Studies in Computational Intelligence, Volume 329

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 307. Anupam Shukla, Ritu Tiwari, and Rahul Kala
Towards Hybrid and Adaptive Computing, 2010
ISBN 978-3-642-14343-4

Vol. 308. Roger Nkambou, Jacqueline Bourdeau, and Riichiro Mizoguchi (Eds.)
Advances in Intelligent Tutoring Systems, 2010
ISBN 978-3-642-14362-5

Vol. 309. Isabelle Bichindaritz, Lakhmi C. Jain, Sachin Vaidya, and Ashlesha Jain (Eds.)
Computational Intelligence in Healthcare 4, 2010
ISBN 978-3-642-14460-8

Vol. 310. Dipti Srinivasan and Lakhmi C. Jain (Eds.)
Innovations in Multi-Agent Systems and Applications – I, 2010
ISBN 978-3-642-14434-9

Vol. 311. Juan D. Velásquez and Lakhmi C. Jain (Eds.)
Advanced Techniques in Web Intelligence, 2010
ISBN 978-3-642-14460-8

Vol. 312. Patricia Melin, Janusz Kacprzyk, and Witold Pedrycz (Eds.)
Soft Computing for Recognition based on Biometrics, 2010
ISBN 978-3-642-15110-1

Vol. 313. Imre J. Rudas, János Fodor, and Janusz Kacprzyk (Eds.)
Computational Intelligence in Engineering, 2010
ISBN 978-3-642-15219-1

Vol. 314. Lorenzo Magnani, Walter Carnielli, and Claudio Pirzi (Eds.)
Model-Based Reasoning in Science and Technology, 2010
ISBN 978-3-642-15222-1

Vol. 315. Mohammad Essaaidi, Michele Malgeri, and Costin Badica (Eds.)
Intelligent Distributed Computing IV, 2010
ISBN 978-3-642-15210-8

Vol. 316. Philipp Wolfrum
Information Routing, Correspondence Finding, and Object Recognition in the Brain, 2010
ISBN 978-3-642-15253-5

Vol. 317. Roger Lee (Ed.)
Computer and Information Science 2010
ISBN 978-3-642-15404-1

Vol. 318. Oscar Castillo, Janusz Kacprzyk, and Witold Pedrycz (Eds.)
Soft Computing for Intelligent Control and Mobile Robotics, 2010
ISBN 978-3-642-15533-8

Vol. 319. Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima, Tokuro Matsuo, and Hirofumi Yamaki (Eds.)
Innovations in Agent-Based Complex Automated Negotiations, 2010
ISBN 978-3-642-15611-3

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)
Fusion Methods for Unsupervised Learning Ensembles, 2010
ISBN 978-3-642-16204-6

Vol. 323. Yingxu Wang, Da Zhang, and Witold Kinsner (Eds.)
Advances in Cognitive Informatics, 2010
ISBN 978-3-642-16082-0

Vol. 324. Alessandro Soro, Vargiu Eloisa, Giuliano Armano, and Gavino Paddeu (Eds.)
Information Retrieval and Mining in Distributed Environments, 2010
ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)
Advances in Practical Multi-Agent Systems, 2010
ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in Healthcare 5, 2010
ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and Ewa Napieralska-Juszczak (Eds.)
Computational Methods for the Innovative Design of Electrical Devices, 2010
ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)
Nonlinear Dynamics in Human Behavior, 2010
ISBN 978-3-642-16261-9

Vol. 329. Santi Caballe, Fatos Xhafa, and Ajith Abraham (Eds.)
Intelligent Networking, Collaborative Systems and Applications, 2010
ISBN 978-3-642-16792-8
Foreword

For the last fifty years the most, if not all, computers in the world have been built based on the von Neumann model, which in turn was inspired by theoretical model proposed by Alan Turing early in the twentieth century. A Turing machine is the most famous theoretical model of computation that can be used to study a wide range of algorithmic styles.

The von Neumann model has been used to build computers with great success. It has also been extended to the development of the early supercomputers and we can also see its influence on the design of some of the high performance computers of today. However, the principles espoused by the von Neumann model are not adequate for solving many of the problems that have great theoretical and practical importance. In general, a von Neumann model is required to execute a precise algorithm that can manipulate accurate data. In many problems such conditions cannot be met. For example, in many cases accurate data is not available or a “fixed” or “static” algorithm cannot capture the complexity of the problem under study.

