable

Workshop on Computer Vision in Vehicle Technology: From Earth to Mars

Ground Truth Evaluation of Stereo Algorithms for Real World Applications .............................................................. 152
Sandino Morales and Reinhard Klette

Vehicle Ego-Localization by Matching In-Vehicle Camera Images to an Aerial Image ............................................................... 163
Masafumi Noda, Tomokazu Takahashi, Daisuke Deguchi, Ichiro Ide, Hiroshi Murase, Yoshiko Kojima, and Takashi Naito

A Comparative Study of Two Vertical Road Modelling Techniques .... 174
Konstantin Schauwecker and Reinhard Klette

The Six Point Algorithm Revisited .................................................... 184
Akihiko Torii, Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla

Multi-body Segmentation and Motion Number Estimation via Over-Segmentation Detection .................................................... 194
Guodong Pan and Kwan-Yee Kenneth Wong

Improvement of a Traffic Sign Detector by Retrospective Gathering of Training Samples From In-Vehicle Camera Image Sequences ................. 204
Daisuke Deguchi, Keisuke Doman, Ichiro Ide, and Hiroshi Murase
# Table of Contents – Part II

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Modeling of Long-Range Drift in Visual Odometry</td>
<td>214</td>
</tr>
<tr>
<td><em>Ruyi Jiang, Reinhard Klette, and Shigang Wang</em></td>
<td></td>
</tr>
<tr>
<td>Object Discrimination and Tracking in the Surroundings of a Vehicle</td>
<td>225</td>
</tr>
<tr>
<td>by a Combined Laser Scanner Stereo System</td>
<td></td>
</tr>
<tr>
<td><em>Mathias Haberjahn and Ralf Reulke</em></td>
<td></td>
</tr>
<tr>
<td>Realistic Modeling of Water Droplets for Monocular Adherent Raindrop Recognition using Bézier Curves</td>
<td>235</td>
</tr>
<tr>
<td><em>Martin Roser, Julian Kurz, and Andreas Geiger</em></td>
<td></td>
</tr>
<tr>
<td>Illumination Invariant Cost Functions in Semi-Global Matching</td>
<td>245</td>
</tr>
<tr>
<td><em>Simon Hermann, Sandino Morales, Tobi Vaudrey, and Reinhard Klette</em></td>
<td></td>
</tr>
<tr>
<td>Relative Pose Estimation for Planetary Entry Descent Landing</td>
<td>255</td>
</tr>
<tr>
<td><em>Luca Zini, Francesca Odone, Alessandro Verri, Piergiorgio Lanza, and Alessandra Marcer</em></td>
<td></td>
</tr>
<tr>
<td><strong>Workshop on e-Heritage</strong></td>
<td></td>
</tr>
<tr>
<td>AR Cultural Heritage Reconstruction Based on Feature Landmark</td>
<td>265</td>
</tr>
<tr>
<td>Database Constructed by Using Omnidirectional Range Sensor</td>
<td></td>
</tr>
<tr>
<td><em>Takafumi Taketomi, Tomokazu Sato, and Naokazu Yokoya</em></td>
<td></td>
</tr>
<tr>
<td>Augmented Reality-Based On-Site Tour Guide: A Study in Gyeongbokgung</td>
<td>276</td>
</tr>
<tr>
<td><em>Byung-Kuk Seo, Kangsoo Kim, and Jong-Il Park</em></td>
<td></td>
</tr>
<tr>
<td>3D Reconstruction of a Collapsed Historical Site from Sparse Set of Photographs and Photogrammetric Map</td>
<td>286</td>
</tr>
<tr>
<td><em>Natchapon Futragoon, Asanobu Kitamoto, Elham Andaroodi, Mohammad Reza Matini, and Kinji Ono</em></td>
<td></td>
</tr>
<tr>
<td>Recognition and Analysis of Objects in Medieval Images</td>
<td>296</td>
</tr>
<tr>
<td><em>Pradeep Yarlagadda, Antonio Monroy, Bernd Carque, and Björn Ommer</em></td>
<td></td>
</tr>
<tr>
<td>3D Shape Restoration via Matrix Recovery</td>
<td>306</td>
</tr>
<tr>
<td><em>Min Lu, Bo Zheng, Jun Takamatsu, Ko Nishino, and Katsushi Ikeuchi</em></td>
<td></td>
</tr>
<tr>
<td>A Development of a 3D Haptic Rendering System with the String-Based Haptic Interface Device and Vibration Speakers</td>
<td>316</td>
</tr>
<tr>
<td><em>Kazuyoshi Nomura, Wataru Wakita, and Hiromi T. Tanaka</em></td>
<td></td>
</tr>
</tbody>
</table>
A Texture-Based Direct-Touch Interaction System for 3D Woven Cultural Property Exhibition ........................................ 324
  *Wataru Wakita, Katsuhito Akahane, Masaharu Isshiki, and Hiromi T. Tanaka*

