Lorenzo Magnani, Walter Carnielli, and Claudio Pizzi (Eds.)

Model-Based Reasoning in Science and Technology

Abduction, Logic, and Computational Discovery

Springer
The psychologists undertake to locate various mental powers in the brain; and above all consider it as quite certain that the faculty of language resides in a certain lobe; but I believe it comes decidedly nearer the truth (though not really true) that language resides in the tongue. In my opinion, it is much more true that the thoughts of a living writer are in any printed copy of his book than that they are in his brain.

Charles Sanders Peirce
This volume is a collection of selected papers that were presented at the international conference Model-Based Reasoning in Science and Technology. Abduction, Logic, and Computational Discovery (MBR09_BRAZIL), held at the University of Campinas, Campinas, Brazil in December 2009.

The presentations given at the Campinas conference explored how scientific thinking uses models and explanatory reasoning to produce creative changes in theories and concepts. Some speakers addressed the problem of model-based reasoning in technology, and stressed the issue of science and technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the
help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science requires expanding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitive science. There are several key ingredients common to the various forms of model-based reasoning. The term “model” comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors.

The various contributions of the book are written by interdisciplinary researchers who are active in the area of modeling reasoning and creative reasoning in logic, science and technology: the most recent results and achievements about the topics above are illustrated in detail in the papers. The editors express their appreciation to the members of the Scientific Committee for their suggestions and assistance: Atocha Aliseda, Instituto de Investigaciones Filosoficas, Universidad Nacional Autonoma de Mexico (UNAM) – Silvana Borutti, Department of Philosophy, University of Pavia, ITALY – Eduardo Bustos, Department of Logic, History and Philosophy of Science at UNED (Spanish Open University), Madrid, SPAIN – Marcelo Esteban Coniglio, Department of Philosophy, CLE and Institute of Philosophy and Human Sciences, State University of Campinas, BRAZIL – Itala D’Ottaviano, CLE and Department of Philosophy, Institute of Philosophy and Human Sciences, State University of Campinas, BRAZIL – Roberto Cordeschi, Department of Philosophy, “La Sapienza” University of Rome, ITALY – Roberto Feltrero, Department of Logic, History and Philosophy of Science at UNED (Spanish Open University), Madrid, SPAIN – Marcello Frixione, Department of Communication Sciences, University of Salerno, ITALY – Michel Ghins, Institut Supérieur de Philosophie, Université de Louvain, BELGIUM - David Gooding, Department of Psychology, University of Bath, UK – Mike E. Gorman, Technology, Culture & Communications, SEAS University of Virginia, USA – Marcello Guarini, Department of Philosophy, University of Windsor, CANADA – Ricardo Gudwin, Department of Computer Engineering and Industrial Automation, the School of Electrical Engineering and Computer Science, State University of Campinas, BRAZIL – Viorel Guliciuc, Stefan cel Mare University, Suceava, ROMANIA – Michael Leyton, Psychology Department, and DIMACS Center for Discrete Mathematics, & Theoretical Computer Science, Rutgers University, USA – Mamede Lima-Marques, Department of Information Science and
Preface

Documentation, University of Brasília, BRAZIL – Angelo Loula, Department of Exact Sciences, State University of Feira de Santana, BRAZIL – Shangmin Luan, Institute of Software, The Chinese Academy of Sciences, Beijing, P.R. CHINA – Cezar Augusto Mortari, Federal University of Santa Catarina, UFSC Florianópolis, Brazil – Alison Pease, Edinburgh University, Edinburgh, UK – João Queiroz, Department of Computer Engineering and Industrial Automation (DCA) School of Electrical Engineering and Computer Science, State University of Campinas, BRAZIL – Lucia Santaella, Center of Research in Digital Media, São Paulo Catholic University (PUCSP), BRAZIL – Gerhard Schurz, Institute for Philosophy, Heinrich-Heine University, GERMANY – Cameron Shelley, Department of Philosophy, University of Waterloo, Waterloo, CANADA - Colin Schmidt, Institut d’Informatique Claude Chappe, University of Le Mans, FRANCE – Frank Thomas Sautter, Department of Philosophy, University of Santa Maria, BRAZIL – Paul Thagard, Director of the Cognitive Science Program, and University Research Chair at the University of Waterloo, CANADA – Barbara Tversky, Department of Psychology, Stanford University, USA – Jon Williamson, Philosophy, School of European Culture and Languages, University of Kent, UK – Riccardo Viale, LaSCo-Laboratory of Cognitive and Complexity Sciences, Fondazione Rosselli, Torino, ITALY – John Woods, Department of Philosophy, University of British Columbia, CANADA – Woosuk Park, Humanities and Social Sciences, KAIST, Guseong-dong, Yuseong-gu Daejeon, SOUTH KOREA, and to the members of the local scientific committees: Itala D’Ottaviano, Alexandre Costa Leite, and Juliana Bueno-Soler (State University of Campinas UNICAMP), Emanuele Bardone, Tommaso Bertolotti, and Pino Capuano (University of Pavia).

