Vegetation, Water, Humans and the Climate

A New Perspective on an Interactive System

With 246 Figures
Preface

This book is the result of an initiative by the Biospheric Aspects of the Hydrological Cycle (BAHC), a Core Project of the International Geosphere-Biosphere Programme (IGBP). It reports on the more than a decade-long research and findings of a large number of scientists studying the Earth system in terms of the connection between the terrestrial biosphere, the hydrologic cycle and the potential anthropogenic influences. The authors contributing to the five parts of the book have highlighted the research and findings of hundreds of scientists who have worked over the past 15 years on the interface between the hydrological cycle, the terrestrial biosphere and the atmosphere. As you read through the book, it becomes clear that the scientific progress goes well beyond any single international programme: it is interdisciplinary and reflects contributions made towards addressing many of the objectives set forth by a number of projects of IGBP, WCRP (World Climate Research Programme), and IHDP (International Human Dimensions Programme on Global Environmental Change).

At the programmatic level we often compartmentalise and label research as belonging to a specific named programme, but in reality and at the researchers' level, it is all a seamless process that tackles specific and challenging questions related to the highly interactive processes of vegetation, water and humans within the climate system. In their earliest years, BAHC and GEWEX (the Global Energy and Water Cycle Experiment of WCRP) recognised the need for thematic synergies and collaboration between the two research programmes. Both programmes have successfully collaborated in a large number of joint research, observational and modelling activities since their inception (BAHC in 1990 and GEWEX in 1988). The International Satellite Land Surface Climatology Project (ISLSCP), a GEWEX project, is perhaps one of the best examples of an excellent collaboration between the two programmes. BAHC and ISLSCP have operated “back to back” since the Tucson aggregation workshop in 1994 (Kabat and Sellers 1997). ISLSCP is a leading project in producing and consolidating global datasets for global change studies. BAHC and ISLSCP jointly initiated and coordinated an array of land-surface/atmosphere experiments, known as HAPEX and FIFE (for example Hydrological and Atmospheric Pilot Experiment in the Sahel and First ISLSCP Field Experiment, respectively). Both programmes jointly took the first steps to initiate the largest and most integrative Earth system experiment so far: the Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA). It is gratifying to see some of the research and findings resulting from these joint activities presented in this book.

While we are both extremely pleased with the research progress reported in this volume, we are even more excited about the future results of the planned joint activities associated with the recently launched GEWEX Phase II and the new project in IGBP on the land-atmosphere interface, ILEAPS (Integrated Land Ecosystem – Atmosphere Processes Study), to which the BAHC community will be a major contributor. For example, both the Coordinated Enhanced Observing Period (CEOP) of GEWEX,
and the FLUXNET project of world-wide CO$_2$ flux measurement initiated by BAHC are positioned at the forefront of the Earth system measurement and monitoring approaches. By focusing on a series of reference field sites distributed over all continents (CEOP), on “transect studies” (FLUXNET), and on simultaneous use of satellite and ground observation, these experiments will provide a data set of unprecedented completeness and quality for our scientists to work with.

The Global Land-Atmosphere System Study (GLASS) and the Global Soil Wetness Project (GSWP) are other examples of successful collaborative activity between the two programmes in modelling land-surface/atmosphere processes and interactions within the climate system (e.g. Feddes et al. 2001). These projects are promising a new generation of land-surface schemes for Earth system models. The new schemes will evolve into interactive schemes that increasingly incorporate more hydrological, atmospheric, biogeochemical and ecological information.

Finally, while BAHC and GEWEX place much of their emphasis on the physical and biospheric aspects of water, they have also been very much interested in the potential impact of the alteration of the global hydrological cycle on regional water resources and ecosystems. However, despite the reported scenario and case studies (see Part D and E) and the proposed new approach for vulnerability assessments (Part E), at present, specific regional effects continue to be uncertain. This remaining uncertainty is one of the factors that has thus far hindered the effective application of GEWEX and BAHC research results to operational hydrology and water management strategies. Better links to applications in water resources is therefore one of the main priorities of Phase II of GEWEX and of the new joint project GWSP (Global Water Systems Project), co-sponsored by IGBP, WCRP, IHDP and DIVERSITAS (International Programme of Biodiversity Science). We remain optimistic that within this decade much progress in this area will be made and it will be the subject of a future publication.

Soroosh Sorooshian
Chair, GEWEX-Scientific Steering Group

Pavel Kabat
Chair and Co-Chair, BAHC and ILEAPS Science Steering Committees

Acknowledgements

The editors emphasise that the results reported here are based on the research work of many individual scientists and research teams around the world who have been associated in some way with the objectives of the IGBP-BAHC and WCRP-GEWEX research programmes. Synthesising these results was only achieved through the commitment, and work, often voluntary, of these scientists, and their staff and students. We especially acknowledge the help of all those involved in developing databases, convening/hosting workshops and editing drafts, and all those who participated in the lively discussions which made the work so enjoyable and worthwhile.

We are grateful to the German Federal Ministry of Education and Research (BMBF) for funding the BAHC Project Office at the Potsdam Institute for Climate Impact Research (PIK) to whom thanks are also due. The Dutch National Research Programme on Global Air Pollution and Climate Change (grant 959291) provided support for part of the Science Synthesis process. Additional funding and support have been provided through the following institutions and agencies: the IGBP Central Office in Stockholm, The Netherlands Ministry of Agriculture, Nature Management and Fisheries, The Netherlands Organisation for Scientific Research (NWO), and the WCRP International GEWEX Project Office, Silver Spring, USA.

