Editorial Board

David Hutchison
 Lancaster University, UK

Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
 University of Surrey, Guildford, UK

Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA

Alfred Kobsa
 University of California, Irvine, CA, USA

Friedemann Mattern
 (ETH Zurich, Switzerland)

John C. Mitchell
 Stanford University, CA, USA

Moni Naor
 Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
 University of Bern, Switzerland

C. Pandu Rangan
 Indian Institute of Technology, Madras, India

Bernhard Steffen
 (TU Dortmund University, Germany)

Madhu Sudan
 Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
 University of California, Los Angeles, CA, USA

Doug Tygar
 University of California, Berkeley, CA, USA

Gerhard Weikum
 Max Planck Institute for Informatics, Saarbruecken, Germany
Fei Wang Pingkun Yan Kenji Suzuki Dinggang Shen (Eds.)

Machine Learning in Medical Imaging

First International Workshop, MLMI 2010
Held in Conjunction with MICCAI 2010
Beijing, China, September 20, 2010
Proceedings

Springer
Preface

The first International Workshop on Machine Learning in Medical Imaging, MLMI 2010, was held at the China National Convention Center, Beijing, China on September 20, 2010 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2010.

Machine learning plays an essential role in the medical imaging field, including image segmentation, image registration, computer-aided diagnosis, image fusion, image-guided therapy, image annotation, and image database retrieval. With advances in medical imaging, new imaging modalities, and methodologies such as cone-beam/multi-slice CT, 3D Ultrasound, tomosynthesis, diffusion-weighted MRI, electrical impedance tomography, and diffuse optical tomography, new machine-learning algorithms/applications are demanded in the medical imaging field. Single-sample evidence provided by the patient’s imaging data is often not sufficient to provide satisfactory performance; therefore tasks in medical imaging require learning from examples to simulate a physician’s prior knowledge of the data. The MLMI 2010 is the first workshop on this topic. The workshop focuses on major trends and challenges in this area, and works to identify new techniques and their use in medical imaging. Our goal is to help advance the scientific research within the broad field of medical imaging and machine learning.

The range and level of submission for this year’s meeting was of very high quality. Authors were asked to submit full-length papers for review. A total of 38 papers were submitted to the workshop in response to the call for papers. Each of the 38 papers underwent a rigorous double-blinded peer-review process, with each paper being reviewed by at least two (typically three) external reviewers in the program committee composed of over 30 known experts in the field. Based on the reviewing scores and critics, the 23 best papers (60%) were chosen to be included in this Springer LNCS volume. The large variety of machine learning techniques necessary for and applied to medical imaging was well represented at the workshop.

We would like to thank our invited keynote speaker, Prof. Milan Sonka, Chair of the Department of Electrical and Computer Engineering at The University of Iowa, whose excellent presentation was a highlight of the workshop. We are very grateful to the Program Committee and, in particular, to all those who supported the MLMI 2010 by submitting papers and attending the meeting. We would also like to thank Philips for sponsoring the Best Paper Award of MLMI 2010.