Special thanks to Emanuele Bardone, Riccardo Dossena, and Tommaso Bertolotti for their contribution in the preparation of this volume. The conference MBR09_BRAZIL, and thus indirectly this book, was made possible through the generous financial support of MIUR (Italian Ministry of the University), University of Pavia, Fondazione CARIPLO, FAPESP- São Paulo Research Foundation, the Centre for Logic, Epistemology and the History of Science CLE of the State University of Campinas UNICAMP and the Brazilian Logic Society. Their support is gratefully acknowledged. The preparation of the volume would not have been possible without the contribution of resources and facilities of the Computational Philosophy Laboratory and of the Department of Philosophy, University of Pavia.

Other more technical logical papers presented at (MBR09_BRAZIL) will be published in a special issue of the Logic Journal of the IGPL, edited by L. Magnani, W. Carnielli, and C. Pizzi.

Finally, the present book also includes a brief paper that two of the editors, Walter Carnielli and Lorenzo Magnani, have devoted to the 65th birthday of Claudio Pizzi.

Pavia, Italy
June 2010

Lorenzo Magnani
University of Pavia, Pavia, Italy and
Sun Yat-sen University, Guangzhou, P.R. China

Walter Carnielli
University of Campinas, Campinas, Brazil

Claudio Pizzi
University of Siena, Siena, Italy
Years of Reasoning
In Honor of the 65th Birthday of Claudio Pizzi

Walter Carnielli and Lorenzo Magnani

Abstract. This paper is devoted to Claudio Pizzi on the occasion of his 65th birthday. Looking at the essential bibliography reported below, Pizzi’s reserved character is manifest in the few co-authors he had in his publications. However, it is hard to find among philosophers and logicians a colleague so unanimously recognized as gentlemanly in his attitude towards science and academic life. The blend of rigor and philosophical scope that characterizes Pizzi’s work is, at the same time, analytic philosophy and philosophical logic as its best, as it is demonstrated in his intellectual career. Claudio Pizzi is also a fine cooker, and one of the best connoisseurs of Brazilian music we know.

1 Four Decades of Conditionals and Rational Inference

Claudio Pizzi obtained his degree in Philosophy in March 1969 at the State University of Milan, with a dissertation about subjunctive and counterfactual conditionals (titled I Condizionali Congiuntivi: Aspetti Epistemologici e Problemi di Formalizzazione).

This subject was considered quite abstruse in Italy in those years, and it is relevant to have in sight that the best accepted and most elaborated counterfactual theory of causation, represented by the work of David Lewis, would only see the light in 1973. The epistemological panorama was still dom-
inated by logical positivism, and the only logic which in Italy was considered a reverent object of study was mathematical logic. Modal logic was almost completely ignored or considered an oddity, to be avoided even more than many-valued logic.

The attitude towards modal logic in Italy began to change after the publication of the Italian translation of Hughes and Cresswell’s *Introduction to Modal Logic* (Il Saggiatore, Milan, 1973). Pizzi, as he says, had the luck to be charged with the translation and the editing of the book (for which he also wrote an introduction); the work was a good opportunity for him to get well acquainted with the basic elements of possible-worlds semantics.

The volume [3] was, at that time, an updated collection of papers on the topic of counterfactual reasoning and physical modalities. In preparing the long introduction for this book Pizzi developed an impression that the “consequentialist” view about conditionals (Chisholm-Goodman-Reichenbach) and the attempts to give it a formalization (especially in Angell and McCall’s connexive logic) had been too hastily dismissed. [2] proposes to recover the basic idea of connexive logic by: (a) treating it as an extension of standard logic, and (b) introducing a distinction between an analytical and synthetic (context-dependent) variant of it via a simple axiomatization of Åqvist’s circumstantial operator ∗. What is called *Boethius’ Thesis* in the synthetic variant had the form (∗A → B) ⊃ ¬(A → ¬B). Unfortunately, the system introduced in the paper could be accepted only as a limit case since the trivializing equivalence p ≡ ∗p may be proved. What this family of systems needed was a decision procedures, and Pizzi tried to provide it in [8] and [9]. With respect to the 1977 paper, the analytical fragment of the basic system of [8], named CI.0, has the important difference of excluding the Factor Law (A ∧ B) ⊃ (A ∧ C → B ∧ C), which may be accepted only in a weakened variant. For this reason the logics belonging to this family cannot be qualified as connexive anymore, and need a different classification: Pizzi called them logics of consequential implication. The key idea of the decision procedure is very simple: every formula of form A → B is translated into a strict implication A ⊢ B conjoined with the assertion that A and B have the same modal status, i.e., the same position in Aristotle’s square of modalities; the resulting translation is then tested with the tableaux methods used in standard modal logic. It turns out then that CI.0 is definitionally equivalent to the modal system KT, and weaker consequential systems are equivalent to weaker systems of modal logics.