**Workshop on Subspace Methods**

High Dimensional Correspondences from Low Dimensional Manifolds – An Empirical Comparison of Graph-Based Dimensionality Reduction Algorithms .................................................... 334
  *Ribana Roscher, Falko Schindler, and Wolfgang Förstner*

Multi-label Classification for Image Annotation via Sparse Similarity Voting ........................................................................ 344
  *Tomoya Sakai, Hayato Itoh, and Atsushi Imiya*

Centered Subset Kernel PCA for Denoising ........................................ 354
  *Yoshikazu Washizawa and Masayuki Tanaka*

On the Behavior of Kernel Mutual Subspace Method .......................... 364
  *Hitoshi Sakano, Osamu Yamaguchi, Tomokazu Kawahara, and Seiji Hotta*

Compound Mutual Subspace Method for 3D Object Recognition: A Theoretical Extension of Mutual Subspace Method ..................... 374
  *Naoki Akihiro and Kazuhiro Fukui*

Dynamic Subspace Update with Incremental Nyström Approximation .................................................................................. 384
  *Hongyu Li and Lin Zhang*

Background Modeling via Incremental Maximum Margin Criterion .... 394
  *Cristina Marghes and Thierry Bouwmans*

Trace Norm Regularization and Application to Tensor Based Feature Extraction ........................................................................ 404
  *Yoshikazu Washizawa*

Fast and Robust Face Recognition for Incremental Data .................... 414
  *I. Gede Pasek Suta Wijaya, Keiichi Uchimura, and Gou Koutaki*

Extracting Scene-Dependent Discriminant Features for Enhancing Face Recognition under Severe Conditions .......................... 424
  *Rui Ishiyama and Nobuyuki Yasukawa*

A Brief History of the Subspace Methods ........................................ 434
  *Hitoshi Sakano*

**Author Index** ........................................................................... 437
# Table of Contents – Part I

**Workshop on Visual Surveillance**

Second-Order Polynomial Models for Background Subtraction ................. 1  
*Alessandro Lanza, Federico Tombari, and Luigi Di Stefano*

Adaptive Background Modeling for Paused Object Regions ................. 12  
*Atsushi Shimad, Satoshi Yoshinaga, and Rin-ichiro Taniguchi*

Determining Spatial Motion Directly from Normal Flow Field:  
A Comprehensive Treatment .............................................. 23  
*Tak-Wai Hui and Ronald Chung*

Background Subtraction for PTZ Cameras Performing a Guard Tour  
and Application to Cameras with Very Low Frame Rate .................. 33  
*C. Guillot, M. Taron, P. Sayd, Q.C. Pham, C. Tilmant, and  
J.M. Lavest*

Bayesian Loop for Synergistic Change Detection and Tracking ............... 43  
*Samuele Salti, Alessandro Lanza, and Luigi Di Stefano*

Real Time Motion Changes for New Event Detection and  
Recognition ......................................................................... 54  
*Konstantinos Avgerinakis, Alexia Briassouli, and  
Ioannis Kompatsiaris*

Improving Detector of Viola and Jones through SVM ......................... 64  
*Zhenczao Xu, Li Song, Jia Wang, and Yi Xu*

Multi-camera People Localization and Height Estimation Using  
Multiple Birth-and-Death Dynamics ...................................... 74  
*Ákos Utasi and Csaba Benedek*