The current volume Intelligent Networking, Collaborative Systems and Applications is an excellent demonstration of how far we have come from the days of von Neumann. The richness and variety of problem domains and solution methodologies that this volume demonstrates are truly remarkable. Most importantly, this volume shows how the process of computation today has changed to become more distributed in nature. For example, this volume explores this by investigating in thorough fashion a number of important topics:

- Intelligent networking for virtual organizations and campuses
- Intelligent networking for social networks
- Intelligent collaborative systems for work and learning
- Security, organization, management and autonomic computing for intelligent networking and collaborative systems
- Grid and P2P distributed infrastructure for intelligent networking and collaborative systems
- Wireless and sensor systems for intelligent networking and collaborative systems
- Data mining and knowledge management for intelligent networking and collaborative systems

One can notice that in the above topics that apart from the distributed nature of computation there is a great requirement that the different components of a distributed system need to collaborate and work in unison in order for the whole
system to function properly. Another keyword that is quite prominent in this volume is that of intelligence. As the complexity of today’s systems increases the need to inject more intelligence in their design and operation becomes quite essential for the long term health of these systems. Some of the popular approaches in making complex systems more intelligent are through the use of nature- and bio-inspired techniques. Some of these techniques are now commonplace and have been accepted by the wider scientific community, such as artificial life techniques. These techniques are widely used to solve a variety of optimization problems, where they tend to excel in situations when the knowledge space is ambiguous or incomplete which is quite common in many real-world applications.

The editors of this volume bring together a number of researchers who explore the new developments and future directions of their respective fields. The list of topics that is explored here is by no means exhaustive but most of the conclusions provided here could be extended to the other research fields that are not covered here. I also hope that the topics covered will get the readers to think of the implications of such new ideas on the developments in their respective fields. The publication of Intelligent Networking, Collaborative Systems and Applications will be an important addition to the literature on this emerging topic.

Albert Y. Zomaya
The University of Sydney, Australia
Preface

Introduction

With the fast development of the Internet, we are experiencing a shift from the traditional sharing of information and applications as the main purpose of the Web to an emergent paradigm, which locates people at the very center of networks and exploits the value of people's connections and relations. Web 2.0 has come to play a major role in this context by enabling a new generation of social networks and web-based communities and dramatically changing the way we use and interact with the Web. Social network analysis is also a rapidly growing field to investigate the dynamics and structure of intelligent Web-based networking and collaborative systems.

Virtual campuses and organizations strongly leverage intelligent networking and collaborative systems by a great variety of formal and informal electronic relations, such as business-to-business, peer-to-peer and many types of online collaborative learning interactions. This has resulted in entangled systems that need to be managed efficiently and in an autonomous way. In addition, latest and powerful technologies based on Grid and Wireless infrastructure as well as Cloud computing are currently enhancing collaborative and networking applications a great deal but also facing new issues and challenges. Well-known social networks lack of knowledge management and adaptive solutions and the information shared among peers is rather static. Virtual communities of practice also provide poorly interactive solutions and lack of full support for organization, management, mobility and security.

The ultimate aim of this book is to stimulate research that leads to the creation of responsive environments for networking and, at longer-term, the development of adaptive, secure, mobile, and intuitive intelligent systems for collaborative work and learning.

This book follows the International Conference on Intelligent Networking and Collaborative Systems (INCoS 2009), held on November 4-6, 2009 at the Open University of Catalonia, Barcelona, Spain (http://www.uoc.edu/symposia/incos2009).

Main Contributions of This Book

This book covers the latest advances in intelligent networking and collaborative systems that lead to gain competitive advantages in business and academia scenarios.
Overall, the book contributes with the following:

- **Social network** analysis is a rapidly growing field to investigate the dynamics and structure of intelligent Web-based networking and collaborative systems. The book provides knowledge management and adaptive solutions to enhance the information shared among peers in well-known social networks.

- **Virtual organizations** strongly leverage intelligent networking and collaborative systems by a great variety of formal and informal electronic relations, such as business-to-business, peer-to-peer and many types of online collaborative interactions. The book proposes solutions for the resulting entangled systems that need to be managed efficiently and in an autonomous way.

