Digital Signal Processing
Digital Signal Processing

An Introduction with MATLAB and Applications
This book is dedicated to our loving families.
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tools to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over their analog counterparts. These advantages include superiority in performance, speed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomponent signals, adaptive filtering, and operations at very low frequencies.

Following the recent developments in engineering which occurred in the 1980s and 1990s, DSP became one of the world’s fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications.

This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001–2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005–2008), and the Notes of Professor Peter O'Shea at Queensland University of Technology.

Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z, Discrete-time Fourier, and
Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP.

Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma–delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis.

Part III presents some selected advanced DSP topics.

We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.

May 2009

Prof. Zahir M. Hussain
Amin Z. Sadik
Peter J. O’Shea
Prerequisites:
Basic knowledge in calculus, programming, and circuit theory is recommended.

Objectives:
The book aims to facilitate the development of expertise in analyzing and synthesizing signals, both natural and synthetic. It provides various tools which can reveal the critical information contained in the time and frequency structure of signals of interest. The book also provides advanced applications and topics in signal processing, with MATLAB experiments to give practical experience in implementing analog and digital signal processing systems.

References:
Contents

Part I Theory and Selected Applications

1 Analog Signals and Systems ... 3
 1.1 Definitions, Classifications, and Overview 3
 1.1.1 Definitions ... 3
 1.1.2 Representation of Signals and Systems 3
 1.1.3 Examples of Signals 3
 1.1.4 Classification of Signals 4
 1.1.5 Analog and Digital Signal Processing 6
 1.1.6 Digital Signal Processing versus Analog Signal Processing. 7
 1.1.7 System Modeling 7
 1.1.8 Classification of Systems 8
 1.1.9 Linear Time-Invariant Systems 9
 1.2 Time-Domain / Frequency-Domain Representations 10
 1.2.1 Basic Functions and Relations 10
 1.2.1.1 The Convolution Integral 10
 1.2.1.2 The Dirac Delta Function 11
 1.2.1.3 The Unit Step Function 12
 1.2.2 Time-Domain Representation 13
 1.2.2.1 Mathematical Time-Domain Representation 13
 1.2.2.2 Stability of Analog LTI Systems in the Time Domain 14
 1.2.3 Frequency-Domain Representation 14
 1.2.3.1 Fourier Series Representation of Periodic Signals 15
 1.2.3.2 The Fourier Transform 18
 1.2.3.3 The Laplace Transform 25
 1.2.3.4 Mathematical Frequency-Domain Representation 28
1.2.3.5 Stability of Analog LTI Systems—Frequency Domain ... 29
1.2.4 Signal Correlation and Its Applications ... 29
1.2.5 Signal Power and Energy ... 31
1.2.5.1 Power in Periodic Signals ... 32
1.2.5.2 Parseval’s Theorem ... 32
1.2.5.3 The Wiener–Kinchin Theorem ... 33
1.2.5.4 Examples ... 33
1.3 Random Signals ... 35
1.3.1 Definition .. 35
1.3.2 Overview of Probability and Statistics .. 35
1.3.2.1 Probability and Sample Space ... 35
1.3.2.2 Random Variables ... 36
1.3.2.3 Joint Probability ... 36
1.3.2.4 Conditional Probability .. 36
1.3.2.5 Independent Events .. 37
1.3.2.6 Probability Density Function .. 37
1.3.2.7 Statistical Mean ... 37
1.3.2.8 The Second Moment ... 38
1.3.2.9 The Variance .. 38
1.3.2.10 The Gaussian pdf .. 38
1.3.3 Signals in Noise ... 39
1.3.3.1 Gaussian Noise .. 39
1.3.3.2 Signals in Gaussian Noise .. 39
1.3.3.3 Power Spectral Density of Random Signals .. 40
1.3.3.4 Stationary Random Signals ... 40
1.3.3.5 The Autocorrelation Function of Random Signals .. 40
1.3.3.6 Wide-Sense Stationary Signals .. 40
1.3.3.7 Wiener–Kinchin Theorem for Random Signals .. 41
1.3.3.8 White Noise .. 41
1.3.3.9 Effect of Ideal Low-Pass Filter on White Noise .. 42
1.4 Applications of Analog Signal Analysis ... 43
1.4.1 Signal Detection in Noise .. 43
1.4.2 The Matched Filter .. 44
1.4.2.1 Conclusion ... 47
1.4.2.2 The Output of the Matched Filter at the Time of Optimal SNR 47
1.4.2.3 The Matched Filter is a Correlator ... 48
1.4.2.4 The Optimal Receiver .. 48
1.5 Analog Filters .. 48
 1.5.1 The Ideal Low-Pass Filter 49
 1.5.2 Butterworth LPF ... 50
 1.5.3 Chebychev-I LPF .. 50
 1.5.4 Design of Butterworth and Chebychev-I LPF’s 51
 1.5.4.1 Example of a Low-pass Filter Design 52
 1.5.4.2 Circuit Design 53
 1.5.5 Design of Butterworth and Chebychev-I High-pass,
 Band-Pass and Band-Stop Filters 53
 1.5.5.1 Circuit Design 54
 1.5.5.2 Impedance Matching 54
 1.5.5.3 Hardware Filter Design Rules Using Normalized LPF
 Standard Circuits 55
 1.5.5.4 Example of a High-pass Filter Design 55
 1.5.6 Chebychev-II Filters 56
 1.5.7 Elliptic Filters .. 57
 1.5.8 MATLAB Analog Filter Design 57
 1.5.9 Active Filters ... 58
 1.5.9.1 Overview of Active Amplifiers 58
 1.5.9.2 The Active Buffer 59
 1.5.9.3 The Active Inductance 60
 1.5.9.4 Butterworth Active Filters 60