Unsupervised Video Surveillance ............................................. 84  
*Nicoletta Noceti and Francesca Odone*

Multicamera Video Summarization from Optimal Reconstruction ...... 94  
*Carter De Leo and B.S. Manjunath*

Noisy Motion Vector Elimination by Bi-directional Vector-Based Zero  
Comparison ......................................................................... 104  
*Takanori Yokoyama and Toshinori Watanabe*

Spatio-Temporal Optimization for Foreground/Background  
Segmentation ......................................................................... 113  
*Tobias Feldmann*
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Decreasing of Background Subtraction Process by Modeling the Foreground</td>
<td>123</td>
</tr>
<tr>
<td>Christophe Gabard, Laurent Lucat, Catherine Achard, C. Guillot, and Patrick Sayd</td>
<td></td>
</tr>
<tr>
<td>Object Flow: Learning Object Displacement</td>
<td>133</td>
</tr>
<tr>
<td>Constantinos Lalos, Helmut Grabner, Luc Van Gool, and Theodora Varvarigou</td>
<td></td>
</tr>
<tr>
<td>HOG-Based Descriptors on Rotation Invariant Human Detection</td>
<td>143</td>
</tr>
<tr>
<td>Panachit Kittipanya-ngam and Eng How Lung</td>
<td></td>
</tr>
<tr>
<td>Fast and Accurate Pedestrian Detection Using a Cascade of Multiple Features</td>
<td>153</td>
</tr>
<tr>
<td>Alaa Leithy, Mohamed N. Moustafa, and Ayman Wahba</td>
<td></td>
</tr>
<tr>
<td>Interactive Motion Analysis for Video Surveillance and Long Term Scene Monitoring</td>
<td>164</td>
</tr>
<tr>
<td>Andrew W. Senior, YingLi Tian, and Max Lu</td>
<td></td>
</tr>
<tr>
<td>Frontal Face Generation from Multiple Low-Resolution Non-frontal Faces for Face Recognition</td>
<td>175</td>
</tr>
<tr>
<td>Yuki Kono, Tomokazu Takahashi, Daisuke Deguchi, Ichiro Ide, and Hiroshi Murase</td>
<td></td>
</tr>
<tr>
<td>Probabilistic Index Histogram for Robust Object Tracking</td>
<td>184</td>
</tr>
<tr>
<td>Wei Li, Xiaqin Zhang, Nianhua Xie, Weiming Hu, Wenhan Luo, and Haibin Ling</td>
<td></td>
</tr>
<tr>
<td>Mobile Surveillance by 3D-Outlier Analysis</td>
<td>195</td>
</tr>
<tr>
<td>Peter Holzer and Axel Pinz</td>
<td></td>
</tr>
<tr>
<td>Person Re-identification Based on Global Color Context</td>
<td>205</td>
</tr>
<tr>
<td>Yinghao Cai and Matti Pietikäinen</td>
<td></td>
</tr>
<tr>
<td>Visual Object Tracking via One-Class SVM</td>
<td>216</td>
</tr>
<tr>
<td>Li Li, Zhenjun Han, Qixiang Ye, and Jianbin Jiao</td>
<td></td>
</tr>
<tr>
<td>Attenuated Sequential Importance Resampling (A-SIR) Algorithm for Object Tracking</td>
<td>226</td>
</tr>
<tr>
<td>Md. Zahidul Islam, Chi-Min Oh, and Chil-Woo Lee</td>
<td></td>
</tr>
<tr>
<td>An Appearance-Based Approach to Assistive Identity Inference Using LBP and Colour Histograms</td>
<td>236</td>
</tr>
<tr>
<td>Sareh Abolahrari Shirazi, Farhad Dadgostar, and Brian C. Lovell</td>
<td></td>
</tr>
<tr>
<td>Vehicle Class Recognition Using Multiple Video Cameras</td>
<td>246</td>
</tr>
<tr>
<td>Dongjin Han, Jae Hwang, Hern-soo Hahn, and David B. Cooper</td>
<td></td>
</tr>
</tbody>
</table>
Efficient Head Tracking Using an Integral Histogram Constructing Based on Sparse Matrix Technology ........................................... 256
Jia-Tao Qiu, Yu-Shan Li, and Xiu-Qin Chu