- **Emerging powerful infrastructures based on Grid, Cloud and Wireless technologies** are currently enhancing collaborative and networking applications a great deal but also facing new issues and challenges, some of them are addressed in the book. Also, the book provides solutions to virtual communities of practice that lack of full support for organization, management, mobility and security.

- **Security and resilience** are important and critical issues in networking and collaborative systems that the book covers extensively.

Organization of the Book

The 13 chapters of this book are organized as follows:

I. **Intelligent Collaborative Systems and Applications**

Chapter 1: Wikipedia as a Source of Ontological Knowledge: State of the Art and Application

This chapter motivates that Wikipedia can be used as a source of knowledge for creating semantic enabled applications, and consists of two parts. First, we provide an overview over different research fields which attempt to extract knowledge encoded by humans inside Wikipedia. The extracted knowledge can then be used for creating a new generation of intelligent applications based on the collaborative character of Wikipedia, rather than on domain ontologies which require the intervention of knowledge engineers and domain experts. Second, as a proof of concept, we describe an application whose intelligent behavior is achieved by using Wikipedia knowledge for automatic annotation and representation of multimedia presentations.

Chapter 2: Toward a Methodology of Collaborative Modeling and Simulation of Complex Systems

Complex Systems Modeling and simulation are activities where collaboration between researchers with complementary points of view, skills and knowledge is well established and constitutes the usual working way rather than an exception. To manage difficulties of traditional modeling projects (how to translate informal knowledge into implemented software, which intermediate
model needed to be created...), lots of methodologies have been proposed. But to be well adapted to the particular case of complex systems, they need to go further. In this chapter, the aim is to provide a complete methodology taking into account the collaborative aspect of the Complex Systems Modeling and Simulation task. Then, collaboration between various participants is described and a minimal set of tools necessary for a modeling platform is proposed.

Chapter 3: Role-Based Collaboration Extended to Pervasive Computing

Computer Supported Collaborative Work (CSCW) has been a hot point in researches for some decades. Recent progresses in software and hardware technologies have allowed the use of more and more advanced applications and services. It also brought computing capabilities to mobile devices such as smartphones and laptops. This has led to an extensive use of computers to collaborate in some unexpected manners. Among the abundance of models designed to support collaboration some are particularly promising: tasks models, roles models and collaboration’s context models. Simultaneously the Pervasive Computing paradigm has emerged from recent researches. In this chapter, a model to integrate the pervasive computing perspective into the collaborative work is proposed by the use of an original model: the PCSCW model (Pervasive Computing Supported Collaborative Work). This model relies on some robust concepts: a role model inspired by some recent works, a classical task model coupled to a precise resource model and the development of device collaboration rules. The resulting model provides a seamless and transparent cooperation of devices to simplify and facilitate the collaboration of humans.

II. Intelligent Networking and Resource Management

Chapter 4: Evolving Schedules of Independent Tasks by Differential Evolution

Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous distributed computing systems and it is also an appealing NP-complete problem. There is a number of heuristic and meta-heuristic algorithms that were tailored to deal with scheduling of independent jobs. In this chapter, the authors investigate the efficiency of differential evolution for the scheduling problem and compare it with existing approaches. The analysis shows that the differential evolution is a promising method that can compete with well-established scheduling algorithms.

Chapter 5: A Lightweight Approach to Distributed Network Diagnosis under Uncertainty

Management applications have not kept the fast changing pace of networks and services and still rely on centralized and deterministic approaches. Besides, distribution and uncertainty are intrinsic issues in the telecommunications environment. Therefore, new approaches to network and service management have to be explored that can deal with these challenges. In this chapter, a lightweight collaborative framework for network trouble-shooting
is presented. This framework is based on multi-agent platforms and probabilistic techniques and it has been prototyped and applied to three different network environments. A summary of the most relevant results obtained and conclusions reached is also provided.

