Handbook of Experimental Pharmacology

Volume 203

Editor-in-Chief
F.B. Hofmann, München

Editorial Board
J.A. Beavo, Seattle, WA
D. Ganten, Berlin
J.-A. Karlsson, Singapore
M.C. Michel, Amsterdam
C.P. Page, London
W. Rosenthal, Berlin

For further volumes:
http://www.springer.com/series/164
Mathias Schwanstecher
Editor

Diabetes - Perspectives in Drug Therapy

Springer
Preface

Weight loss – in many cases, as little as 4 kg – with its pleiotropic benefits and optimal safety profile appears as the most effective means of managing type 2 diabetes (T2DM) (Harris 1991; Pories et al. 1995; Sjostrom et al. 2004; Pontiroli et al. 2005; Ratner et al. 2005; Pi-Sunyer et al. 2007; Dixon et al. 2008). In addition, the pharmacotherapeutic armamentarium seems well equipped with ten different classes of antidiabetic drugs; providing potent tools to achieve predefined HbA1c goals (i.e. insulin, sulphonylureas, metformin, thiazolidinediones, alpha-glucosidase inhibitors, glinides, GLP1-analogues, DPP-4 inhibitors, pramlintide, and colesevalam) (Rodbard et al. 2009).

What then are we struggling for? First, in most of the T2DM patients, present clinical praxis fails to attain sustained weight loss and glycemic control (Nathan et al. 2009). Second, even if optimal management of HbA1c, lipid profile and blood pressure could hypothetically be supplied, increased morbidity and mortality rates would still leave much room for improvement (Mourad and Le Jeune 2008). Third, unravelling the molecular pathophysiology of nutrient excess should allow to target the thrifty genotype roots of obesity and T2DM directly and should thus facilitate the development of highly efficient novel therapies (Neel 1999). Respectively, distinct encouragement evolves from potential mechanisms underlying treatments through metformin and bariatric surgery (Cummings et al. 2004; Foretz et al. 2010).

The chapters of this book report cutting-edge research on molecular events in adiposity and T2DM, thus opening the way for innovative drug-based therapeutic strategies. Beyond that, profound insights and exciting ideas are unveiled. Please, go ahead and explore!

Braunschweig M. Schwanstecher
October 2010
References

Contents

Targeting Type 2 Diabetes ... 1
Christina Schwanstecher and Mathias Schwanstecher

Dual Acting and Pan-PPAR Activators as Potential Anti-diabetic Therapies ... 35
Monique Heald and Michael A. Cawthorne

GLP-1 Agonists and Dipeptidyl-Peptidase IV Inhibitors 53
Baptist Gallwitz

Cannabinoids and Endocannabinoids in Metabolic Disorders with Focus on Diabetes ... 75
Vincenzo Di Marzo, Fabiana Piscitelli, and Raphael Mechoulam

SGLT Inhibitors as New Therapeutic Tools in the Treatment of Diabetes ... 105
Rolf K.H. Kinne and Francisco Castaneda

Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 in Antidiabetic Therapy ... 127
Minghan Wang

Nampt and Its Potential Role in Inflammation and Type 2 Diabetes ... 147
Antje Garten, Stefanie Petzold, Susanne Schuster, Antje Körner, Jürgen Kratzsch, and Wieland Kiess

Inhibition of Ganglioside Biosynthesis as a Novel Therapeutic Approach in Insulin Resistance ... 165
Jin-ichi Inokuchi
Overcoming Insulin Resistance with Ciliary Neurotrophic Factor 179
Tamara L. Allen, Vance B. Matthews, and Mark A. Febbraio

Thermogenesis and Related Metabolic Targets
in Anti-Diabetic Therapy 201
Jonathan R.S. Arch

Interleukin-Targeted Therapy for Metabolic Syndrome
and Type 2 Diabetes 257
Kathrin Maedler, Gitanjali Dharmadhikari, Desiree M. Schumann,
and Joachim Størling

Fructose-1, 6-Bisphosphatase Inhibitors for Reducing
Excessive Endogenous Glucose Production in Type 2 Diabetes 279
Paul D. van Poelje, Scott C. Potter, and Mark D. Erion

AMP-Activated Protein Kinase and Metabolic Control 303
Benoit Viollet and Fabrizio Andreelli

Mitochondria as Potential Targets in Antidiabetic Therapy 331
Paula I. Moreira and Catarina R. Oliveira