In particular we would like to thank Will Steffen for his continuous encouragement and support during the entire Synthesis process; Hans-Jürgen Bolle as the first BAHC Chair; Piers Sellers who as the former Chair of ISLSCP helped forge the connections between BAHC and GEWEX; the late Mike Fosberg, former head of the BAHC Core Project Office; and all the former members of the BAHC Scientific Steering Committee. Last but not least we also wish to thank two colleagues at the Potsdam Institute for Climate Impact Research: Dietmar Gibitz-Rheinbay, for helping with the technical side of putting together a book of this size, and Ursula Werner for redrawing many of the figures.
Contents

Introduction .. 1

Part A Does Land Surface Matter in Climate and Weather? 5

A.1 Introduction .. 7

A.2 The Climate near the Ground ... 9
A.2.1 Introduction ... 9
A.2.2 The Surface Energy Balance .. 9
A.2.3 The Surface Water Balance .. 14
A.2.4 Observing the Surface .. 16

A.3 The Regional Climate .. 21
A.3.1 Fundamental Mechanism in Land-Atmosphere Interactions 21
A.3.2 Atmospheric Response to Heterogenous Land Forcing 22
A.3.2.1 Microscale Impact .. 22
A.3.2.2 Mesoscale Impact .. 24
A.3.3 Regional Teleconnections .. 28
A.3.4 Discussion ... 31

A.4 The Global Climate ... 33
A.4.1 Feedbacks, Synergisms, Multiple Equilibria and Teleconnections 33
A.4.1.1 Feedbacks ... 33
A.4.1.2 Synergisms ... 36
A.4.1.3 Multiple Equilibria .. 37
A.4.1.4 Teleconnections ... 39
A.4.2 Palaeoclimate ... 40
A.4.2.1 Feedbacks in the Arctic Climate System ... 40
A.4.2.2 The Sahara ... 42
A.4.2.3 Historical Land-cover Change .. 44
A.4.3 Sensitivity to Decadal Biogeochemical Feedbacks 45
A.4.3.1 The Land Surface and Climate Change ... 45
A.4.3.2 Biogeochemical Feedbacks ... 46
A.4.3.3 Transient Experiments ... 48
A.4.4 Seasonal Variability ... 48
A.4.5 Impact of Land Surface on Weather .. 52
A.4.5.1 Brief Literature Survey ... 52
A.4.5.2 European Centre for Medium-Range Weather Forecast (ECMWF) Examples ... 53

A.5 The Sahelian Climate ... 59
A.5.1 Introduction ... 59
A.5.1.1 Background ... 59
A.5.1.2 Climate Anomalies and Climate Change in the Sahel 60
A.5.1.3 The Complex Processes of Land-use Change in the Sahel 62
A.5.2 Observational Studies of Sahelian Land-surface/Atmosphere Interactions
A.5.2.1 The Sahelian Energy Balance Experiment (SEBEX) 63
A.5.2.2 The Hydrological and Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) .. 64
A.5.2.3 Coupling Tropical Atmosphere and Hydrological Cycle (CATCH) ... 65
A.5.2.4 Savannas in the Long Term (SALT) .. 65
A.5.2.5 Satellite Data .. 66
A.5.3 Coupled Modelling of Sahelian Land-Atmosphere Interactions 66
A.5.3.1 Brief Overview ... 66
A.5.3.2 Large Scale Force-Response Studies of the Sahelian Climate Anomaly: The Relative Importance of Land-surface Processes and Sea-surface Temperatures ... 68
A.5.3.3 Mesoscale Interactions between Sahelian Precipitation and Land-surface Patterns .. 71
A.5.3.4 Climate System Interactions in the Sahel .. 71
A.5.4 Understanding Mechanisms ... 73
A.5.5 Conclusion ... 75

A.6 The Amazonian Climate ... 79
A.6.1 Introduction ... 79
A.6.2 Future Climates in Amazonia ... 81
A.6.3 Observations of Land-surface/Atmosphere Interactions 82
A.6.4 The General Characteristics and Variability of Water and Energy Balances in the Amazon Basin .. 85
A.6.4.1 Introduction ... 85
A.6.4.2 Water Balance .. 86
A.6.4.3 Energy Balance .. 87
A.6.5 Deforestation and Climate ... 88

A.7 The Boreal Climate .. 93
A.7.1 The Boreal Ecosystem, Boreal Climate and High-latitude Climate Change and Variability ... 93
A.7.1.1 Climate and Boreal Vegetation ... 94
A.7.1.2 Effects of Fire and Insects on Vegetation and Land Cover 95
A.7.1.3 High-latitude Climate Change ... 96
A.7.1.4 Changes in Snow Extent, Depth and Duration 96
A.7.2 Energy Dissipation and Transport by the Boreal Landscape 101
A.7.2.1 Effect of Soil Type on Surface Energy Partitioning 102
A.7.2.2 Effect of Land-cover Type on Seasonal Variation in Relative Humidity ... 103
A.7.2.3 Role of Stomatal Control ... 103
A.7.2.4 Role of Latitudinal Gradient ... 104
A.7.2.5 Role of Moss .. 106
A.7.2.6 Role of Albedo of Forests, Wetlands and Lakes 106
A.7.2.7 Role of Fire-induced Atmospheric Aerosols 107
A.7.2.8 Role of Surface Hydrology .. 107
A.7.2.9 Scaling Energy and Water Flux from the Plot to the Region 108
A.7.3 Biospheric Carbon Exchange: Carbon Dioxide and Methane 109
A.7.3.1 Measurement Methods ... 109
A.7.3.2 Controlling Factors (above and below Ground) 110
A.7.3.3 Geographic Variations in Carbon Flux 110
A.7.3.4 Seasonal and Interannual Variations in Carbon Flux 111
A.7.3.5 Methane ... 112
B.10.2 Benefit of Datasets from Integrated Terrestrial Experiments for Surface Modelling in Atmospheric and Hydrological Models	221
B.10.3 A Modelling Strategy for Upscaling from the Plot Scale to the Size of a GCM Grid Box	222
B.10.4 Use of a Macroscale Hydrological Model to Investigate Aggregation of Hydrological Processes	225
B.10.5 Concluding Remarks	227
B.11 Further Insight from Large-scale Observational Studies of Land/Atmosphere Interactions	229
B.11.1 Introduction	229
B.11.2 International Co-operation	229
B.11.3 The Use of Land-surface Data to Validate Global Models	229
B.11.4 Surface Flux Measurements	230
B.11.5 Hydrological Catchment Measurements	232
B.11.6 Aggregation and Models	233
B.11.7 Future for Large-scale Integrated Experiments	233
B.11.8 Concluding Remarks	233