The paper [17] is centered on the idea that consequential logics grasp in a special sense the relevance of A to B; in fact, in order of A → B being true, A and B have actually something in common, namely their modal status. Implication relations weaker than → may be represented as “truncations” of analytical consequential implication preserving basic properties such as Aristotle’s Thesis (namely ¬(A → ¬A)). The interrelations between such different kinds of consequential implication may be visualized into three-dimensional pictures named “Aristotle’s cubes” (see [23]). According to the
Years of Reasoning

Italian historian Mauro Nasti de Vincentis consequential implication grasps some basic intuitions about conditionals that can be found in Aristotle and Chrysippus.

In two papers written in collaboration with T. Williamson [12, 18] two pathological extensions of systems of consequential implication are analyzed: the former by means of the Strong Boethius’ Thesis \((A \rightarrow B) \rightarrow \neg (A \rightarrow \neg B)\) and the latter by means of the “Conditional Excluded Middle” \((A \rightarrow B) \lor (A \rightarrow \neg B)\). The first paper introduces a general schema of one-one translation between consequential-implication logics and normal modal logics, and it may be considered as providing the most advanced theoretical framework for any research on consequential implication.

Analytical consequential implication has been fundamentally studied at the propositional level only. A first attempt of studying it at first order level appears in [25], where the possibility of translating consequential implication directly in terms of quantifiers is explored for the first time.

Inquiries about consequential implication have mainly been concerned with analytical consequential implication. What about “synthetical” or context-dependent consequential conditionals? This leads to new proposals on two different directions. The first is a criticism of classical conditional logic, in which room is given to logical theses lacking a consequential nexus, such as for instance \((A \land B) \supset (A \mathcal{C}\rightarrow B)\). Such logics may be interpreted, it was Pizzi’s idea, as “holistic” conditional logics and it is argued that one may devise, in the extensions of the basic Lewis’ system \(\text{CI}\), at least “three grades of holistic involvement” (see [6]).

The second line of inquiry lends to the idea of working out an intuitive semantics allowing a definition of a consequential nexus on the basis of a context of factual presuppositions. Such a connection is identified in the result of performing “the best choice” between incompatible alternative consequents. This feature is seen (according to [20]) as a common feature of inductive, counterfactual and abductive inference.

The logics based on this choice are special cases of what Pizzi proposes to call rational inference, where it is understood that the basic aim in performing the choice of the best conclusion is the one of preserving maximal information. As a matter of fact, this idea was already at the center of a book published in Italian [4], and he has been encouraged to develop it by a positive review of the book written by Newton da Costa.

Moving from the mentioned considerations Pizzi attempted to stress the analogy between abductive and counterfactual reasoning. It was relevant in this connection, in his own words, the cooperation with Lorenzo Magnani who, he says, “had the merit of introducing in Italy the topic of abductive and model-based reasoning”. Being engaged with Magnani in the joint organization of the six international conferences on Model-Based Reasoning – cf. for example [16] – (MBR98, MBR01, MBR04 in Pavia, Italy, MBR06_CHINA, in Guangzhou, P. R. China, and the last one MBR09_BRAZIL, held in Camp-
inas, Brazil, in December 2009), he has been stimulated in going deeper into
the analysis of causal and abductive reasoning.

2 Tense Logic, Causality and Abduction

In 1974 Pizzi edited an anthology about tense logic [1], in which the trans-
lations are preceded by a lengthy introduction. This collection was the first,
and perhaps the unique, published on this subject. But Pizzi has also original
contributions to the field of tense logic: in [23] a completeness proof of the
logic K_t via tableaux has been published, quite different from a proof of the
same theorem presented by Rescher and Urquhart.

A talk delivered in Campinas (published in [10]) discusses the problem
of the existence of time without change. The problem is treated along the
lines already developed by Prior, but carried out in the framework of second
order tense logic, with the aim of distinguishing between “real changes” and
“Cambridge changes”, and by making use of determinate-determinable dis-
tinction. The question of determination among predicates has been treated in
several papers Pizzi wrote in Italian, mainly with the aim of giving notice of
an interesting and forgotten theory sketched by W.E. Johnson in his “Logic”
(1921).