Research and Development of Glucokinase Activators
for Diabetes Therapy: Theoretical and Practical Aspects 357
Franz M. Matschinsky, Bogumil Zelent, Nicolai M. Doliba,
Klaus H. Kaestner, Jane M. Vanderkooi, Joseph Grimsby,
Steven J. Berthel, and Ramakanth Sarabu

Erratum to Chapter 11: Interleukin-Targeted Therapy for Metabolic
Syndrome and Type 2 Diabetes E1

Index 403
Contributors

Tamara L. Allen Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, P.O Box 6492, St Kilda Road Central, 8008 Victoria, Australia

Fabrizio Andreelli Département d’Endocrinologie Métabolisme et Cancer, Inserm U1016, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 24, rue du Faubourg Saint Jacques, 75014 Paris, France

Jonathan R.S. Arch Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK

Francisco Castaneda Max-Planck-Institute of Molecular Physiology Olto-Hahn-Str. 11, 44227 Dortmund, Germany, rolf.kinne@mpi-dortmund.mpg.de

Michael A. Cawthorne Clore Laboratory, University of Buckingham, Buckingham, UK

Gitanjali Dharmadhikari Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, mailbox 330440, 28334, 28359 Bremen, Germany

Vincenzo Di Marzo Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy

Mark D. Erion Merck & Co. Inc., 126 E Lincoln Ave, Rahway, NJ 07065, USA, mark-erion@merck.com
Mark A. Febbraio Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, P.O Box 6492, St Kilda Road Central, 8008 Victoria, Australia, mark.febbraio@bakeridi.edu.au

Baptist Gallwitz Medizinische Klinik IV, Otfried-Müller-Str. 10, 72076 Tübingen, Germany, baptist.gallwitz@med.uni-tuebingen.de

Antje Garten University of Leipzig, Hospital for Children and Adolescents, Liebigstr. 20a, 04103 Leipzig, Germany

Monique Heald Clore Laboratory, University of Buckingham, Buckingham, UK

Jin-ichi Inokuchi Division of Glycopathology and CREST, Japan Science and Technology Agency, Institute of Molecular Membranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, komatsushima, Aoba-ku, Sendai 981-8558, Miyagi Japan, jin@tohoku-pharm.ac.jp

Wieland Kiess University of Leipzig, Hospital for Children and Adolescents, Liebigstr. 20a, 04103 Leipzig, Germany, wieland.kiess@medizin.uni-leipzig.de

Rolf K.H. Kinne Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany

Antje Körner University of Leipzig, Hospital for Children and Adolescents, Liebigstr. 20a, 04103 Leipzig, Germany

Jürgen Kratzsch University of Leipzig, Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Paul-List-Str.13a, 04103 Leipzig, Germany

Kathrin Maedler Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, mailbox 330440, 28334, 28359 Bremen, Germany, kmaedler@uni-bremen.de

Vance B. Matthews Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, P.O Box 6492, St Kilda Road Central, 8008 Victoria, Australia

Raphael Mechoulam Medicinal Chemistry and Natural Products Department, Medical Faculty, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel

Paula I. Moreira Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal, pismoreira@gmail.com
Catarina R. Oliveira Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal, catarina.n.oliveira@gmail.com

Stefanie Petzold University of Leipzig, Hospital for Children and Adolescents, Liebigstr. 20a, 04103 Leipzig, Germany

Fabiana Piscitelli Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli (NA), Italy

Scott C. Potter Lilly AMB, 10300 Campus Point Drive, San Diego, CA 92121, USA, pottersc@lilly.com

Desiree M. Schumann Boehringer-Ingelheim, Cardiometabolic Diseases Research, Biberach, Germany

Susanne Schuster University of Leipzig, Hospital for Children and Adolescents, Liebigstr. 20a, 04103 Leipzig, Germany

Christina Schwanstecher Molekulare Pharmakologie und Toxikologie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany

Mathias Schwanstecher Molekulare Pharmakologie und Toxikologie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany, M.Schwanstecher@tu-braunschweig.de

Joachim Størling Hagedorn Research Institute, Gentofte, Denmark

Paul D. van Poelje Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA, paul.vanpoelje@Pfizer.com

Benoit Viollet Département d'Endocrinologie Métabolisme et Cancer, Inserm U1016, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 24, rue du Faubourg Saint Jacques, 75014 Paris, France, benoit.viollet@inserm.fr.

Minghan Wang Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Mail Stop 29-1-A, Thousand Oaks, CA 91320, USA, mwang@amgen.com