Chapter 6: A Multi-lane Double Auction for Economic-Based Service Management in the Cloud

Economic models have shown their suitability to allocate resources efficiently, considering an unbalanced supply and demand. As the use of the Cloud is extending, a numerous set of distributed resource allocation frameworks have been developed to attain efficient resource management while keeping the scalability of the infrastructure. However, those frameworks make use of either simple double auction mechanisms or complex approximations to the NP-complete problem of the combinatorial auction. The problem of those mechanisms is that of its generality, that is, they have not been specially designed for the trading of time-leased computational resources. In this chapter, the authors present a novel variant of the double auction that has been specially adapted to trade time-differentiated items as Cloud services can be considered. The chapter presents the data structures, algorithms and architecture of the economic mechanism as well as it presents the evaluation of the mechanism through simulation. Simulated results are compared with the main double auction implementations found in the literature. The chapter constitutes an approach to improve efficiency of service management and allocation in the Cloud from the point of view of the economic model and not from architectural aspects addressed by most of the contributions found in the literature.

Chapter 7: Decentralized Self-optimization in Shared Resource Pools

Resource pools are collections of computational resources which can be shared by different applications. The goal is to accommodate the workload of each application, by splitting the total amount of resources in the pool among them. In this sense, utility functions have been pointed as the main tool for enabling self-optimizing behavior in such pools. The ultimate goal is to allow resources from the pool to be split among applications, in a way that the best outcome is obtained. Whereas different solutions in this context exist, it has been found that none of them tackles the problem we deal with in a total decentralized way. To this end, in this chapter, the authors present a decentralized and self-optimizing approach for resource management in shared resource pools.

Chapter 8: Monitoring and Performance Analysis of Workflow Applications in Large Scale Distributed Systems

The chapter presents the design, implementation and testing of the monitoring solution created for integration with a workflow execution platform. The monitoring solution is a key for modeling and performance analysis of Grid systems considered as a networking and collaborative systems. The
monitoring solution constantly checks the system evolution in order to facilitate performance tuning and improvement. The novelty of the work presented in this chapter is the improvement of distributed application obtained using the real-time information to compute estimates of runtime which are used to improve scheduling. Monitoring is accomplished at application level, by monitoring each job from each workflow and at system level, by aggregating state information from each processing node. The scheduling performance in distributed systems can be improved through better runtime estimation and the error detection can automatically detect several types of errors.

Chapter 9: Scaling Relations of Data Gathering Times in an Epidemically Data Sharing System with Opportunistically Communicating Mobile Sensors

In this chapter, the authors investigate data gathering time in an epidemically data sharing system with opportunistically communicating mobile sensors. A stochastic process of the system is proposed where N sensors moved randomly and independently on the d-dimensional square grid with size L and when meeting opportunistically at the same position on the grid, the sensors shared and stored all possessing data epidemically. The authors focus on three data gathering times, that is, latency times that (1) at least one sensor collects all (2) every sensor collects at least one common data (3) every sensor collects all. As a result, in general, the complementary cumulative distribution functions of these times decay exponentially in their asymptotic regions. A decay speed is also examined, which is also called relaxation time, of the exponential decay numerically with varying d, L, and N. Finally, scaling relations of the relaxation times are shown. The authors conclude that these relations are useful for estimating the minimum required number of sensors to collect data within a certain short period of time when the sensors are densely covered on the system.

III. Intelligent Secure and Resilient Networking Systems

Chapter 10: Multilaterally Secure Ubiquitous Auditing

This chapter addresses tracking information of individuals as a useful input to many Ubiquitous Computing (UbiComp) applications. As an example, a smart emergency management application: once mobile first responders are continuously tracked, a precise and safe coordination of rescue missions is possible, and also mission logs can be created for audit purposes. However, continuously tracking users and storing the data for later use is often in conflict with individual privacy preferences. This may ultimately lead to the non-acceptance and rejection of these new technologies by their users. In order to reconcile privacy and accountability requirements in location tracking systems, the authors introduce and evaluate the approach of using auditing mechanisms on two levels. They illustrate that, by employing carefully designed cryptographic mechanisms for selective pseudonym linkability based on efficient techniques of secure multiparty computation, it is possible to
balance the conflicting interests to a certain extent. The work reported in this chapter, motivated by and applied to smart emergency management systems, is a step towards the realization of multilaterally secure and thus multilaterally acceptable UbiComp systems supporting collaborative work.