References ... 62

2 Discrete and Digital Signals and Systems 63
 2.1 Introduction ... 63
 2.1.1 Digital Systems 64
 2.2 Ideal Sampling and Reconstruction 64
 2.2.1 Ideal Uniform Sampling 64
 2.2.1.1 Definitions for Some Important
 Discrete-Time Signals 65
 2.2.2 Ideal Reconstruction 68
 2.2.2.1 Stage 1 ... 68
 2.2.2.2 Stage 2 .. 69
 2.2.2.3 Frequency Aliasing 70
 2.3 Time-Domain / Frequency-Domain Representations 71
 2.3.1 Time-Domain Representation of Digital Signals
 and Systems ... 71
 2.3.1.1 Discrete Linear Convolution 71
 2.3.1.2 Mathematical Representation of Digital
 Signals and Systems in the Time Domain 73
2.3.2 Frequency-Domain Representation of Digital Signals and Systems .. 75
 2.3.2.1 Discrete-Time Fourier Series for Periodic Digital Signals .. 75
 2.3.2.2 The Discrete-Time Fourier Transform for Non-Periodic Digital Signals 75

2.3.3 The Z-Transform .. 76
 2.3.3.1 The Single-Sided ZT .. 77
 2.3.3.2 The Time-Shift Property of the ZT 78
 2.3.3.3 Relationship Between the FT and ZT of a Discrete-Time Signal 78
 2.3.3.4 Relationship Between the LT and the ZT for Discrete-Time Signals 78

2.3.4 Mathematical Representation of Signals and Systems in the Frequency Domain 79
 2.3.4.1 Relationship Between the ZT Transfer Function and the Frequency Response 80
 2.3.4.2 Stability of Digital Systems in the z-Domain .. 80

2.4 A Discrete-Time and Discrete-Frequency Representation 82
 2.4.1 The Discrete Fourier Transform .. 82
 2.4.1.1 Approximation of the FT Using DFT .. 84
 2.4.1.2 Relationship Between the DFT and the DFS Coefficients 84
 2.4.1.3 The Fast Fourier Transform .. 84
 2.4.1.4 Circular Convolution and Its Relation to the Linear Convolution 85
 2.4.1.5 I/O Relations Using Circular Convolution and the DFT 85

2.5 Signal Correlation, Power, and Energy 86
 2.5.1 Definitions .. 86
 2.5.1.1 Autocorrelation of Non-Periodic Discrete-Time Energy Signals 86
 2.5.1.2 Autocorrelation for Periodic Discrete-Time Power Signals 87
 2.5.1.3 Energy in Non-Periodic Discrete-Time Energy Signals 87
 2.5.1.4 Power in Periodic Discrete-Time Power Signals 87
 2.5.1.5 Parseval’s Theorem .. 87
 2.5.1.6 The Wiener-Kinchin Theorem .. 88