Starting from 1988, a certain number of papers have been devoted by Pizzi
to the question of the iteration of conditionals, whose treatment is generally
neglected even in classical conditional logic. The interest for this topic was
due to Pizzi’s conviction that the problem of causal redundancy (overdeter-
mination and preemption) can be solved by making use of conditionals with
iterated antecedents. Lewis’ counterfactual theory of causality does not offer
a satisfactory treatment to the problem of causal redundancy; furthermore,
many logicians seem to ignore that the conditio sine qua non theory of cau-
sation is part of the European juridical tradition, and that in this realm the
question has been discussed at length.

The idea of using nested conditionals to define “concurring” (i.e. redundant)
causes is quite original. It is the core of a book [11] written in Italian for a
publishing house specialized in juridical studies. A more formal treatment
was anticipated in [5]. The idea, presented by the occasion of talks delivered
in Lund and Uppsala in 1988, appears to be shared by the Swedish logician P.
Gärdenfors (see “An Epistemic Analysis of Explanation and causal Beliefs”,
$Topoi$ 9 (1990) 109–124 (p.122)).

The interest for abduction has been a natural corollary of the reflections
about rational inference on one side, and causality on the other. Beginning
from year 2007, beyond teaching at the Faculty of Letters in Siena, Pizzi was
also charged with courses on “Logic of Proof” at the Faculty of Law of the
Second State University of Milan. The contact with the new environment
furthered his interest for abduction. On the one hand, the question of condi-
tional iteration has been tackled also with reference to abductive reasoning
(see [22]). On the other hand, the problem of applying the logic of abduction to concrete problems actually discussed by jurists also stimulated reflections: a recently published collection of essays [25] is devoted to this topic.

3 From Contingency to Multimodalities

The idea of defining necessity in terms of contingency received a negative answer from Cresswell for systems weaker than KT. However, Pizzi showed that the problem is solvable in linguistic extensions of contingential logic: to begin with, in a logic with propositional quantifiers (see [14]), but more economically in contingential logics whose language contains an axiomatized propositional constant [21]. The idea of using such systems to yield multimodal logics has been proposed in a recent conference in Lisbon.

From the perspective of his interest in general modal logic, Pizzi not only devoted his energy to the Italian translation of Hughes and Cresswell’s first handbook, but also promoted the Italian translation of “A companion to Modal Logic” for which he also wrote an introduction (CLUEB, Bologna, 1990). In October 1991 he was invited by the Centre for Logic, Epistemology and the History of Science (CLE) of the State University of Campinas to give a course in modal logic, which was then a new subject for many Brazilian logicians. It was only the beginning of a long cooperation, during which he also became member of the direction of CLE. The most recent fruit of it was a book written in Italian with W. Carnielli in 2001 [15], recently revised and published in English [24]. This is the first book in which the subject of multimodalities is proposed also at the level of a teaching tool, and which intends to provide a philosophically- and historically-based introduction to modal logic without casting out neither rigor nor the mathematical aspects.

Knowing how much Brazilian music won Pizzi’s heart, an artistic inclination he certainly inherited from his father, the painter and musician Walter Pizzi-Bonafous (1908-1987), and from his grandfather Ercole Pizzi, a belcanto’s maestro, we cannot refrain from quoting the Brazilian idol João Gilberto. According to [7], João Gilberto is the only non-Italian (perhaps the only person) ever to turn an Italian song, the famous Estate, into a worldwide jazz success. He will certainly appreciate the comparison: for Claudio, many splendid summers!

Estate... che splendidi tramonti dipingeva! ¹

References

¹“Estate”, by Bruno Martino and Bruno Brighetti, voice of João Gilberto.
Contents

Part I: Abduction, Problem Solving, and Practical Reasoning

Virtuous Distortion: Abstraction and Idealization in Model-Based Science .. 3
John Woods, Alirio Rosales

1 Models .. 4
 1.1 Distortion ... 4
 1.2 Some Motivating Considerations 8
 1.3 Idealization ... 8
 1.4 Side-Bar: Classificatory Confusion 11
 1.5 Abstraction ... 11

2 Cognition .. 17
 2.1 Cognitive Systems ... 17
 2.2 Knowledge as Distortion 19
 2.3 Information Suppression 20
 2.4 Connection to Models 22

3 Artefactualism .. 23

4 Truth-Making .. 23

5 Stipulationism ... 25

6 Fictionalism .. 26
 6.1 Irrealism Without Tears 29

Naturalizing Peirce’s Semiotics: Ecological Psychology’s Solution to the Problem of Creative Abduction 31
Alex Kirlik, Peter Storkerson