Chapter 11: Intrusion Detection in Multi-Agent Systems

In this chapter, the authors present an adaptive intrusion detection system for distributed environments dedicated to developing agent-based applications. To this end, they propose a scalable, flexible and reactive agent based architecture and a lightweight genetic algorithm that recognizes the intruders in an adaptive and automatic way. The approach is based on monitoring the level of physical resources usage and implies the detection of those agents that manifest an abusive behavior. The authors finally enhance Jade with their intrusion detection system and the results obtained in different scenario cases are analyzed and illustrated.

Chapter 12: A Round-Based Cover Traffic Algorithm for Anonymity Systems

Anonymity is becoming more of an issue with the growing importance of networking. Examples include protecting privacy of Internet users or electronic voting. Several network anonymity systems have been deployed, the most popular of them is probably Tor. However, those systems do not protect against attackers who observe or modify the traffic to match sources with destinations. The protection method against such attacks by adding additional traffic is not usually implemented because of the high cost. In this chapter, the authors propose a new cover traffic generation algorithm for flow-based anonymity systems and compare it with other algorithms from the literature. The algorithm is based on four ideas: fixed time rounds, flow classification with different protection methods for different classes, protection depending on the potential cost and finally, use of history. In the chapter, the authors evaluate their algorithm both in theory and in practice. The analysis shows that this solution provides sufficient protection while reducing overhead traffic compared to the algorithms known from the literature.

Chapter 13: Fault Recovery Performance Analysis of Functionally Distributed Transport Networking System

This chapter proposes a fault recovery method in functionally distributed transport networking that separates the control-plane processing part (control element, CE) from the forwarding-plane processing part (forwarding element, FE) of the router. In this architecture, one path-control process in the CE consolidates and processes the path computations and the path settings for multiple FEs. This leads to reduction in the path-control complexity and efficient operation of large scale networks. On the other hand, it is absolutely critical to ensure the high reliability of the CE. The authors analyze the performance of the proposed fault recovery method by using software implementation.
Targeted Audience and Last Words

We expect that current complex virtual organizations and communities of practice strongly leverage the extensive research produced in this book, being the book’s targeted audience, including industry and companies involved in intensive networking and collaborative systems. In particular, those organizations exploiting latest and powerful technologies based on Grid and Wireless infrastructures as well as Cloud computing can find many solutions in the book to alleviate complex issues and challenges arisen in this context, in terms of collaborative applications, resource management, mobility, security and system resilience.

Finally, academic researchers, professionals and practitioners in the field can also be inspired and put in practice the ideas and experiences proposed in the book in order to evaluate them for their specific research and work.

We hope that the readers find this book fruitful and help accomplish their goals. Enjoy the reading!

Acknowledgements

The editors of this book wish to thank the referees who have carefully reviewed the chapters and gave useful suggestions and feedback to the authors. We hope that the readers will find this book useful in their research. We gratefully acknowledge the support and encouragement received from Prof. Janusz Kacprzyk, the editor in chief of Springer series “Studies in Computational Intelligence”, and Ms Heather King for the great assistance during the editorial work.

The editors also acknowledge that their research has been partially supported by the Spanish MICINN project “INCoS2009” (Ref: TIN2009-07489-E) and the IN3-UOC HAROSA Knowledge Community Program (http://dpcs.uoc.edu). Fatos Xhafa’s work is partially done at Birkbeck, University of London, on Leave from Technical University of Catalonia (Barcelona, Spain). His research is supported by a grant from the General Secretariat of Universities of the Ministry of Education, Spain.

July 2010

Barcelona, Spain

Santi Caballé, Open University of Catalonia
Fatos Xhafa, Technical University of Catalonia
Ajith Abraham, Machine Intelligence Research Labs
I. Intelligent Collaborative Systems and Applications

Wikipedia as a Source of Ontological Knowledge: State of the Art and Application ... 1
 Angela Fogarolli

Toward a Methodology of Collaborative Modeling and Simulation of Complex Systems ... 27
 Benoit Gaudou, Nicolas Marilleau, Tuong Vinh Ho

Role-Based Collaboration Extended to Pervasive Computing .. 55
 Kahina Hamadache, Luigi Lancieri