July 2010

Fei Wang
Pingkun Yan
Kenji Suzuki
Dinggang Shen
Organization

Program Committee

Vince D. Calhoun University of New Mexico, USA
Heang-Ping Chan University of Michigan Medical Center, USA
Marleen de Bruijne University of Copenhagen, Denmark
James Duncan Yale University, USA
Alejandro Frangi Pompeu Fabra University, Spain
Joachim Hornegger Friedrich-Alexander-University of Erlangen–Nürnberg, Germany
Steve B. Jiang University of California, San Diego, USA
Xiaoyi Jiang University of Münster, Germany
Ghassan Hamarneh Simon Fraser University, Canada
Nico Karssemeijer Radboud University Nijmegen Medical Centre, The Netherlands
Shuo Li GE Healthcare, Canada
Marius Linguraru National Institutes of Health, USA
Yoshitaka Masutani University of Tokyo, Japan
Janne Nappi Harvard Medical School, USA
Mads Nielsen University of Copenhagen, Denmark
Sebastien Ourselin University College London, UK
Daniel Rueckert Imperial College London, UK
Clarisa Sanchez University Medical Center Utrecht, The Netherlands
Kuntal Sengupta MERL Research, USA
Akinobu Shimizu Tokyo Univ. Agriculture and Technology, Japan
Dave Tahmoush US Army Research Laboratory, USA
Hotaka Takizawa University of Tsukuba, Japan
Xiaodong Tao GE Global Research, USA
Georgia D. Tourassi Duke University, USA
Zhuowen Tu Univ. California, Los Angeles, USA
Bram van Ginneken Radboud University Nijmegen Medical Centre, The Netherlands
Guorong Wu University of North Carolina, Chapel Hill, USA
Jianwu Xu University of Chicago, USA
Jane You Hong Kong Polytechnic University, China
Bin Zheng University of Pittsburgh, USA
Guoyan Zheng University of Bern, Switzerland
Kevin Zhou Siemens Corporate Research, USA
Sean Zhou Siemens Medical Solutions, USA
Table of Contents

Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images .. 1
Sushil Mittal, Yefeng Zheng, Bogdan Georgescu,
Fernando Vega-Higuera, Shaohua Kevin Zhou, Peter Meer, and
Dorin Comaniciu

Automated Intervertebral Disc Detection from Low Resolution, Sparse MRI Images for the Planning of Scan Geometries 10
Xiao Dong, Huanxiang Lu, Yasuo Sakurai, Hitoshi Yamagata,
Guoyan Zheng, and Mauricio Reyes

Content-Based Medical Image Retrieval with Metric Learning via Rank Correlation .. 18
Wei Huang, Kap Luk Chan, Huiqi Li, Joo Hwee Lim,
Jiang Liu, and Tien Yin Wong

A Hyper-parameter Inference for Radon Transformed Image Reconstruction Using Bayesian Inference 26
Hayaru Shouno and Masato Okada

Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos 34
Melanie Ganz, Mads Nielsen, and Sami Brandt

Prediction of Dementia by Hippocampal Shape Analysis 42
Hakim C. Achterberg, Fedde van der Lijn, Tom den Heijer,
Aad van der Lugt, Monique M.B. Breteler, Wiro J. Niessen, and
Marleen de Bruijne

Multi-Class Sparse Bayesian Regression for Neuroimaging Data Analysis .. 50
Vincent Michel, Evelyn Eger, Christine Keribin, and
Bertrand Thirion

Appearance Normalization of Histology Slides 58
Marc Niethammer, David Borland, J.S. Marron, John Woosley, and
Nancy E. Thomas