1 Introduction .. 32

2 Peirce ... 33

3 Abduction, Iconicity, Diagrammatic Thinking, and Model Building ... 34

4 Saussure ... 35

5 Semiotics and Semiology 36
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Reception of Semiotic Theory in Graphical and Industrial Design</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Ecological Psychology: James J. Gibson and Egon Brunswik</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Brunswik’s Probabilistic Functionalism</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>The Lens Model Equation</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Integration</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>Application</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Conclusion: Peirce Revisited</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>46</td>
</tr>
</tbody>
</table>

Smart Abducers as Violent Abducers: Hypothetical Cognition and “Military Intelligence”

Lorenzo Magnani

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multimodal Abduction</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Coalition Enforcement: Morality and Violence</td>
<td>53</td>
</tr>
<tr>
<td>2.1</td>
<td>Abduction, Respecting People as Things, and Animals as Moral Mediators</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>Coalition Enforcement Hypothesis</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Coalition Enforcement through Abduction: The Moral/Violent Nature of Language</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>Fallacies as Distributed “Military” Intelligence</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Distributing Fallacies</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Aggressive Military Intelligence through Fallacies</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Moral Bubbles: Legitimating and Dissimulating Violence</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Gossip, Morality, and Violence</td>
<td>73</td>
</tr>
<tr>
<td>4.5</td>
<td>Judging Violence: Abductive Fallacy Evaluation and Assessment</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>80</td>
</tr>
</tbody>
</table>

Different Cognitive Styles in the Academy-Industry Collaboration

Riccardo Viale

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relationship between Background Knowledge and Cognitive Rules</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>Obstacles to Knowledge Transfer: Background Knowledge</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Obstacles to Knowledge Transfer: Cognitive Rules</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>101</td>
</tr>
</tbody>
</table>
Abduction, Induction, and Analogy: On the Compound Character of Analogical Inferences

Gerhard Minnameier

1 Introduction: The Quest for Logic in Analogical Reasoning ... 108
2 Inferential Reconstruction of Analogical Reasoning .. 109
3 The Example of Kepler’s “Vis Motrix” ... 112
4 A Second Variant of Analogical Reasoning ... 113
5 Inferential Sub-processes and Different Forms of Induction in Analogical Reasoning .. 115
6 Conclusion .. 117
References .. 117

Belief Revision vs. Conceptual Change in Mathematics

Woosuk Park

1 Introduction .. 122
2 Thagard’s Challenge .. 123
3 The Conservatism of AGM Theory of Belief Revision .. 125
4 Toward a Strengthened Argument for the Redundancy of Conceptual Change .. 126
5 The Story of Negative and Imaginary Numbers ... 128
6 The Relationship between Belief Revision and Conceptual Change in Mathematics .. 131
7 Concluding Remarks .. 133
References .. 133

Affordances as Abductive Anchors

Emanuele Bardone

1 The Environment: Constraint or Resource? Why a Theory of Affordance Matters .. 135
2 What Are Affordances? The Received View .. 138
2.1 Affordances Are Opportunities for Action ... 139
2.2 Affordances Are Ecological Facts .. 139
2.3 Affordances Imply the Mutuality of Perceiver and Environment .. 140
2.4 Affordances as Eco-Cognitive Interactional Structures .. 140
3 No Direct Perception, No Affordance? The Problem of Affordance Detection .. 141
4 Abduction and the Hypothetical Dimension of Eco-Cognitive Interactions .. 143
5 Affordances as Abductive Anchors .. 146
6 Why and When We Are Not Afforded .. 149
6.1 Hidden, Broken, and Failed Affordances ... 149
6.2 Not Evolved and Not Created Affordances ... 151
References .. 154
A Visual Model of Peirce’s 66 Classes of Signs Unravels His Late Proposal of Enlarging Semiotic Theory

1 Introduction .. 221
2 The Phenomenological Categories ... 223
3 The Sign Trichotomies .. 223
4 The 10 Trichotomies and Their Determining Order ... 225
5 Further Implications of the Diagram .. 227
6 Semiotics and Metaphysics ... 229
7 Semiotic and Pragmatism ... 230
8 Comparison between the Two Classifications ... 232
9 Final Considerations .. 235
References .. 235

The Role of Agency Detection in the Invention of Supernatural Beings: An Abductive Approach

1 Introduction .. 240
2 Hypotheses about the Naturalness of Religion ... 241
3 Abduction as a Multilevel Model for Perception .. 243
4 From the Detection of Natural Agency to the “Invention” of Supernatural Agents ... 248
5 Embodying Supernatural Agents by Disembodying Cognition 255
6 Conclusion .. 259
References .. 260

