Microstructured Materials: Inverse Problems
Preface

This book is about the mathematical treatment of inverse problems related to material characterisation. We realised that we have to write a much longer treatise than usual research papers in order to describe our ideas in a proper informative way.

There is always a question about theory and practice like the iconic “the chicken and the egg” causality dilemma. We might say that an apple fell first and then Isaac Newton presented a theory. On the other hand, the ideas of Paul Dirac are excellent examples of how theory precedes practice. And certainly much has been written about the balance of theory and practice. We hope that, although we are theorists ourselves, we have taken the idea of balance seriously.

Indeed, this way or another, in material science the will and the need to look into materials for determining the physical or geometrical properties or residual stresses goes back to the history. The audible ring of a Damascus sword blade or a church bell was an indication of quality, for example. And farmers could estimate the ripeness of a water-melon by tapping it and listening to the sound. However, contemporary technology and materials need more “advanced” techniques, and the information we are interested in is more sophisticated.

Here we deal with Non-Destructive Evaluation (NDE) of material properties with the focus on microstructured materials. The tool for this is a wave which propagates through a specimen or a structural element. A wave travelling in materials and propagating over a certain distance collects and “encodes” the information on its path. The problem is how to “decode” this information.

For many practical purposes the material is assumed to be homogeneous. In this case the “decoding” is rather simple—the flight time of a wave (a signal) permits the sound velocity to be determined and, from that, some information about the material properties (density, modulus of elasticity) can be deduced. However, the contemporary materials are much more complicated and their internal structure, i.e., the microstructure, affects the result. Moreover, there is a need to evaluate the properties of the microstructure. The list of such microstructured materials widely used in modern technology is long: alloys, ceramics and composites, functionally graded materials, granular materials and nano-materials, biomedical and optical materials, etc. Consequently, the methods of the NDE must be based on the adequate analysis of the
effects which will be “encoded” by a propagating wave, and the following “decoding” must be properly built up. Following these ideas, the mathematical modelling of waves in microstructured solids must give a well-grounded basis for the analysis. The focus is on dispersion which is the leading effect for waves in such materials. This is exactly the starting point for the book. After proposing (with suitable assumptions) a sound mathematical model, we discuss the number of unknowns to be inversely identified, then establish the uniqueness of a solution and only then propose the ideas for solving the inverse problems. We hope that such a consistent approach will build a proper basis for practical applications.

We have published several research papers on this topic over the last six years (see references). However, the book is not simply a collection of these papers but much is rewritten to cast the material into a unified whole and much is added in order to cement the ideas.

The book could not have been written without the support of the Institute of Cybernetics at Tallinn University of Technology and the Centre for Nonlinear Studies (CENS) of the Institute. The research has been supported by the CENS-CMA project Cooperation of Estonian and Norwegian Scientific Centres within Mathematics and its Applications (Marie Curie Host Fellowship for the Transfer of Knowledge, Contract MTKD-CT-2004-013909), the target funding from the Estonian Ministry of Education and Research (SF Nonlinear waves and stress analysis, SF Nonlinear waves and complexity, SF Mathematical models with nonlinearities, incomplete information and structural complexity) and grants from the Estonian Science Foundation (6018, 7728). We would like to thank our colleagues in CENS and abroad for valuable discussions. We appreciate very much the invaluable assistance of Martin Peters and Ruth Allewelt from Springer-Verlag for producing the book and acknowledge the excellent help from Michael Easthams on style and English grammar of the manuscript. What is most important, our special thanks are to our families who understand us and tolerate our long working hours.

Jaan Janno
Jüri Engelbrecht

Tallinn, Estonia
Contents

1 Introduction ... 1

2 Inverse Problems and Non-destructive Evaluation 5
 2.1 Inverse Problems from a Mathematical Viewpoint 5
 2.2 Inverse Problems and Non-destructive Evaluation from a Practical Viewpoint ... 6
 2.2.1 General Remarks 6
 2.2.2 Practical Realisation 7

3 Mathematical Models of Microstructured Solids 11
 3.1 Basic Principles 11
 3.2 Microstructured Solids 12
 3.3 General Formulation of Inverse Problems 17

4 Linear Waves ... 21
 4.1 Dispersion Relations. Harmonic Waves 21
 4.1.1 Hierarchical Equation 21
 4.1.2 Coupled System 23
 4.1.3 Comparison of Models 25
 4.2 Other Linear Waves 27
 4.2.1 General Solution Formula 27
 4.2.2 Right-Propagating Waves 28
 4.2.3 Gaussian Wave Packets 30
 4.3 Proofs of Mathematical Statements 32

5 Inverse Problems for Linear Waves 37
 5.1 Inverse Problems for Harmonic Waves 37
 5.1.1 Hierarchical Equation 37
 5.1.2 Coupled System 39
 5.1.3 General Consequences 43
 5.2 Inverse Problems for Gaussian Wave Packets 43
Contents

5.3 Reconstruction of Parameters from Spectra of Waves
5.3.1 The Case of Deformation Boundary Condition
5.3.2 The Case of Displacement Boundary Condition
5.4 Stability and Examples
5.4.1 Stability of Solutions
5.4.2 Numerical Examples
5.5 Proofs of Mathematical Statements
5.5.1 Proof of Theorem 5.2
5.5.2 Proofs of Sect. 5.2

6 Solitary Waves in Nonlinear Models
6.1 Solitary Waves
6.2 Solitary Wave Solutions of Hierarchical Equation
6.2.1 Reduction to Equation of First Kind. Canonical Description
6.2.2 Existence and Basic Properties of Canonical Waves
6.2.3 Physical and Geometrical Properties of Solitary Waves in General Form
6.2.4 Series Expansion of Solitary Wave
6.3 Solitary Wave Solutions of Coupled System
6.3.1 Separation of Unknowns. Reduction of System
6.3.2 Existence and Basic Properties of Canonical Waves
6.3.3 Properties of General Solitary Waves
6.3.4 The Case $\nu = 0$
6.3.5 Comparison with Hierarchical Equation
6.4 Proofs of Mathematical Statements
6.4.1 Proofs of Sect. 6.2
6.4.2 Proofs of Sect. 6.3

7 Inverse Problems for Solitary Waves
7.1 Inverse Problems for Hierarchical Equation
7.1.1 Formulation of Inverse Problems
7.1.2 Uniqueness Issues
7.1.3 Stability Estimates
7.2 Inverse Problems for Coupled System
7.2.1 Formulation of Inverse Problems
7.2.2 Uniqueness Issues
7.3 Methods of Solution of Inverse Problems
7.3.1 Minimisation of Cost Functional
7.3.2 Application of Series Expansion. Linearisation
7.3.3 Numerical Examples
7.4 Proofs of Mathematical Statements
7.4.1 Proofs of Sect. 7.1.2
7.4.2 Proof of Theorem 7.5
7.4.3 Proofs of Sect. 7.2.2
8 Summary .. 147
 8.1 General Glance at Mathematical Methods 147
 8.2 From Mathematics to Physics 149
 8.3 Epilogue .. 153

References .. 155

Index .. 159