II. Intelligent Networking and Resource Management

Evolving Schedules of Independent Tasks by Differential Evolution .. 79
 Pavel Krömer, Václav Snášel, Jan Platoš, Ajith Abraham, Hesam Ezakian

A Lightweight Approach to Distributed Network Diagnosis under Uncertainty ... 95
 Javier García-Algarra, Pablo Arozarena, Sergio García-Gómez, Alvaro Carrera-Barroso, Raquel Toribio-Sardón

A Multi-lane Double Auction for Economic-Based Service Management in the Cloud 117
 Xavier Vilajosana, Daniel Lázaro, Angel. A. Juan, Joan Manuel Marquès
Decentralized Self-optimization in Shared Resource Pools........ 149
Emerson Loureiro, Paddy Nixon, Simon Dobson

Monitoring and Performance Analysis of Workflow Applications in Large Scale Distributed Systems............. 171
Dragos Sbirlea, Alina Simion, Florin Pop, Valentin Cristea

Scaling Relations of Data Gathering Times in an Epidemically Data Sharing System with Opportunistically Communicating Mobile Sensors.............................. 193
Akihiro Fujihara, Hiroyoshi Miwa

III. Intelligent Secure and Resilient Networking Systems

Multilaterally Secure Ubiquitous Auditing....................... 207
Stefan G. Weber, Max Mühlhäuser

Intrusion Detection in Multi-Agent Systems.................... 235
Bogdan Ghit, Florin Pop, Valentin Cristea

A Round-Based Cover Traffic Algorithm for Anonymity Systems... 257
Marta Rybczyńska

Fault Recovery Performance Analysis of Functionally Distributed Transport Networking System............. 281
Kentaro Ogawa, Kenichi Higuchi, Shinichiro Chaki

Author Index.. 297
List of Contributors

Ajith Abraham
Machine Intelligence Research Labs (MIR Labs)
Scientific Network for Innovation and Research Excellence
P.O. Box 2259
Auburn, Washington, USA
ajith.abraham@ieee.org

Pablo Arozarena
Telefónica Investigación y Desarrollo, Emilio Vargas 6
28043 Madrid, Spain
pabloa@tid.es

Santi Caballé
Dept. of Computer Science
Open University of Catalonia
Rambla Poblenou, 156
08018 Barcelona
Barcelona, Spain
scaballe@uoc.edu

Alvaro Carrera-Barroso
Telefónica Investigación y Desarrollo, Emilio Vargas 6
28043 Madrid, Spain
alvaroc@tid.es

Shinichiro Chaki
Network Service Systems Laboratories, NTT Corporation,
3-9-11, Midori-cho,
Musashino-shi Tokyo, 180-8585
Japan
chaki.shinichiro@lab.ntt.co.jp

Valentin Cristea
Strada Costache Marinescu No. 7, sector 1
Bucharest, Romania
valentin.cristea@cs.pub.ro

Simon Dobson
School of Computer Science
University of St Andrews
St Andrews KY16 9SX,
United Kingdom
sd@cs.st-andrews.ac.uk

Angela Fogarolli
University of Trento
Via Sommarive 14
38123 Trento, Italy
fogarolli@okkam.it

Akihiro Fujihara
Graduate School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen Sanda Hyogo 669-1337,
Japan
afujihara@kwansei.ac.jp

Javier García-Algarra
Telefónica Investigación y Desarrollo, Emilio Vargas 6
28043 Madrid, Spain
algarra@tid.es

Sergio García-Gómez
Telefónica Investigación y Desarrollo
Parque Tecnológico de Boecillo
47151 Boecillo (Valladolid), Spain
serrgg@tid.es

Benoït Gaudou
UMI 209 UMMISCO, Institut de la Francophonie pour l’Informatique (IFI)
42, Ta Quang Buu, Ha Noi, Viet Nam
benoit.gaudou@alumni.enseeiht.fr

Bogdan Ghit
Strada Nerva Traian No. 12, Bl. M37, Sc. 4, Et. 4, Ap. 104, sector 3
Bucharest 031042, Romania
bogdan.ghit@cti.pub.ro

Kahina Hamadache
Orange Labs
42 Rue des Coutures
14066 Caen, France
kahina.hamadache@orange-ftgroup.com