Part II: Formal and Computational Aspects of Model Based Reasoning

Does Logic Count? Deductive Logic as a General Theory of Computation

1 Deductive Logic vs. Theory of Computation .. 265
2 Quantifiers as Dependence Indicators ... 266
3 The Equational Calculus .. 267
4 How to Compute a Function ... 268
5 Logic as Equational Calculus .. 270
6 Limitations of the Received Logic in Computation Theory 271
7 IF Logic to the Rescue ... 272
8 EIF Logic as a Framework for a General Theory of Computability 273
References .. 274
Causal Abduction and Alternative Assessment: A Logical Problem in Penal Law .. 275
Claudio Pizzi

1 The Semmelweis’ Case 275
2 Singular vs. General Causality 278
3 An Exercise of Formalization 281
4 The Juridical Problem 287

References .. 289

On a Theoretical Analysis of Deceiving: How to Resist a Bullshit Attack .. 291
Walter Carnielli

1 How Can We Be so Easily Deceived? 291
2 Charity, or Rational Accommodation, and Its Dangers . 293
3 Illusions of Reasoning: A Defense against Deceptive Attacks ... 295
4 Assessment and Critique 297

References .. 298

Using Analogical Representations for Mathematical Concept Formation ... 301
Alison Pease, Simon Colton, Ramin Ramezani, Alan Smaill, Markus Guhe

1 Introduction ... 301
1.1 The Problem of Finding Useful Representations ... 301
1.2 Fregean and Analogical Representations 302
2 The Role of Visual Thinking in Mathematics 303
2.1 Concept Formation as a Mathematical Activity ... 303
2.2 Problems with Visual (Analogical) Representations in Mathematics 304
2.3 Automated Theory Formation and Visual Reasoning ... 305
2.4 Relationships between Mathematics and Art 305
2.5 Using the Visual to Evaluate Mathematical Concepts ... 305
3 Visual Concepts and Theorems in Number Theory ... 306
3.1 Figured Number Concepts 306
3.2 Conjectures and Theorems about Figured Concepts ... 307
4 An Automated Case Study 308
4.1 The HR Machine Learning System 308
4.2 Enabling HR to Read Analogical Representations ... 309
4.3 Results .. 311
Good Experimental Methodologies and Simulation in Autonomous Mobile Robotics

Francesco Amigoni, Viola Schiaffonati

1 Introduction ... 315
2 Experimental Trends in Autonomous Mobile Robotics 316
 2.1 Good Experimental Methodologies 316
 2.2 Simulations 318
3 Simulations and Experiments 320
 3.1 Simulation: Model + Execution 321
 3.2 Simulations Used as Experiments 323
4 Simulation and Experiments in Autonomous Mobile Robotics ... 326
 4.1 The Nature of Simulations 326
 4.2 The Role of Simulations in Experiments 327
5 Conclusions ... 330
References .. 331

The Logical Process of Model-Based Reasoning

Joseph E. Brenner

1 Introduction .. 334
2 Logic and Reasoning 335
 2.1 Paraconsistent Logic 335
 2.2 Abductive Logic and Abduction 336
3 Logic in Reality (LIR) 338
 3.1 Dualities and Fundamental Postulate 338
 3.2 Categories 340
 3.3 A Two-Level Framework of Relational Analysis ... 340
4 Models and Theories of Mind 341
 4.1 The Use of Models 341
 4.2 Aspects of the LIR Epistemology 342
 4.3 Internal and External 343
 4.4 Representations 344
 4.5 The Implications for MBR 345
 4.6 Anticipation 346
 4.7 Mind and Machine 347
 4.8 Models of Machine Identity 347
5 Model-Based Reasoning in Reality 348
 5.1 Inferential Abduction and LIR 348
 5.2 Manipulative Abduction and LIR 348
6 Reasoning with Computational Models 350
 6.1 Computational Models and Simulations 350
6.2 Computational Models of the Mind 350
7 Reasoning with Sociological Models 352
 7.1 Castells’ Network Model 352
 7.2 The Leydesdorff Approach and LIR Compared 353
 7.3 LIR Development 354
8 Summary and Conclusions 355
References 357

Constructive Research and Info-computational Knowledge Generation
Gordana Dodig Crnkovic