2.6 Digital Filters and Their Applications 88
 2.6.1 Ideal Digital Filters .. 88
 2.6.1.1 Mathematical Formulation .. 88
2.6.2 Linear-Phase Systems .. 90
2.6.3 Classification of Digital Filters 91
2.6.4 FIR Digital Filters .. 91
 2.6.4.1 Structure and Implementation of FIR Filters 91
 2.6.4.2 Software Implementation of FIR Filters 91
 2.6.4.3 FIR Filtering of Long Data Sequences 92
 2.6.4.4 Pole-Zero Diagram and Stability of FIR Filters 92
 2.6.4.5 Linear-Phase FIR Filters .. 93
 2.6.4.6 Efficient Hardware Implementation of Linear Phase FIR Filters .. 94
2.6.5 Design of FIR Digital Filters 95
 2.6.5.1 Time-Domain Design .. 95
 2.6.5.2 Frequency-Domain Design 99
2.6.6 Applications of FIR Digital Filters 102
 2.6.6.1 Communication Channel Equalization 102
 2.6.6.2 The Moving Average Filter 102
 2.6.6.3 The Digital Differentiator 103
 2.6.6.4 The Digital Matched Filter 106
2.6.7 IIR Digital Filters .. 108
 2.6.7.1 Structure and Implementation of IIR Digital Filters 108
 2.6.7.2 IIR versus FIR Filters ... 108
 2.6.7.3 Direct Form Implementation of IIR Digital Filters 109
 2.6.7.4 Practical Implementation of IIR Digital Filters 110
2.6.8 Design of IIR Digital Filters 111
 2.6.8.1 Time-Domain Design: Impulse Response Matching 111
 2.6.8.2 Frequency-Domain Design: Frequency Response Matching .. 114
 2.6.8.3 MATLAB IIR Filter Design Using the Bilinear Transformation 117
 2.6.8.4 MATLAB FIR/ IIR Filter Design and Analysis Toolbox 118
2.6.9 Applications of IIR Digital Filters 119
 2.6.9.1 The Digital Integrator .. 119
 2.6.9.2 The Alpha Filter ... 120
 2.6.9.3 The Sinusoidal Digital Oscillator 120
 2.6.9.4 The Digital Resonator ... 122
 2.6.9.5 A Digital DC Blocker .. 124
2.6.9.6 An Application of FIR / IIR Digital Filters: Simulation of Acoustic Effects

