Prostate Cancer Imaging

Computer-Aided Diagnosis, Prognosis, and Intervention

International Workshop
Held in Conjunction with MICCAI 2010
Beijing, China, September 24, 2010
Proceedings

Springer
Preface

Prostatic adenocarcinoma (CAP) is the second most common malignancy with an estimated 190,000 new cases in the USA in 2010 (Source: American Cancer Society), and is the most frequently diagnosed cancer among men. If CAP is caught early, men have a high, five-year survival rate. Unfortunately there is no standardized image-based screening protocol for early detection of CAP (unlike for breast cancers). In the USA high levels of prostate-specific antigen (PSA) warrant a trans-rectal ultrasound (TRUS) biopsy to enable histologic confirmation of presence or absence of CAP.

With recent rapid developments in multi-parametric radiological imaging techniques (spectroscopy, dynamic contrast enhanced MR imaging, PET, RF ultrasound), some of these functional and metabolic imaging modalities are allowing for definition of high resolution, multi-modal signatures for prostate cancer in vivo. Distinct computational and technological challenges for multi-modal data registration and classification still remain in leveraging this multi-parametric data for directing therapy and optimizing biopsy. Additionally, with the recent advent of whole slide digital scanners, digitized histopathology has become amenable to computerized image analysis. While it is known that outcome of prostate cancer (prognosis) is highly correlated with Gleason grade, pathologists often have difficulty in distinguishing between intermediate Gleason grades from histopathology. Development of computerized image analysis methods for automated Gleason grading and predicting outcome on histopathology have to confront the significant computational challenges associated with working these very large digitized images.

This workshop aims to bring together clinicians, computer scientists, and industrial vendors of prostate cancer imaging equipments to discuss (1) the clinical challenges and open problems, (2) present state-of-the-art research in quantitative image analysis and visualization methods for prostate cancer detection, diagnosis, and prognosis from multi-parametric imaging and digitized histopathology, and (3) advances in image guided interventions for prostate cancer therapy and biopsy. The workshop aims to acquaint clinicians, urologists, radiologists, oncologists, and pathologists on the role that quantitative and automated image analysis can play in prostate cancer diagnosis, prognosis, and treatment and also for imaging scientists to understand the most pressing clinical problems.

This year’s workshop hosted two invited talks. The first was on challenges in histopathological imaging and analysis of prostate cancer by Dr. John Tomaszewski, MD, Chair, Department of Pathology, Hospital at the University of Pennsylvania, Philadelphia, PA. The second invited talk was given by Dr. Jurgen J. Fütterer, MD, Dept of Radiology, Radboud University Nijmegen Medical Centre, The Netherlands, who will be speaking about the role of MRI in prostate cancer detection and diagnosis.

A total of 13 papers were received in response to the call for papers for the workshop. Each of the 13 papers underwent a rigorous, double-blinded peer-reviewed evaluation, with each paper being reviewed by a minimum of 2 reviewers. Based on
the critiques and evaluations, 11 of the 13 papers were accepted for presentation in the workshop. An additional two invited papers, from two prominent groups working in the areas of prostate cancer diagnosis and prognosis were also received. The papers cover a range of diverse themes, including (a) prostate segmentation, (b) multi-modal prostate registration, and (c) computer-aided diagnosis and classification of prostate cancer. The clinical areas covered included (1) radiology, (2) radiation oncology, (3) digital pathology, and (4) image guided interventions.

July 2010

Anant Madabhushi
Jason Dowling
Pingkun Yan
Aaron Fenster
Purang Abolmaesumi
Nobuhiko Hata
Organization

Workshop Organization

Organizers

Anant Madabhushi Rutgers University
Jason Dowling CSIRO Australian e-Health Research Centre
Pingkun Yan Phillips Research North America
Aaron Fenster Robarts Research Institute
Purang Abolmaesumi University of British Columbia
Nobuhiko Hata Brigham and Womens Hospital

Program Committee

Olivier Salvado CSIRO Australian e-Health Research Centre
Richard Levinson CRI
Lance Ladic Siemens Corporate Research
Ali Khamene Siemens Corporate Research
Mark Rosen Hospital at the University of Pennsylvania
Dinggang Shen University of North Carolina, Chapel Hill
Gabor Fichtinger Queens University, Kingston, Ontario
Ernest Feleppa Riverside Research Institute
Ameet Jain Phillips Research North America