1 Understanding of Research Methodology in Computing on the Background of Philosophy of Engineering and Philosophy of Science 359
2 Constructive Research as Based on Ontological Realism 360
3 Characteristics of Constructive Research 363
4 Research within Computing 363
5 Software Engineering Research 364
6 Design Research as Constructive Research 365
7 Constructive Research vs. Action Research 365
8 Constructivism vs. Constructionism 366
9 Action Learning and Action Research 366
10 Grounded Theory 367
11 Computational Models and Simulations as Knowledge Production Tools 367
12 Research as Learning. Knowledge Generation as Information Processing 368
13 Info-Computationalist View of Knowledge Generation and Constructive Research Paradigm 369
14 The Computing Universe 370
15 Information and Computation in Biological and Intelligent Artificial Systems 371
16 Knowledge Generation as Natural Computation 373
17 Why Our Perception of the World Is an Illusion 374
18 Science. The World and a Model. Real and Virtual 375
19 The Blue Brain Project as an Example of Constructive Research in Fundamental Science 376
20 Conclusions 377
References 378

Emergent Semiotics in Genetic Programming and the Self-Adaptive Semantic Crossover
Rafael Inhasz, Julio Michael Stern

1 Introduction 381
2 Genetic Programming in Functional Trees 382
3 The Self-Adaptive Semantic Crossover 384
Contents

4 Emerging Building Blocks and Semiotics 386
5 Implementation .. 387
6 Case Study .. 387
7 Conclusions and Final Remarks 390
References .. 391

An Episodic Memory Implementation for a Virtual Creature
Elisa Calhau de Castro, Ricardo Ribeiro Gudwin
1 Introduction ... 393
2 Human Memory System and Episodic Memory 394
 2.1 Human Memory System 395
3 The Episodic Memory ... 396
4 Episodic Memory in Cognitive Systems Research 399
5 The CACE Project - Cognitive Artificial Creatures Environment .. 401
 5.1 General Characteristics and Motivation 401
6 Conclusion ... 404
References .. 405

Abduction and Meaning in Evolutionary Soundscapes 407
Mariana Shellard, Luis Felipe Oliveira, Jose E. Fornari, Jonatas Manzolli
1 Introduction ... 408
2 Conceptual Perspective .. 409
 2.1 Abduction and Computational Adaptive Methods 410
 2.2 Habits, Drawings and Evolution 411
 2.3 Repetition, Fragments and Accumulation Mapped into Sound Features .. 413
 2.4 Drawings, Adaption and Abduction 415
 2.5 Computer Modeling .. 417
3 Self-Organizing Soundscapes 418
4 Artificial Abduction .. 419
 4.1 Abduction and Evolution 419
 4.2 Evolution and Musical Creativity 420
5 Soundscape Meaning .. 421
6 Discussion ... 423
7 Conclusion .. 425
References .. 426
Consequences of a Diagrammatic Representation of
Paul Cohen’s Forcing Technique Based on C.S. Peirce’s
Existential Graphs .. 429
Gianluca Caterina, Rocco Gangle
1 Introduction ... 429
2 The Continuum Hypothesis 431
3 The Generic Extension of Standard Models of ZF 432
 3.1 The Generic Set .. 432
 3.2 From M to M[G] ... 436
 3.3 Diagrammatic Recapitulation 438
4 Modeling the Forcing Relation in EG 438
 4.1 The Quasi-implicational Structure of Forcing
 and Peirce’s Existential Graphs 438
 4.2 Diagramming Forcing as the Abductive
 Emergence of EG−γ from EG−β 440
5 Conclusions ... 442
References .. 443

Part III: Models, Mental Models, Representations

How Brains Make Mental Models 447
Paul Thagard
1 Introduction ... 447
2 Mental Models .. 448
3 Abduction .. 449
4 Neural Representation and Processing 450
5 Neural Mental Models 451
6 Generating New Ideas 453
7 Neural Abduction and Causality 454
8 Embodiment: Moderate and Extreme 455
9 Conclusion ... 457
References .. 459

Applications of an Implementation Story for Non-sentential
Models .. 463
Jonathan Waskan
1 Introduction ... 463
2 The Realization Crisis 464
3 The Realization Story 466
4 Applications ... 469
 4.1 Artificial Intelligence 470
 4.2 Psychology and Logic 471
 4.3 Explanation ... 473
5 Conclusion ... 475
References .. 475
Contents

Does Everyone Think, or Is It Just Me? A Retrospective on Turing and the Other-Minds Problem 477
Cameron Shelley

1. Introduction ... 477
2. The Other-Minds Problem 479
3. Thinking Machines 481
4. Universal Computers 483
5. A Chip in a Vat 484
6. Neuroscience ... 485
7. Situatedness ... 487
8. Embodiment ... 489
9. The Extended Mind 490
10. Reflections .. 491
11. Objections and Replies 492
References .. 493

Morality According to a Cognitive Interpretation: A Semantic Model for Moral Behavior 495
Sara Dellantonio, Remo Job

1. Introduction ... 495
2. The Rawlsian Model and the Linguistic Faculty.......... 498
3. The Problems with This View 500
5. A Semantic Model for the Moral Judgment 508
6. Concluding Remarks 513
References .. 514