References 235

Part C The Value of Land-surface Data Consolidation 245

C.1 Motivation for Data Consolidation 247
C.1.1 The Volume of Data	248
C.1.2 The Breadth of Data	250
C.1.3 The Trend toward Interdisciplinary Science	251
C.1.4 Who Needs Consolidated Data?	251
C.1.5 What Is Consolidation?	252

C.2 Existing Degrees of Consolidation 255
C.2.1 Project-specific Data Collections	255
C.2.2 Subject-specific Archives	258
C.2.3 Broad Data Archives	259
C.2.4 Co-registration	261
C.2.5 Tools and Data	264

C.3 Achieving Full Data Consolidation 267
C.3.1 Necessary Elements	267
C.3.2 Tools	268
C.3.3 Data Maintenance	270
C.3.4 Motivating Data Providers	271

C.4 Terrestrial Data Assimilation 273
<p>| C.4.1 Topographic Coherence of Weather – The Role of Statistical Assimilation | 275 |
| C.4.1.1 Stochastic Weather Models for Scenario Generation | 275 |
| C.4.1.2 Scheme for Generating Stochastic Weather Scenarios | 276 |
| C.4.1.3 Stochastic Models | 277 |
| C.4.1.4 Topographic Dependent Interpolation of Weather Model Parameters | 278 |
| C.4.1.5 Spatial Structure and Topographic Dependencies of Weather Anomalies | 278 |
| C.4.2 Terrestrial Model Prediction | 279 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4.3 Terrestrial Observations</td>
<td>280</td>
</tr>
<tr>
<td>C.4.4 Data Assimilation Concepts and Methods</td>
<td>281</td>
</tr>
<tr>
<td>C.4.5 Current Projects</td>
<td>283</td>
</tr>
<tr>
<td>C.4.6 Future Opportunities</td>
<td>286</td>
</tr>
<tr>
<td>C.4.6.1 Terrestrial Observation</td>
<td>286</td>
</tr>
<tr>
<td>C.4.6.2 Terrestrial Simulation</td>
<td>286</td>
</tr>
<tr>
<td>C.4.6.3 Terrestrial Data Assimilation</td>
<td>287</td>
</tr>
<tr>
<td>C.5 Conclusions</td>
<td>289</td>
</tr>
<tr>
<td>References</td>
<td>291</td>
</tr>
<tr>
<td>Part D The Integrity of River and Drainage Basin Systems:</td>
<td></td>
</tr>
<tr>
<td>Challenges from Environmental Change</td>
<td>297</td>
</tr>
<tr>
<td>D.1 Introduction</td>
<td>299</td>
</tr>
<tr>
<td>D.2 Responses of Hydrological Processes to Environmental Change</td>
<td></td>
</tr>
<tr>
<td>at Small Catchment Scales</td>
<td>301</td>
</tr>
<tr>
<td>D.2.1 Introduction</td>
<td>301</td>
</tr>
<tr>
<td>D.2.2 Terrestrial Hydrological Processes –</td>
<td></td>
</tr>
<tr>
<td>Overview, Definitions, Classification</td>
<td>301</td>
</tr>
<tr>
<td>D.2.2.1 Fundamental Hydrological Processes</td>
<td>301</td>
</tr>
<tr>
<td>D.2.2.2 Spatial Differentiation of Vertical Hydrological Processes</td>
<td>302</td>
</tr>
<tr>
<td>D.2.2.3 Runoff Generation and Runoff Components</td>
<td>305</td>
</tr>
<tr>
<td>D.2.2.4 Time Behaviour of Runoff Components</td>
<td>307</td>
</tr>
<tr>
<td>D.2.2.5 Unresolved Understanding of Processes of Subsurface Flow and</td>
<td></td>
</tr>
<tr>
<td>Limitations in Assessing the Controlling Subsurface</td>
<td></td>
</tr>
<tr>
<td>Characteristics and Parameters</td>
<td>308</td>
</tr>
<tr>
<td>D.2.3 The Unsaturated Zone and Its Interaction with the Atmosphere</td>
<td></td>
</tr>
<tr>
<td>through the Biosphere</td>
<td>310</td>
</tr>
<tr>
<td>D.2.3.1 The Role of Soil Moisture</td>
<td></td>
</tr>
<tr>
<td>in Coupled Land-surface/Atmosphere Modelling</td>
<td>310</td>
</tr>
<tr>
<td>D.2.3.2 Soil Water Flow and Root Water Uptake at the Field Scale</td>
<td>311</td>
</tr>
<tr>
<td>D.2.3.3 Effects of Frozen Soil Moisture</td>
<td>312</td>
</tr>
<tr>
<td>D.2.3.4 Representation of Available Soil and Root Information</td>
<td></td>
</tr>
<tr>
<td>in Land-surface Models</td>
<td>313</td>
</tr>
<tr>
<td>D.2.3.5 Conclusions</td>
<td>316</td>
</tr>
<tr>
<td>D.2.4 Overland Flow, Erosion and Associated Sediment and Biogeochemical</td>
<td></td>
</tr>
<tr>
<td>Transports</td>
<td>317</td>
</tr>
<tr>
<td>D.2.4.1 Impact of Climate Change</td>
<td>317</td>
</tr>
<tr>
<td>D.2.4.2 Impact of Land-use Change</td>
<td>319</td>
</tr>
<tr>
<td>D.2.5 Subsurface Stormflow and Lateral Flow Processes</td>
<td>322</td>
</tr>
<tr>
<td>D.2.5.1 Rapid, Shallow Subsurface Stormflow Processes</td>
<td>322</td>
</tr>
<tr>
<td>D.2.5.2 Separating Event Water and Subsurface Stormflow</td>
<td></td>
</tr>
<tr>
<td>in the Storm Hydrograph</td>
<td>324</td>
</tr>
<tr>
<td>D.2.5.3 Modelling Lateral Flow at the Catchment Scale</td>
<td>326</td>
</tr>
<tr>
<td>D.2.5.4 Subsurface Flow and Catchment-scale Nutrient Dynamics</td>
<td>326</td>
</tr>
<tr>
<td>D.2.5.5 Conclusions</td>
<td>328</td>
</tr>
<tr>
<td>D.2.6 Integrated Ecohydrological Modelling Considering Nutrient Dynamics</td>
<td></td>
</tr>
<tr>
<td>in River Catchments</td>
<td>328</td>
</tr>
<tr>
<td>D.2.6.1 General issues</td>
<td>328</td>
</tr>
<tr>
<td>D.2.6.2 Structure of Integrated Ecohydrological Models</td>
<td>329</td>
</tr>
<tr>
<td>D.2.6.3 Assessment of Land-surface Heterogeneity in Modelling</td>
<td>330</td>
</tr>
<tr>
<td>D.2.6.4 GIS-based Estimation of Land-surface Characteristics and Related</td>
<td></td>
</tr>
<tr>
<td>Model Parameters</td>
<td>331</td>
</tr>
</tbody>
</table>
D.2.6.5 Calibration and Verification of Component Models (Modules) within Integrated Models .. 332
D.2.6.6 Examples of Integrated Ecohydrological Models: SWIM and ACRU ... 332
D.2.7 Conclusions ... 337