Parallel Mean Shift for Interactive Volume Segmentation 67
Fangfang Zhou, Ying Zhao, and Kwan-Liu Ma
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Tissue Discrimination Using Magnetic Resonance Elastography</td>
<td>76</td>
</tr>
<tr>
<td>with a New Elastic Level Set Model</td>
<td></td>
</tr>
<tr>
<td>Bing Nan Li, Chee Kong Chui, Sin Heng Ong, Toshikatsu Washio,</td>
<td></td>
</tr>
<tr>
<td>Tomokazu Numano, Stephen Chang, Sudhakar Venkatesh, and</td>
<td></td>
</tr>
<tr>
<td>Etsuko Kobayashi</td>
<td></td>
</tr>
<tr>
<td>Fast and Automatic Heart Isolation in 3D CT Volumes: Optimal Shape</td>
<td>84</td>
</tr>
<tr>
<td>Initialization</td>
<td></td>
</tr>
<tr>
<td>Yefeng Zheng, Fernando Vega-Higuera, Shaohua Kevin Zhou, and</td>
<td></td>
</tr>
<tr>
<td>Dorin Comaniciu</td>
<td></td>
</tr>
<tr>
<td>Relation-Aware Spreadsheets for Multimodal Volume Segmentation</td>
<td>92</td>
</tr>
<tr>
<td>and Visualization</td>
<td></td>
</tr>
<tr>
<td>Lin Zheng, Yingcai Wu, and Kwan-Liu Ma</td>
<td></td>
</tr>
<tr>
<td>A Bayesian Learning Application to Automated Tumour Segmentation</td>
<td>100</td>
</tr>
<tr>
<td>for Tissue Microarray Analysis</td>
<td></td>
</tr>
<tr>
<td>Ching-Wei Wang</td>
<td></td>
</tr>
<tr>
<td>Generalized Sparse Classifiers for Decoding Cognitive States in fMRI</td>
<td>108</td>
</tr>
<tr>
<td>Bernard Ng, Arash Vahdat, Ghassan Hamarneh, and Rafeef Abugharbieh</td>
<td></td>
</tr>
<tr>
<td>Manifold Learning for Biomarker Discovery in MR Imaging</td>
<td>116</td>
</tr>
<tr>
<td>Robin Wolz, Paul Aljabar, Joseph V. Hajnal, and Daniel Rueckert</td>
<td></td>
</tr>
<tr>
<td>Optimal Live Cell Tracking for Cell Cycle Study Using Time-Lapse</td>
<td>124</td>
</tr>
<tr>
<td>Fluorescent Microscopy Images</td>
<td></td>
</tr>
<tr>
<td>Fuhai Li, Xiaobo Zhou, and Stephen T.C. Wong</td>
<td></td>
</tr>
<tr>
<td>Fully Automatic Joint Segmentation for Computer-Aided Diagnosis</td>
<td>132</td>
</tr>
<tr>
<td>and Planning</td>
<td></td>
</tr>
<tr>
<td>André Gooßen, Thomas Pralow, and Rolf-Rainer Grigat</td>
<td></td>
</tr>
<tr>
<td>Accurate Identification of MCI Patients via Enriched White-Matter</td>
<td>140</td>
</tr>
<tr>
<td>Connectivity Network</td>
<td></td>
</tr>
<tr>
<td>Chong-Yaw Wee, Pew-Thian Yap, Jeffery N. Browndyke,</td>
<td></td>
</tr>
<tr>
<td>Guy G. Potter, David C. Steffens, Kathleen Welsh-Bohmer,</td>
<td></td>
</tr>
<tr>
<td>Lihong Wang, and Dinggang Shen</td>
<td></td>
</tr>
<tr>
<td>Feature Extraction for fMRI-Based Human Brain Activity Recognition</td>
<td>148</td>
</tr>
<tr>
<td>Wei Bian, Jun Li, and Dacheng Tao</td>
<td></td>
</tr>
<tr>
<td>Sparse Spatio-temporal Inference of Electromagnetic Brain Sources</td>
<td>157</td>
</tr>
<tr>
<td>Carsten Stahlhut, Hagai T. Attias, David Wipf, Lars K. Hansen, and</td>
<td></td>
</tr>
<tr>
<td>Srikantan S. Nagarajan</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis</td>
<td>165</td>
</tr>
<tr>
<td>Yiming Xiao, Mohak Shah, Simon Francis, Douglas L. Arnold, Tal Arbel, and D. Louis Collins</td>
<td></td>
</tr>
<tr>
<td>Preliminary Study on Appearance-Based Detection of Anatomical Point Landmarks in Body Trunk CT Images</td>
<td>174</td>
</tr>
<tr>
<td>Mitsutaka Nemoto, Yukihiro Nomura, Shohei Hanaoka, Yoshitaka Masutani, Takehru Yoshikawa, Naoto Hayashi, Naoki Yoshioka, and Kuni Ohtomo</td>
<td></td>
</tr>
<tr>
<td>Principal-Component Massive-Training Machine-Learning Regression for False-Positive Reduction in Computer-Aided Detection of Polyps in CT Colonography</td>
<td>182</td>
</tr>
<tr>
<td>Kenji Suzuki, Jianwu Xu, Jun Zhang, and Ivan Sheu</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>191</td>
</tr>
</tbody>
</table>