Sponsorship

The organizers are grateful to Springer for agreeing to publish the proceedings of the workshop in Springer’s Lecture Notes in Computer Science (LNCS). The organizers are also thankful to CSIRO Australian e-Health Research Centre and Bioimagene Inc. for sponsoring the workshop. Special thanks also to the MICCAI 2010 workshop chairs (Bram van Ginneken, Yong Fan, Polina Golland, and Tim Salcudean) and to the paper authors for having submitted high quality papers.
Table of Contents

Prostate Cancer MR Imaging ... 1
 Jurgen J. Fütterer

Computer Aided Detection of Prostate Cancer Using T2, DWI and DCE MRI: Methods and Clinical Applications 4
 Henkjan Huisman, Pieter Vos, Geert Litjens, Thomas Hambrock, and Jelle Barentsz

Prostate Cancer Segmentation Using Multispectral Random Walks 15
 Yusuf Artan, Masoom A. Haider, and Imam Samil Yetik

Automatic MRI Atlas-Based External Beam Radiation Therapy Treatment Planning for Prostate Cancer 25
 Jason Dowling, Jonathan Lambert, Joel Parker, Peter B. Greer, Jurgen Fripp, James Denham, Sébastien Ourselin, and Olivier Salvado

An Efficient Inverse-Consistent Diffeomorphic Image Registration Method for Prostate Adaptive Radiotherapy 34
 Xiao Han, Lyndon S. Hibbard, and Virgil Willcut

Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy 42
 Oscar Acosta, Jason Dowling, Guillaume Cazoulat, Antoine Simon, Olivier Salvado, Renaud de Crevoisier, and Pascal Haigron

Realtime TRUS/MRI Fusion Targeted-Biopsy for Prostate Cancer: A Clinical Demonstration of Increased Positive Biopsy Rates 52
 Samuel Kadoury, Pingkun Yan, Sheng Xu, Neil Glossop, Peter Choyke, Baris Turkbey, Peter Pinto, Bradford J. Wood, and Jochen Kruecker

HistoCAD: Machine Facilitated Quantitative Histoimaging with Computer Assisted Diagnosis .. 63
 John E. Tomaszewski

Registration of In Vivo Prostate Magnetic Resonance Images to Digital Histopathology Images ... 66
 A.D. Ward, C. Crukley, C. McKenzie, J. Montreuil, E. Gibson, J.A. Gomez, M. Moussa, G. Bauman, and A. Fenster
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Throughput Prostate Cancer Gland Detection, Segmentation, and Classification from Digitized Needle Core Biopsies</td>
<td>77</td>
</tr>
<tr>
<td>Jun Xu, Rachel Sparks, Andrew Janowczyk, John E. Tomaszewski, Michael D. Feldman, and Anant Madabhushi</td>
<td></td>
</tr>
<tr>
<td>Automated Analysis of PIN-4 Stained Prostate Needle Biopsies</td>
<td>89</td>
</tr>
<tr>
<td>Bikash Sabata, Boris Babenko, Robert Monroe, and Chukka Srinivas</td>
<td></td>
</tr>
<tr>
<td>Augmented Reality Image Guidance in Minimally Invasive Prostatectomy</td>
<td>101</td>
</tr>
<tr>
<td>Texture Guided Active Appearance Model Propagation for Prostate Segmentation</td>
<td>111</td>
</tr>
<tr>
<td>Soumya Ghose, Arnau Oliver, Robert Martí, Xavier Lladó, Jordi Freixenet, Joan C. Vilanova, and Fabrice Meriaudeau</td>
<td></td>
</tr>
<tr>
<td>Novel Stochastic Framework for Accurate Segmentation of Prostate in Dynamic Contrast Enhanced MRI</td>
<td>121</td>
</tr>
<tr>
<td>Ahmad Firjany, Ahmed Elnakib, Ayman El-Baz, Georgy Gimel’farb, Mohamed Abo El-Ghar, and Adel Elmagharby</td>
<td></td>
</tr>
<tr>
<td>Boundary Delineation in Prostate Imaging Using Active Contour Segmentation Method with Interactively Defined Object Regions</td>
<td>131</td>
</tr>
<tr>
<td>Yan Zhang, Bogdan J. Matuszewski, Aymeric Histace, Frédéric Precioso, Judith Kilgallon, and Christopher Moore</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>143</td>
</tr>
</tbody>
</table>