D.3 River Basin Responses to Global Change and Anthropogenic Impacts ... 339
D.3.1 Introducing the River Basin Scale and Its Response to Anthropogenic Change ... 339
D.3.2 Natural Landscape Processes at the River Basin Scale ... 341
D.3.2.1 Introduction ... 341
D.3.2.2 Natural Watercourses and Aquatic Ecosystems ... 341
D.3.2.3 Evaporation and Transmission Losses from Riverine Systems ... 343
D.3.2.4 Wetlands .. 345
D.3.3 Anthropogenic Modifications of the River Basin Landscape .. 347
D.3.3.1 Land-use Change and Its Impacts on Hydrological Responses ... 347
D.3.3.2 Plantation Afforestation Effects ... 349
D.3.3.3 Urban Influences on Hydrological Responses .. 352
D.3.3.4 Water Quality Degradation Resulting from Agricultural Pollution by Nitrogen and Phosphorus 354
D.3.3.5 Salinisation .. 357
D.3.4 Water and River Engineered Landscape .. 362
D.3.4.1 River Channel Modification .. 362
D.3.4.2 Dams and Their Impacts ... 363
D.3.5 The Road Ahead 1: Integrated Water Resources Management (IWRM) ... 365
D.3.5.1 Integrated Water Resources Management as a Response to an Inheritance of Damaged River Basins ... 365
D.3.5.2 What Is Integrated Water Resources Management (IWRM)? .. 367
D.3.5.3 The River Basin as the Fundamental Unit for IWRM ... 369
D.3.5.4 At What Space and Time Scales Should IWRM Be Carried Out? .. 370
D.3.5.5 Differences in IWRM between Developing Countries and Developed Countries 371
D.3.5.6 Conditions for the Success of IWRM ... 372
D.3.5.7 Conclusions ... 372
D.3.6 The Road Ahead 2: Restoration of Riverine Ecosystems .. 373
D.3.7 Conclusions ... 374

D.4 Responses of Continental Aquatic Systems at the Global Scale: New Paradigms, New Methods 375
D.4.1 Introduction ... 375
D.4.2 Terms of Reference ... 376
D.4.2.1 Relevant Time and Space Scales Associated with Global Change and Continental Aquatic Systems ... 376
D.4.2.2 Emerging Techniques for Analysing Continental Aquatic Systems and Global Change 377
D.4.3 Changes in River Connectivity and Basin Characteristics: Palaeo to Present ... 377
D.4.3.1 A Global Classification System for Flow Connectivity in River Systems ... 377
D.4.3.2 Major Earth System Processes Controlling Land-to-Ocean Coupling: Glaciation/De-glaciation, Climate Variability and Recent Tectonics ... 381
D.4.4 Human Conditioning of Continental Runoff .. 385
D.4.4.1 A Focus on Reservoirs ... 386
D.4.4.2 Impacts of Land-cover Change on Water Budgets 390
D.4.5 Global Sediment Flux .. 390
D.4.5.1 The Continuum of Fluxes from Field Erosion to River Mouth Export ... 391
D.4.5.2 Approaches toward Estimating Basin Fluxes 391
D.4.5.3 Additional Temporal Complexities .. 396
D.4.5.4 Globally, What Is the Net Change in Riverborne Sediment Flux due to Humans? .. 397
D.4.6 Global River Transfer of Carbon and Its Alteration and Storage 397
D.4.6.1 Sources, Sinks and Re-cycling .. 397
D.4.6.2 Estimates of Riverborne Carbon Flux to the Oceans 399
D.4.7 Global Riverine Nutrient Flux to the Oceans 402
D.4.7.1 Inventory Methods ... 402
D.4.7.2 New Regression and Multiple Regression Models 405
D.4.7.3 "Hot Spots" at the Global Scale .. 407
D.4.7.4 Stoichiometric Changes of N:P:Si ... 408
D.4.8 Future Trends .. 409
D.4.8.1 Pressure on Inland Water Systems ... 409
D.4.8.2 The Future State of Riverine Carbon Loads 411
D.4.8.3 The Future State of Inorganic Nitrogen Loads in Rivers 411
D.4.9 Future Research .. 412

D.5 Case Study 1: Integrated Analysis of a Humid Tropical Region –
The Amazon Basin .. 415
D.5.1 Towards an Integrated Analysis of the Amazon Basin 415
D.5.2 Coupling Hydrology, Organic Matter and Nutrient Dynamics in Large River Basins ... 415
D.5.3 The Amazon Basin: Vargem Grande to Óbidos 417
D.5.4 Hydrology of the Amazon River System: A Mainstem Perspective 419
D.5.4.1 Patterns of Rainfall ... 419
D.5.4.2 Mainstem and Tributary Hydrographs 419
D.5.4.3 Models of Amazon Water Movement .. 421
D.5.5 River Chemistry .. 422
D.5.5.1 A Synoptic View of Chemical Profiles 422
D.5.5.2 In-river Dynamics ... 424
D.5.5.3 Organic Geochemical Signatures .. 425
D.5.5.4 Dynamics of Floodplains .. 425
D.5.6 Potential Impact of Anthropogenic Change on the River System 427
D.5.7 Towards a Synthetic Model of Drainage Basins 427