Workshop on Video Event Categorization, Tagging and Retrieval (VECTaR)

Analyzing Diving: A Dataset for Judging Action Quality .................. 266
Kamil Wnuk and Stefano Soatto

Appearance-Based Smile Intensity Estimation by Cascaded Support Vector Machines ...................................................... 277
Keiji Shimada, Tetsu Matsukawa, Yoshihiro Noguchi, and Takio Kurita

Detecting Frequent Patterns in Video Using Partly Locality Sensitive Hashing ................................................................. 287
Koichi Ogawara, Yasufumi Tanabe, Ryo Kurazume, and Tsutomu Hasegawa

Foot Contact Detection for Sprint Training ................................. 297
Robert Harle, Jonathan Cameron, and Joan Lasenby

Interpreting Dynamic Meanings by Integrating Gesture and Posture Recognition System .................................................. 307
Omer Rashid Ahmed, Ayoub Al-Hamadi, and Bernd Michaelis

Learning from Mistakes: Object Movement Classification by the Boosted Features ......................................................... 318
Shigeyuki Odashima, Tomomasa Sato, and Taketoshi Mori

Modeling Multi-Object Activities in Phase Space ............................ 328
Ricky J. Sethi and Amit K. Roy-Chowdhury

Sparse Motion Segmentation Using Multiple Six-Point Consistencies .... 338
Vasileios Zografos, Klas Nordberg, and Liam Ellis

Systematic Evaluation of Spatio-Temporal Features on Comparative Video Challenges ............................................... 349
Julian Stöttinger, Bogdan Tudor Goras, Thomas Pöntiz, Allan Hanbury, Nicu Sebe, and Theo Gevers

Two-Probabilistic Latent Semantic Model for Image Annotation and Retrieval ............................................................. 359
Nattachai Watcharapinchai, Supavadee Aramvith, and Supakorn Siddhichai

Using Conditional Random Field for Crowd Behavior Analysis .......... 370
Saira Saleem Pathan, Ayoub Al-Hamadi, and Bernd Michaelis
Workshop on Gaze Sensing and Interactions

Understanding Interactions and Guiding Visual Surveillance by Tracking Attention ................................................................. 380
Ian Reid, Ben Benfold, Alonso Patron, and Eric Sommerlade

Algorithm for Discriminating Aggregate Gaze Points: Comparison with Salient Regions-Of-Interest ........................................ 390
Thomas J. Grindinger, Vidya N. Murali, Stephen Tetreault, Andrew T. Duchowski, Stan T. Birchfield, and Pilar Orero

Gaze Estimation Using Regression Analysis and AAMs Parameters Selected Based on Information Criterion ............................ 400
Manabu Takatani, Yasuo Ariki, and Tetsuya Takiguchi

Estimating Human Body and Head Orientation Change to Detect Visual Attention Direction .................................................. 410
Ovgu Ozturk, Toshihiko Yamasaki, and Kiyoharu Aizawa

Can Saliency Map Models Predict Human Egocentric Visual Attention? ............................................................................. 420
Kentaro Yamada, Yusuke Sugano, Takahiro Okabe, Yoichi Sato, Akihiro Sugimoto, and Kazuo Hiraki

An Empirical Framework to Control Human Attention by Robot ...... 430
Mohammed Moshiul Hoque, Tomami Onuki, Emi Tsuburaya, Yoshinori Kobayashi, Yoshinori Kuno, Takayuki Sato, and Sachiko Kodama

Improvement and Evaluation of Real-Time Tone Mapping for High Dynamic Range Images Using Gaze Information ................. 440
Takuya Yamauchi, Toshiaki Mikami, Osama Ouda, Toshiya Nakaguchi, and Norimichi Tsumura

Evaluation of the Impetuses of Scan Path in Real Scene Searching .... 450
Chen Chi, Laiyun Qing, Jun Miao, and Xilin Chen

Author Index .................................................................................. 461