References

Part II Applied Signal Processing

3 Selected Topics in Applied Signal Processing

3.1 Introduction

3.2 Binary Signal Transmission

3.2.1 Binary Transmission Using Orthogonal Signals

3.2.1.1 Probability of Error

3.2.2 Binary Transmission Using Antipodal Signals

3.3 The Hilbert Transform and the Analytic Signal

3.3.1 The Analog and Digital Hilbert Transform

3.3.1.1 The Analog Hilbert Transform

3.3.1.2 The Digital Hilbert Transform

3.3.2 The Analytic Signal

3.3.3 Applications of the Hilbert Transform and the Analytic Signal

3.3.3.1 Spectral Economy and Computation of the Instantaneous Frequency

3.3.3.2 Single Side-Band Amplitude Modulation

3.3.3.3 Spectrum of the SSBSC AM Signal

3.3.3.4 Demodulation of SSBSC AM Signals

3.4 Phase-Locked Loops

3.4.1 Analog Phase-Locked Loops

3.4.2 Digital Phase-Locked Loops

3.4.2.1 The Sinusoidal DPLL (SDPLL)

3.4.2.2 Operation of the SDPLL

3.4.2.3 The First-Order Noise-Free SDPLL

3.4.2.4 The Second-Order Noise-Free SDPLL

3.4.2.5 PM Demodulation Using the SDPLL

3.5 Linear Estimation and Adaptive Filtering

3.5.1 Non-adaptive FIR LMS Filter

3.5.2 Adaptive Filters

3.5.3 Choice of the Desired Signal

3.5.4 The Adaptive LMS Algorithm

3.5.5 Choice of Adaptation (Convergence) Coefficient and Filter Length

3.5.6 Hardware Implementation of Adaptive FIR Filters

3.5.7 An Example of LMS Filtering

3.5.8 Application of Adaptive Filtering to Noise Reduction in Narrow-Band Signals
3.5.9 Application of Adaptive Filtering to
Channel Equalization 163
3.5.9.1 Reducing Intersymbol Interference ... 163
3.5.9.2 The Adaptive Channel Equalizer 165
3.6 Sigma-Delta Modulation & Noise Shaping 165
3.6.1 Quantization 166
3.6.1.1 Uniform Quantization 166
3.6.1.2 Nonuniform Quantization 168
3.6.2 Oversampling and Its Applications 168
3.6.2.1 Quantization SNR Improvement 168
3.6.2.2 Relaxing Conditions on the Anti-Aliasing Filter 168
3.6.3 Delta Modulation 169
3.6.3.1 Digital DM System 172
3.7 Non-Stationary Signal Analysis 174
3.7.1 The Need for Time-Frequency Analysis 174
3.7.2 Some Important TFRs 176
3.7.2.1 The Short-Time Fourier Transform 177
3.7.2.2 Cohen’s Class of TFRs 177
3.7.3 The Discrete Cosine Transform 179
3.7.3.1 An Application of the DCT:
Data Compression 181
References ... 182

Part III Advanced Topics

4 The Impact of Finite Wordlength Implementation 185
4.1 Introduction 185
4.2 Overview of Number Formats 185
4.2.1 Fixed-Point Format 186
4.2.2 Floating-Point Format 187
4.3 The Quantization Process 187
4.3.1 Quantization of Fixed-Point Numbers 188
4.3.1.1 The Rounding Method 188
4.3.1.2 Truncation Method 189
4.3.2 Quantization of Floating-Point Numbers 190
4.3.3 Impact of Quantization on DSP System Implementation 191
4.4 Coefficient Quantization Error in Digital Filters 193
4.4.1 Coefficient Quantization Error in IIR Filters 193
4.4.2 Coefficient Quantization Error in FIR filter 197
4.5 Quantization Errors in Arithmetic Operations

4.5.1 Multiplier and Accumulator Errors in Fixed-Point Arithmetic
- Multiplier Error
- Accumulator Error

4.5.2 Scaling in Fixed-Point Arithmetic
- Scaling of Direct Form IIR Filter
- Scaling of Cascade-Form IIR Filters
- Scaling of Direct-Form FIR Filters

4.6 Limit Cycle Phenomena

References

5 Multirate Digital Signal Processing

5.1 Introduction

5.2 Basic Elements of Multirate Processing
- The Down-Sampler and the Up-Sampler
- Frequency-Domain Representation

5.3 Sampling Rate Conversion Using Multirate Structures
- Decimation
- Interpolation
- Rational Number Sampling Rate Conversion

5.4 Efficient Implementation of Multirate Systems
- Noble Identities
- Polyphase Decomposition
- Multistage Implementation
- Interpolated FIR filter design

References

Appendix A: Tutorials

Appendix B: Miscellaneous Exercises

Appendix C: Tables and Formulas

Appendix D: DSP Lab Experiments

Authors’ Biographies
Acronyms, Symbols and Abbreviations

\(\forall n \) For all \(n \)

\(C_n \) \textit{nth-Order Chebychev polynomial}

\(\delta(t) \) Dirac delta function

\(\mathcal{E} \) Expectation functional

\(\mathcal{F} \) Fourier transform (FT)

\(G_m \) Maximum filter gain

\(G_c \) Filter gain at cutoff

\(G_o \) Filter gain at DC

\(\mathcal{H} \) Hilbert transform

\(\mathcal{L} \) Laplace transform (LT)

\(\mathcal{L}_d \) Double Laplace Transform (DLT)

\(\rho \) Time–frequency distribution (TFD)

\(h(n) \) Vector of an FIR impulse response coefficients at sample time \(n \)

\(w(n) \) Vector of an adaptive FIR filter coefficients at sample time \(n \)

\(\omega_c \) Filter cutoff (radian) frequency

\(z^* \) Complex conjugate of \(z \)