D.6 Case Study 2: Integrated Ecohydrological Analysis of a Temperate Developed Region: The Elbe River Basin in Central Europe 429
D.6.1 General Outline of the Elbe River Basin ... 429
D.6.2 Integrated Analysis of Hydrological Processes and Nitrogen Dynamics .. 431
D.6.2.1 Comparison of Nitrogen Dynamics in the Lowland and Mountainous Sub-regions of the Elbe ... 431
D.6.2.2 Regional Nitrogen Dynamics across the German Part of the Elbe Basin ... 433
D.6.3 Agricultural Land-use Change and Its Impact on Water Resources .. 435
D.6.4 Climate Change Impacts on Hydrology and Crop Yields 437
D.6.5 Conclusions ... 439
D.7 Case Study 3: Modelling the Impacts of Land Use and Climate Change on Hydrological Responses in the Mixed Underdeveloped/Developed Mgeni Catchment, South Africa

D.7.1 Setting the Scene

D.7.2 Attributes of the Mgeni Catchment and Human Pressures

D.7.3 Configuration of the Mgeni System for Simulation Modelling

D.7.4 Verification of Simulated Hydrological Outputs

D.7.5 Modelling Impacts of Contrasting Land Uses on Streamflow Generation

D.7.6 Modelling Impacts of Land Uses on Water Quality Indicators

D.7.7 Scenario Studies on Impacts of Land Use

D.7.7.1 Effects of Individual Land Uses on Runoff at the Management Catchment Level

D.7.7.2 Impacts of Subsistence Farming and Informal Settlements on Water Quality and Quantity

D.7.7.3 Impacts of Potential Climate Change on Streamflows

D.7.8 Conclusions

D.8 Conclusions: Scaling Relative Responses of Terrestrial Aquatic Systems to Global Changes

D.8.1 Terrestrial Aquatic Systems and the Earth System under Pressure

D.8.2 Spatial Organisation of Terrestrial Aquatic Systems and Their Responses to Anthropogenic Change

D.8.3 Spatial Scale of Drivers Operating on Terrestrial Aquatic Systems

D.8.3.1 Natural Drivers

D.8.3.2 Anthropogenic Drivers

D.8.3.3 Integrated Water Management and Governance

D.8.4 Time Scales of Responses of Continental Aquatic Systems (CAS) to Imposed Changes

D.8.5 Continental Aquatic Systems and Emergence of the Anthropocene

D.8.6 Continental Aquatic Systems Shared by Social Systems and the Biogeophysical Earth System: An Extension of the DPSIR Approach

References

Part E How to Evaluate Vulnerability in Changing Environmental Conditions?

E.1 Introduction

E.2 Predictability and Uncertainty

E.3 Contrast between Predictive and Vulnerability Approaches

E.3.1 Societal Needs

E.3.2 Quantifying Uncertainty Using a Bayesian Approach

E.4 The Scenario Approach

E.5 The Vulnerability Approach

E.5.1 Risk, Hazard and Vulnerability: Concepts

E.5.2 Anthropogenic Land-use and Land-cover Changes

E.5.3 Procedures to Assess the Effect of Environmental Conditions on Water Resources: Natural Landscape Changes

E.5.4 An Example of the Vulnerability Approach: Ecosystem Vulnerability
E.6 Case Studies ... 515
E.6.1 Population and Climate .. 515
E.6.2 Water Resources in the Lake Erhai Basin, China 523
E.6.3 Yellow River: Recent Trends 526
E.6.4 Examples of Hazard Determination and Risk Mitigation
 from South Africa .. 528

E.7 Conclusions .. 537

References ... 539

Index ... 545
Contributors

Simon J. Allen
CECS, University of Edinburgh
John Muir Building, The King’s Buildings
Mayfield Road, Edinburgh, EH9 3JF, United Kingdom
E-mail: s.allen@ed.ac.uk

Roni Avissar
Department of Civil and Environmental Engineering
Duke University
123 Hudson Hall, Durham NC 27708-0287, USA
E-mail: avissar@duke.edu

Dennis Baldocchi
Ecosystem Science Division and Berkeley Atmospheric
Science Center, Department of Environmental Science,
Policy and Management
University of California, Berkeley
151 Hilgard Hall, Berkeley CA 94720, USA
E-mail: baldocchi@nature.berkeley.edu

Brad Bass
Adaptations and Impacts Research Group
Environment Canada at the University of Toronto
33 Willcocks Street, Toronto, Ontario, Canada M5S 3E8
E-mail: brad.bass@ec.gc.ca

Alfred Becker
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: Alfred.Becker@pik-potsdam.de

Anton C. M. Beijaars
European Centre for Medium-Range Weather Forecasts (ECMWF)
Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom
E-mail: beijaars@ecmwf.int

Alan K. Betts
Atmospheric Research
58 Hendee Lane, Pittsford VT 05763-9405, USA
E-mail: akbetts@aol.com

Richard A. Betts
Met Office
Hadley Centre for Climate Prediction and Research
Fitzroy Road, Exeter, EX1 3PB, United Kingdom
E-mail: richard.betts@metoffice.com

Hans-Jürgen Bolle
Stückerstraße 18c, 81247 München, Germany
E-mail: hansj.bolle@lrz.badw-muenchen.de

Mike Bonell
Section: Hydrological Processes and Climate
UNESCO Division of Water Sciences
1 rue Miollis, 75732 Paris Cedex 15, France
E-mail: m.bonell@unesco.org

Lelys Bravo de Guenni
Universidad Simón Bolívar
Departamento de Cómputo Científico y Estadística
P.O. Box 89,000, Caracas 1080-A, Venezuela
E-mail: lbravo@cesma.usb.ve

Ross Brown
Climate Research Branch, Meteorological Service of Canada
2121 Trans Canada Highway, Dorval, QC, Canada H9P 1J3
E-mail: Ross.Brown@ec.gc.ca

Jake Brunner
Conservation International
1919 M Street, Washington DC 20036, USA
E-mail: j.brunner@conservation.org