The Symbolic Model for Algebra: Functions and Mechanisms .. 519
Albrecht Heeffer

1. Symbolic Reasoning Is Model-Based Reasoning 519
2. The Principle of the Permanence of Equivalent Forms . . 520
3. The Arithmetical Algebra of Diophantus 521
 3.1 The Myth of Syncopated Algebra 521
 3.2 Diophantus’s Number Concept 524
 3.3 The Restrictions of Arithmetical Algebra 524
 3.4 Expanding the Number Concept 525
4. Epistemic Justification of Basic Operations 526
 4.1 Example of Abstraction: Multiplying Binomials ... 526
 4.2 Epistemic Justification of the Rules of Signs 527
5. Expansion of the Number Concept 528
References .. 530
The Theoretician’s Gambits: Scientific Representations, Their Formats and Content

Marion Vorms

1 Introduction ... 533
2 The “Representational Effect”: Data Displays and Theoretical Models ... 535
 2.1 External Representations and the “Representational Effect” ... 535
 2.2 The Representational Effect and Theoretical Models .. 539
3 Formats and Inferential Affordances ... 543
 3.1 Symbol Systems and the Informational Content of Representations ... 544
 3.2 The Inferential Affordances of a Representation Are Agent-Relative ... 547
4 Theorizing as “Work in Progress” ... 550
 4.1 Agent-Relativity of Inferential Affordances: Consequences on Expertise and Learning 550
 4.2 Who Is the Expert? ... 552
 4.3 Formats, Theorizing, and the Content of Theoretical Representations ... 555
5 Conclusion .. 556
References .. 557

Modeling the Epistemological Multipolarity of Semiotic Objects

Zdzisław Wąsik

1 Asking for the Genus Proximum of the Sign among Other Semiotic Objects ... 560
2 On the Typology of Sign Conceptions, Their Manifestation Forms and Ontological Status 561
3 The Relationship between Signans and Its Signatum as a Token and/or a Type ... 565
References .. 568

Imagination in Thought Experimentation: Sketching a Cognitive Approach to Thought Experiments

Margherita Arcangeli

1 A Cognitive Approach to Thought Experimentation 572
2 The Garden of Imagination ... 574
3 Thought Experimentation and Imagination ... 576
 3.1 The Vocabulary ... 576
 3.2 Mach and His Tradition ... 578
4 All the Imagination in Thought Experimentation 584
References .. 585
Representations of Contemporaneous Events of a Story for Novice Readers ... 589
Barbara Arfé, Tania Di Mascio, Rosella Gennari

1 Introduction .. 589
2 Related Work ... 591
3 Rationale and Goals of the Evaluation 592
4 Method .. 593
5 User Analysis .. 594
6 Experiment Design .. 594
7 User Teaching .. 596
8 Experiment Execution 596
9 Results Analysis ... 598
 9.1 Pre-test Phase for Measuring the Working Memory and Grammar Comprehension 598
 9.2 Transparency Phase 598
 9.3 Drawing Phase .. 599
10 Discussion ... 603
11 Ongoing and Future Work 604
12 Conclusions .. 604
References .. 605

Understanding and Augmenting Human Morality: An Introduction to the ACTWith Model of Conscience 607
Jeffrey White

1 ... 608
2 ... 611
3 ... 616
4 Conclusion .. 619
References .. 620

Analog Modeling of Human Cognitive Functions with Tripartite Synapses .. 623
Alfredo Pereira Jr. and Fábio Augusto Furlan

1 Introduction .. 623
2 The Glutamatergic Tripartite Synapse 624
3 Cognitive and Conscious Processing: From Neurons to Astrocytes .. 625
 3.1 Amplification Mechanisms 627
 3.2 Broadcasting Mechanisms 628
 3.3 Selection Mechanisms 629
 3.4 Calcium Waves and Conscious Processing 629
4 Discussing Astrocyte Morphology and Function 631
5 Concluding Remarks 633
References .. 633
The Leyden Jar in Luigi Galvani’s thought: A Case of Analogical Visual Modeling .. 637
Nora Alejandrina Schwartz
References .. 641

Modeling the Causal Structure of the History of Science 643
Osvaldo Pessoa Jr.

1 The Model: Advances Connected by Causal Relations . . 643
2 Probabilistic Causal Relations Express Possible Histories .. 644
3 Causal Structure of Episodes in the History of Science 645
4 Causal Model of Scientific Reasoning 648
5 Causal Strength of an Advance 648
6 Counterfactual Histories of Science 650
7 Counterfactual Scenarios in Different Fields 651
References ... 653