\(Z \) \textit{z-Transform}

AC Alternating current

ADC (or A/D) Analog-to-digital converter

a.k.a. Also known as

AM Amplitude modulation

ASP Analog signal processing

AWGN Additive White Gaussian noise

BIBO Bounded-input bounded-output

B-BPF Butterworth band-pass filter

bps Bits Per second

B-HPF Butterworth high-pass filter
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-LPF</td>
<td>Butterworth low-pass filter</td>
</tr>
<tr>
<td>BPF</td>
<td>Band-pass filter</td>
</tr>
<tr>
<td>BP</td>
<td>Band-pass</td>
</tr>
<tr>
<td>BS</td>
<td>Band-stop</td>
</tr>
<tr>
<td>BSF</td>
<td>Band-stop filter</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>CFS</td>
<td>Complex Fourier series</td>
</tr>
<tr>
<td>C-BPF</td>
<td>Chebychev band-pass filter</td>
</tr>
<tr>
<td>C-HPF</td>
<td>Chebychev high-pass filter</td>
</tr>
<tr>
<td>C-LPF</td>
<td>Chebychev low-pass filter</td>
</tr>
<tr>
<td>D/A (or DAC)</td>
<td>Digital to analog converter</td>
</tr>
<tr>
<td>DC (or DC)</td>
<td>Direct current</td>
</tr>
<tr>
<td>DCO</td>
<td>Digital controlled oscillator</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete cosine transform</td>
</tr>
<tr>
<td>DFS</td>
<td>Discrete Fourier series</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete FT (finite length N)</td>
</tr>
<tr>
<td>DLT</td>
<td>Double-sided Laplace transform</td>
</tr>
<tr>
<td>DM</td>
<td>Delta modulator</td>
</tr>
<tr>
<td>DSB/DSBTC</td>
<td>Double side-band transmitted carrier</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital signal processing</td>
</tr>
<tr>
<td>DTFT</td>
<td>Discrete-time FT</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EOG</td>
<td>Electrooculogram</td>
</tr>
<tr>
<td>ESD</td>
<td>Energy spectral density</td>
</tr>
<tr>
<td>FDM</td>
<td>Frequency division multiplexing</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast FT (algorithm to compute DFT)</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite impulse response</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency modulation</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>FS</td>
<td>Fourier series</td>
</tr>
<tr>
<td>HP</td>
<td>High-pass</td>
</tr>
<tr>
<td>HPF</td>
<td>High-pass filter</td>
</tr>
<tr>
<td>HT</td>
<td>Hilbert transform</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse discrete FT</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse fast FT (algorithm to compute IDFT)</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite impulse response</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>ILT</td>
<td>Inverse Laplace transform</td>
</tr>
<tr>
<td>ISI</td>
<td>Inter-symbol interference</td>
</tr>
<tr>
<td>IZT</td>
<td>Inverse z-transform</td>
</tr>
<tr>
<td>LHS</td>
<td>Left-hand side</td>
</tr>
<tr>
<td>LMS</td>
<td>Least mean-square</td>
</tr>
</tbody>
</table>
LP Low-pass
LPF Low-pass filter
LSB Lower sideband
LT Laplace transform
LTI Linear time-invariant
MF Matched filter
mse Mean-square error
Mux Multiplexer
NBC Natural binary code
PAM Pulse–amplitude modulation
PCM Pulse code modulation
PDF Probability density function
PLL, DPLL Phase-locked loop, digital PLL
PM Phase modulation
P/S Parallel-to-serial converter
PSD Power spectral density
RF Radio frequency
RHS Right-hand side
ROC Region of convergence
Rx Receiver
SDM Sigma–delta modulator
SH (or S/H) Sample-and-hold
SLT Single-sided Laplace transform
SNR Signal-to-noise ratio
snr Signal to noise ratio = $E_b = N_o$ (digital comms)
SP Signal processing
S/P Serial-to-parallel converter
sps Symbol per second
SSBSC Single side-band suppressed carrier
TDM Time division multiplexing
TFD Time–frequency distribution
TFS Trigonometric Fourier series
Tx Transmitter
USB Upper sideband
Var Variance
VCO Voltage-controlled oscillator
WKT Wiener–Kinchin theorem
w.r.t With respect to
ZT z-Transform