Thomas Chase
Cooperative Institute for Research in Environmental Sciences
(CIRES) and Department of Geography
Campus Box 216, University of Colorado, Boulder, CO 80309, USA
E-mail: tchase@cires.colorado.edu

Jing M. Chen
Department of Geography and Program in Planning
University of Toronto
100 St. George St., Toronto, Ontario, Canada M5S 3G3
E-mail: chenj@geog.utoronto.ca

Wenjun Chen
Environmental Monitoring Section
Canada Centre for Remote Sensing
588 Booth St., Ottawa, Ontario, Canada K1A 0Y7
E-mail: wenjun.chen@ccrs.nrcan.gc.ca

Martin Claussen
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: claussen@pik-potsdam.de

Peter M. Cox
Met Office
Hadley Centre for Climate Prediction and Research
Fitzroy Road, Exeter, EX1 3PB, United Kingdom
E-mail: peter.cox@metoffice.com
Contributors

Timothy L. Crawford†
Field Research Division NOAA/ARL
1750 Foote Drive, Idaho Falls, ID 83402, USA
E-mail: use: dobosy@atdd.noaa.gov

Alistair D. Culf
Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford
Oxfordshire OX10 8BB, United Kingdom
E-mail: use: jhg@ceh.ac.uk

Paul A. Dirmeyer
Center for Ocean-Land-Atmosphere Studies
4041 Powder Mill Road, Suite 302, Calverton MD 20705-3106, USA
E-mail: dirmeyer@cola.iges.org

Ronald J. Dobosy
Atmospheric Turbulence and Diffusion Division NOAA/ARL
Post Office Box 2456, Oak Ridge TN, 37831-2456, USA
E-mail: dobosy@atdd.noaa.gov

A. J. (Han) Dolman
Dept. Geo-Environmental Sciences
Free University
de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
E-mail: han.dolman@geo.falw.vu.nl

Hervé Douville
Météo-France/CNRM, GMGEC/UDC
42 avenue Coriolis, 31057 Toulouse, France
E-mail: hervé.douville@meteo.fr

Reinder A. Feddes
Wageningen University, Environmental Sciences,
Sub-Department Water Resources,
Chair Soil Physics, Agrohydrology and Groundwater Management
Nieuwe Kanaal 11, 6709 PA Wageningen, The Netherlands
E-mail: reinder.feddes@wur.nl

Balazs Fekete
University of New Hampshire
Institute for the Study of Earth, Oceans & Space (EOS)
Complex Systems Research Center, Water Systems Analysis Group
Morse Hall, 39 College Road, Durham NH 03824-3525, USA
E-mail: balazs.fekete@unh.edu

David R. Fitzjarrald
Atmospheric Sciences Research Center
University at Albany, SUNY
25 Fuller Road, Albany NY 12203, USA
E-mail: fitz@asrc.cestm.albany.edu

Thomas Foken
Abteilung Mikrometeorologie
Universität Bayreuth
Universitätsstraße 30, D-95440 Bayreuth, Germany
E-mail: thomas.foken@uni-bayreuth.de

Burkhard Frenzel
Institut für Botanik
Universität Hohenheim
Garbenstr. 30, D-70599 Stuttgart, Germany
E-mail: bfrenzel@uni-hohenheim.de

Steve Frolking
Institute for the Study of Earth, Oceans, and Space
University of New Hampshire
39 College Rd., Durham NH 03824-2622, USA
E-mail: steve.frolking@unh.edu

Congbin Fu
START Regional Center for Temperate East Asia, c/o Institute of Atmospheric Physics, Chinese Academy of Sciences,
Qi Jia Huo Zi, De Sheng Men Wai Street, Beijing 100029, China
E-mail: fcb@astS90.tea.ac.cn

John H. C. Gash
Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford
Oxfordshire OX10 8BB, United Kingdom
E-mail: jhg@ceh.ac.uk

Pamela Green
University of New Hampshire
Institute for the Study of Earth, Oceans & (EOS)
Complex Systems Research Center, Water Systems Analysis Group
Morse Hall, 39 College Road, Durham NH 03824-3525, USA
E-mail: pam.green@unh.edu

Vijay Gupta
Dept. of Civil and Environmental Engineering and Cooperative Institute for Research in Environmental Sciences, Campus Box 216,
University of Colorado, Boulder CO 80309-0216, USA
E-mail: guptav@cires.colorado.edu

Florence Habets
Meteo-France - CNRM
42, avenue Gustave Coriolis, F-31057 Toulouse, France
E-mail: florence.habets@meteo.fr

Forrest G. Hall
Goddard Space Flight Center
National Aeronautic and Space Administration (NASA)
Code 923, Greenbelt MD 20771, USA
E-mail: fghall@ltmail.gsfc.nasa.gov

Sven Halldin
Department of Earth Sciences, Uppsala University
Villavägen 16, SE-75236 Uppsala, Sweden
E-mail: sven.halldin@hyd.uu.se

Niall Hanan
Natural Resource Ecology Laboratory
Colorado State University
Fort Collins CO 80521, USA
E-mail: niall@nrel.colostate.edu

Richard J. Harding
Centre for Ecology and Hydrology, Maclean Building
Crowmarsh Gifford, Wallingford
Oxfordshire OX10 8BB, United Kingdom
E-mail: rjh@ceh.ac.uk

Holger Hoff
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: hhoff@pik-potsdam.de
Paul Houser
Hydrological Sciences Branch
Goddard Space Flight Center (GSFC)
National Aeronautics and Space Administration (NASA)
Code 974, Bldg. 33, Greenbelt MD 20771, USA
E-mail: houser@hsb.gsfc.nasa.gov

Gordon H. Huang
Environmental Systems Engineering
University of Regina
Regina, Sask., Canada S4S 0A2
E-mail: gordon.huang@uregina.ca

Michael F. Hutchinson
Centre for Resource and Environmental Studies
Australian National University
GPO Box 4, Canberra ACT 0200, Australia
E-mail: hutch@csu.anu.edu.au

Ronald W. A. Hutjes
Wageningen University and Research Centre
ALterra Green World Research
Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
E-mail: ronald.hutjes@wur.nl