Kenichi Higuchi
Network Service Systems Laboratories, NTT Corporation,
3-9-11, Midori-cho, Musashino-shi
Tokyo, 180-8585 Japan
higuchi.kenichi@lab.ntt.co.jp

Hesam Izakian
Department of Computer Engineering, University of Isfahan, Hezar Jerib Avenue, Isfahan, Iran
hesam.izakian@gmail.com

Angel A. Juan Perez
Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya

Rambla Poblenou, 156, 08018 Barcelona
ajuanp@uoc.edu

Pavel Krömer
Department of Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
pavel.kromer@vsb.cz

Luigi Lancieri
Laboratoire d'informatique fondamentale de Lille (LIFL) Bat. M3 Université de Lille 1
59655 Villeneuve d'ascq Cedex, France
luigi.lancieri@univ-lille1.fr

Daniel Lázaro Iglesias
Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya
Rambla Poblenou, 156, 08018 Barcelona
dlazaroi@uoc.edu

Emerson Loureiro
Systems Research Group
School of Computer Science and Informatics
University College Dublín
Dublín 4, Ireland
emerson.loureiro@ucd.ie

Nicolas Marilleau
UMI 209 UMMISCO, Institut de Recherche pour le développement (IRD)
32, avenue Henri Varagnat, 93143 Bondy Cedex, Bondy, France
nicolas.marilleau@ird.fr
Joan Manuel Marques i Puig
Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya
Rambla Poblenou, 156, 08018 Barcelona
jmarquesp@uoc.edu

Hiroyoshi Miwa
Graduate School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen Sanda Hyogo 669-1337, Japan
miwa@kwansei.ac.jp

Max Mühlhäuser
TU Darmstadt - FB 20
FG Telekooperation
Hochschulstraße 10
D-64289 Darmstadt, Germany
max@informatik.tu-darmstadt.de

Paddy Nixon
Systems Research Group
School of Computer Science and Informatics
University College Dublín
Dublín 4, Ireland
paddy.nixon@ucd.ie

Kentaro Ogawa
Network Service Systems Laboratories, NTT Corporation,
3-9-11, Midori-cho, Musashino-shi Tokyo, 180-8585 Japan
ogawa.kentaro@lab.ntt.co.jp

Jan Platoš
Department of Computer Science,
VŠB - Technical University of Ostrava, 17
Listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
jan.platos@vsb.cz

Florin Pop
Bucharest 021637, Romania
florin.pop@cs.pub.ro

Marta Rybczynska
Faculty of Electronics and Information Technology, Warsaw University of Technology
Nowowiejska 15/19
00-665 Warszawa, Poland
marta@rybczynska.net

Dragos Sbarlea
Str. Capalna No. 10, Bl. 15A, Sc. 3, Et.2, Ap. 43, sector 1
Bucharest, Romania
dragos@rice.edu

Alina Simion
Aleea Stanila No. 3, Bl. H9, Sc. 2, Et.1, Ap. 27, sector 3
Bucharest, Romania
alina.gabriela.simion@rice.edu

Václav Snášel
Department of Computer Science,
VŠB - Technical University of Ostrava, 17
Listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
vaclav.snasel@vsb.cz

Raquel Toribio-Sardón
Telefónica Investigación y Desarrollo, Emilio Vargas 6
28043 Madrid, Spain
raquel.t@tid.es

Xavier Vilajosana Guillen
Estudis d’Informàtica, Multimèdia i Telecomunicació
Universitat Oberta de Catalunya
Rambla Poblenou, 156, 08018 Barcelona
xvilajosana@uoc.edu
Tuong Vinh Ho
UMI 209 UMMISCO,
Institut de la Francophonie
pour l’Informatique (IFI)
42, Ta Quang Buu, Ha Noi,
Viet Nam
ho.tuong.vinh@auf.org

Stefan G. Weber
TU Darmstadt - FB 20
FG Telekooperation
Hochschulstraße 10

Fatos Xhafa
Dept. of Languages and
Information Systems
Technical University of
Catalonia
Campus Nord. Ed. Omega
C/ Jordi Girona, 1-3
08034 Barcelona, Spain
fatos@lsi.upc.edu