Roy Jenne
National Center for Atmospheric Research
1850 Table Mesa Drive, Boulder, CO 80305-3000, USA
E-mail: jenne@ucar.edu

Pavel Kabat
Wageningen University and Research Centre
ALterra Green World Research
Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
E-mail: pavel.kabat@wur.nl

Yann H. Kerr
Centre National d'Etudes Spatiales (CNES), CESBIO
18 Avenue Edouard Belin, 31401 Toulouse, France
E-mail: yann.kerr@cesbio.cnrs.fr

Stefan W. Kienzle
Department of Geography, The University of Lethbridge
4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
E-mail: stefan.kienzle@uleth.ca

Timothy Kittel
National Center for Atmospheric Research
1850 Table Mesa Drive, Boulder, CO 80305-3000, USA
E-mail: kittel@ucar.edu

Randal Koster
Global Modeling and Assimilation Office
Goddard Space Flight Center (GSFC)
National Aeronautics and Space Administration (NASA)
Code 900.3, NASA/GSFC, Greenbelt, MD 20771, USA
E-mail: randal.d.koster@nasa.gov

Bart Kruijt
Wageningen University and Research Centre
ALterra Green World Research
Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
E-mail: bart.kruijt@wur.nl

Valentina Krysanova
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: Valentina.Krysanova@pik-potsdam.de

Yumiko Kara
World Resources Institute (WRI)
10 G Street, NE, Washington DC 20002, USA
E-mail: yumiko@wri.org

Pierre Lacarrère
Meteo-France - CNRM
42 avenue Gustave Coriolis, F-31057 Toulouse, France
E-mail: pierre.lacarrere@meteo.fr

Eric F. Lambin
Department of Geography
Université Catholique du Louvain
3 place Louis Pasteur, B-1348 Louvain La Neuve, Belgium
E-mail: lambin@geo.ucl.ac.be

Thierry Lebel
Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE), UMR 5564
BP 53, F-38041 Grenoble cedex 9, France
E-mail: Thierry.Lebel@inpg.fr

John Leese
GEWEX Continental Scale International Project (GCIP) Office
Office of Global Programs
National Oceanic and Atmospheric Administration (NOAA)
1100 Wayne Avenue, Silver Spring MD 20901, USA
E-mail: leese@ogp.noaa.gov

Rik Leemans
Environmental Systems Analysis Group
Department of Environmental Sciences, Wageningen University
De Drijenborch, Ritzema Bosweg 32a
6703 AZ Wageningen, The Netherlands
E-mail: rik.leemans@wur.nl

Dennis P. Lettenmaier
Department of Civil and Environmental Engineering
University of Washington
Seattle, WA, USA
E-mail: lettenma@ce.washington.edu

Changming Liu
Institute of Geographic Science and Natural Resources Research
Chinese Academy of Sciences, Anwai
Datan Road, Building 917, Beijing 100101, P. R. China
E-mail: liucm@igsnrr.ac.cn

Lei Liu
Department of Civil Engineering, Dalhousie University
1360 Barrington St., Halifax, NS, Canada B3J 1Z1
E-mail: lei.liu@dal.ca

Simon Lorentz
School of Bioresources Engineering and Environmental Hydrology
University of KwaZulu-Natal, Pietermaritzburg
Carbis Road, Scottsville, 3201 Pietermaritzburg, RSA
E-mail: lorentz@ukzn.ac.za
Sabine Lütkemeier
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: Sabine.Luetkemeier@pik-potsdam.de

José A. Marengo
Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)
Instituto Nacional de Pesquisas Espaciais (INPE)
Rodovia Presidente Dutra, km 40,
Cachoeira Paulista, SP 12630-000, Brazil
E-mail: marengo@cptec.inpe.br

Luis Antonio Martinelli
Centro de Energia Nuclear na Agricultura
Universidade de Sao Paulo/Piracicaba
Avenida Centenario 303, Piracicaba SP, Brazil
E-mail: lamartin@pintado.ciaagri.usp.br

Emilio Mayorga
School of Oceanography, University of Washington
P. O. Box 357940, Seattle WA 98195-7940, USA
E-mail: emiliom@u.washington.edu

Jeffrey J. McDonnell
Department of Forest Engineering, Oregon State University
Corvallis OR 97331-5706, USA
E-mail: jeff.mcdonnell@orst.edu

Robert H. Meade
U.S. Geological Survey, Denver Federal Center
Lakewood CO 80225-0046, USA
E-mail: rhmeade@usgs.gov

Blanche W. Meeson
Goddard Space Flight Center
National Aeronautics and Space Administration (NASA)
Greenbelt MD 20771, USA
E-mail: meeson@see.gsfc.nasa.gov

Michel Meybeck
Université de Paris 6/SYSYPHE
Laboratoire de Géologie Appliquée
4 place Jussieu, F-75252 Paris, France
E-mail: meybeck@ecr.jussieu.fr

John Moncrieff
Institute of Ecology and Resource Management
University of Edinburgh, Mayfield Rd., Darwin Building
Edinburgh EH9 3JU, United Kingdom
E-mail: j.moncrieff@ed.ac.uk

Bart Nijssen
Departments of Hydrology and Water Resources / Civil Engineering and Engineering Mechanics, The University of Arizona
Tucson, AZ 85721, USA
E-mail: nijssen@u.arizona.edu

Carlos A. Nobre
Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)
Instituto Nacional de Pesquisas Espaciais (INPE)
Rodovia Presidente Dutra, km 40
Cachoeira Paulista, SP 12630-000, Brazil
E-mail: nobre@cptec.inpe.br

Joel Neilhan
Meteo-France - CNRM
43, avenue Gustave Coriolis, F-31057 Toulouse, France
E-mail: joel.neilhan@meteo.fr

Dennis Shoji Ojima
Natural Resource Ecology Laboratory, Colorado State University
Fort Collins CO 80523, USA
E-mail: dennis@nrel.colostate.edu

Taikan Oki
Institute of Industrial Science, University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
E-mail: taikan@iis.u-tokyo.ac.jp

Richard J. Olson
Oak Ridge National Laboratory
2105 Driftwood Drive, Stevens Point, Wi 54481, USA
E-mail: olson627@juno.com

Lucille Perks
School of Bioresources Engineering and Environmental Hydrology
Institute of Industrial Science, University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
E-mail: perksl@ukzn.ac.za

Gerhard Petschel-Held
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: Gerhard.Petschel@pik-potsdam.de

Thomas J. Phillips
Program for Climate Model Diagnosis and Intercomparison (PCMDI), Lawrence Livermore National Laboratory
P.O. Box 808, L-103, Livermore, CA 94551-0808, USA
E-mail: philips14@llnl.gov

Roger A. Pielke Sr.
Department of Atmospheric Sciences, Colorado State University
Fort Collins CO 80523, USA
E-mail: pielke@snow.atmos.colostate.edu

Roger A. Pielke Jr.
Center for Science and Technology Policy Research
University of Colorado/CIRES, UCB 488
1333 Grandview Ave., Boulder CO 80309-0488, USA
E-mail: pielke@cires.colorado.edu

Andrew J. Pitman
Macquarie University, Division of Environmental and Life Sciences
North Ryde, NSW 2109, Australia
E-mail: apitman@penman.mq.edu.au

Jan Polcher
Laboratoire de Méteorologie Dynamique du CNRS
Université Pierre et Marie Curie, 4 pl Jussieu, F-75252 Paris, France
E-mail: jan.polcher@lmd.jussieu.fr

Steven D. Prince
Department of Geography, University of Maryland
1113 Lefrak Hall, College Park MD 20742-8225, USA
E-mail: sp43@umail.umd.edu
Contributors

Robert Rabin
National Severe Storms Laboratory
National Oceanic and Atmospheric Administration
Norman, OK 73072, USA
E-mail: rabin@ssec.wisc.edu

Carmen Revenga
Senior Associate, Information Program
World Resources Institute (WRI)
10 G Street, NE, Washington DC 20002, USA
E-mail: carmenr@wri.org

Jeffrey E. Richey
School of Oceanography, University of Washington
Seattle, WA 98195-7940, USA
E-mail: jrichey@u.washington.edu

Steven W. Running
Montana Forest and Conservation Experiment Station
School of Forestry, University of Montana
Missoula MT 59812-1063, USA
E-mail: swr@ntsg.umt.edu

Joel Schafer
Biospheric Sciences Branch, Science Systems & Applications
NASA/Goddard Space Flight Center
Greenbelt, MD 20771, USA
E-mail: joel.S.Schafer.1@gsfc.nasa.gov

Roland E. Schulze
School of Bioresources Engineering and Environmental Hydrology
University of KwaZulu-Natal
Pietermaritzburg
Carbis Road, Scottsville, 3201 Pietermaritzburg, RSA
E-mail: schulzeR@ukzn.ac.za

Maria Assuncão Silva Dias
IAG, Universidade de São Paulo
Rua do Matao 1226, São Paulo 05508-900 SP, Brazil
E-mail: mafdsdia@model.iag.usp.br

Thomas J. Stohlgren
U.S. Geological Survey
Fort Collins Science Center
Natural Resource Ecology Laboratory
Colorado State University, Fort Collins CO 80523, USA
E-mail: Tom_Stohlgren@USGS.gov

Kiyotoshi Takahashi
Meteorological Research Institute (MRI)
Japan Meteorological Agency (JMA)
Nagamine 1-1, Tsukuba, Ibaraki, 305-0035, Japan
E-mail: kikahashi@mri-jma.go.jp

Kirsten Thompson
World Resources Institute (WRI)
10 G Street, NE, Washington DC 20002, USA
E-mail: kirsten@wri.org

Christian Valentin
IRD, Institut de Recherche pour le Développement
32 rue Henri Varagnat, 93143 Bondy, France
E-mail: Christian.Valentin@bondy.ird.fr

Riccardo Valentini
Department of Forest Science and Environment
Università degli Studi della Toscana
Via S. Camillo de Lellis, I-01100 Viterbo, Italy
E-mail: rik@unitus.it

Kristine Verdin
EROS Data Center
47914 252nd Street, Sioux Falls, SD 57198-000, USA
E-mail: kverdin@edc.gov

Reynaldo Luiz Victoria
Centro de Energia Nuclear na Agricultura
Universidade de São Paulo/Piracicaba
Avenida Centenário, 303, Piracicaba, SP 13416-000, Brazil
E-mail: reyna@mail.cena.usp.br

Pedro Viterbo
European Centre for Medium-Range Weather Forecasts (ECMWF)
Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom
E-mail: p.viterbo@ecmwf.int

Charles J. Vorösmarty
University of New Hampshire
Institute for the Study of Earth, Oceans & Space (EOS)
Complex Systems Research Center, Water Systems Analysis Group
Morse Hall, 39 College Road, Durham NH 03824-3525, USA
E-mail: charles.vorosmarty@unh.edu

Christopher P. Weaver
Center for Environmental Prediction and Department of
Environmental Sciences, Rutgers University
New Brunswick, NJ 08901, USA
E-mail: weaver@cep.rutgers.edu

Frank Wechsung
Potsdam-Institut für Klimafolgenforschung
Telegrafenberg, 14473 Potsdam, Germany
E-mail: Frank.Wechsung@pik-potsdam.de

David Werth
Department of Environmental Sciences, Cook College
Rutgers University
New Brunswick, NJ 08903, USA
E-mail: werth@cep.rutgers.edu

Yongkang Xue
Department of Geography
University of California, Los Angeles
1255 Bunche Hall, Los Angeles CA 90095-1524, USA
E-mail: yyxue@geog.ucla.edu

Tetsuzo Yasunari
Frontier Research System for Global Change (FRSGC), and
Hydrospheric Atmospheric Research Center (HyARC)
Nagoya University, Nagoya, Aichi 464-8601, Japan
E-mail: yasunari@ihas.nagoya-u.ac.jp

Xubin Zeng
Department of Atmospheric Sciences
University of Arizona
PAS Building 81, Tucson AZ 85721, USA
E-mail: zeng@atmo.arizona.edu