BOLYAI SOCIETY MATHEMATICAL STUDIES

Series Editor:
Gábor Fejes Tóth

Publication Board:
Gyula O. H. Katona · László Lovász · Péter Pál Pálfy
András Recski · András Stipsicz · Domokos Szász

Managing Editor:
Dezső Miklós

1. Combinatorics, Paul Erdős is Eighty, Vol. 1
 D. Miklós, V.T. Sós, T. Szőnyi (Eds.)
2. Combinatorics, Paul Erdős is Eighty, Vol. 2
 D. Miklós, V.T. Sós, T. Szőnyi (Eds.)
3. Extremal Problems for Finite Sets
 P. Frankl, Z. Füredi, G. Katona, D. Miklós (Eds.)
4. Topology with Applications
 A. Császár (Ed.)
5. Approximation Theory and Function Series
 P. Vértesi, L. Leindler, Sz. Révész, J. Szabados, V. Totik (Eds.)
6. Intuitive Geometry
 I. Bárány, K. Böröczky (Eds.)
7. Graph Theory and Combinatorial Biology
 L. Lovász, A. Gyárfás, G. Katona, A. Recski (Eds.)
8. Low Dimensional Topology
 K. Böröczky, Jr., W. Neumann, A. Stipsicz (Eds.)
9. Random Walks
 P. Révész, B. Tóth (Eds.)
10. Contemporary Combinatorics
 B. Bollobás (Ed.)
11. Paul Erdős and His Mathematics I-II
 G. Halász, L. Lovász, M. Simonovits, V. T. Sós (Eds.)
12. Higher Dimensional Varieties and Rational Points
 K. Böröczky, Jr., J. Kollár, T. Szamuely (Eds.)
13. Surgery on Contact 3-Manifolds and Stein Surfaces
 B. Ozbagci, A. I. Stipsicz
 J. Horváth (Ed.)
15. More Sets, Graphs and Numbers
 E. Győri, G. Katona, L. Lovász (Eds.)
16. Entropy, Search, Complexity
 I. Csiszár, G. Katona, G. Tardos (Eds.)
17. Horizons of Combinatorics
 E. Győri, G. Katona, L. Lovász (Eds.)
18. Handbook of Large-Scale Random Networks
 B. Bollobás, R. Kozma, D. Miklós (Eds.)
19. Building Bridges
 M. Grötschel, G. Katona (Eds.)
20. Fete of Combinatorics and Computer Science
 G. Katona, A. Schrijver, T. Szőnyi (Eds.)
An Irregular Mind

Szemerédi is 70
CONTENTS

CONTENTS .. 5
FOREWORD ... 7
LIST OF PUBLICATIONS OF ENDE SZEMERÉDI 9
ALON, N.: Universality, Tolerance, Chaos and Order 21
BECK, J.: Super-Uniformity of the Typical Billiard Path 39
BOLLOBÁS, B. and RIORDAN, O.: Percolation on Self-Dual Polygon
 Configurations ... 131
BOURGAIN, J.: On Exponential Sums in Finite Fields 219
CHANG, M.-C.: An Estimate of Incomplete Mixed Character Sums .. 243
FOX, J., FRATI, F., PACH, J. and PINCHASI, R.: Crossings Between
 Curves with Many Tangencies 251
GREEN, B. and TAO, T.: An Arithmetic Regularity Lemma, an
 Associated Counting Lemma, and Applications 261
GREEN, B. and TAO, T.: Yet Another Proof of Szemerédi’s Theorem 335
M. T. KELLER, N. STREIB and W. T. TROTTER: Online Linear
 Discrepancy of Partially Ordered Sets 343
KOHAYAKAWA, Y., RÖDL, V., SCHACHT, M. and SKOKAN, J.: On
 the Triangle Removal Lemma for Subgraphs of Sparse Pseudorandom
 Graphs ... 359
LOEBL, M., REED, B., SCOTT, A., THOMASON, A. and
 THOMASSÉ, S.: Almost All H-Free Graphs Have the Erdős–Hajnal
 Property .. 405
LOVÁSZ, L. and SZEGEDDY, B.: Regularity Partitions and the Topology
 of Graphons .. 415
NEŠETŘIL, J. and OSSONA DE MENDEZ, P.: Extremal Problems for
 Sparse Graphs ... 447
NGUYEN, H. H. and VU, V. H.: Squares in Sumsets 491
PINTZ, J.: Are There Arbitrarily Long Arithmetic Progressions in the Sequence of Twin Primes? .. 525
RÖDL, V. and RUCIŃSKI, A.: Dirac-type Questions for Hypergraphs – a Survey (or More Problems for Endre to Solve) 561
RUZSA, I. Z.: Towards a Noncommutative Plünnecke-Type Inequality .. 591
SPENCER, J.: Quasirandom Multitype Graphs 607
TREVISAN, L.: Pseudorandomness in Computer Science and in Additive Combinatorics ... 619

POLYMATH
NIELSEN, M. A.: Introduction to the Polymath Project and “Density Hales–Jewett and Moser Numbers” 651
GOWERS, W. T.: Polymath and the Density Hales–Jewett Theorem . 659
POLYMATH, D. H. J.: Density Hales–Jewett and Moser numbers 689

EPILOGUE
HAJNAL, A.: My Early Encounters with Szemerédi 755
Endre Szemerédi is a mathematician with truly exceptional research power. His influence on today’s mathematics is enormous. He solved several fundamental problems that had been raised decades earlier. Many of his results have generated research for the future, and have laid the foundation of new directions in mathematics. Some of his main achievements were born prematurely, their full power and significance became evident only decades later. Although Szemerédi’s research interest is combinatorics, number theory and computer science, his influence on other fields of mathematics, ergodic theory and analysis for instance, is remarkable.

Yet as a mathematician, Szemerédi started out late. He attended medical school for a year, and worked in a factory before studying mathematics. Paul Erdős soon discovered his extraordinary talents and expected great things from him.

Szemerédi lived up to these expectations by proving several fundamental results of tremendous importance. We only mention two of them in this short foreword. Szemerédi was quite young when he proved a central conjecture of Erdős and Turán from the 1930s stating that every sequence of integers with positive density contains arbitrarily long arithmetic progressions. While the significance of this result in combinatorial number theory is obvious, it has led to a new branch of Ramsey theory (called Szemerédi type Ramsey theorems) and of ergodic theory (through the work of Furstenberg and Katznelson). The recent burst of interest in additive number theory has attracted several outstanding mathematicians and produced spectacular results. But the starting point and also a major tool in almost all of these contributions is Szemerédi’s Theorem.

One of the key elements in Szemerédi’s solution is a lemma, now called Szemerédi’s Regularity Lemma, which is of independent interest, and has an influence that cannot be overestimated. This lemma asserts that every graph can be partitioned into equal parts, whose number only depends on an error bound, so that the bipartite graph between any two such parts is “essentially random” (with a small number of exceptional parts). This statement is counterintuitive since the graph is completely deterministic, and not
random. It shows that the randomness is everywhere and inevitably present. It is because of the genius of Szemerédi that the mathematical community (and humankind) has had the opportunity to discover, appreciate, and put to use this ubiquitous and unavoidable presence of randomness.

Szemerédi has an “irregular mind”, his brain is wired differently than for most mathematicians. Many of us admire his unique way of thinking, his extraordinary vision. His coauthors often mention that Szemerédi sees things differently, that he is able to find the hidden structure, or able to create one, out of thin air. His insistence that such a structure would work has often proved decisive.

This volume is a celebration of Szemerédi’s achievements and personality, on the occasion of his seventieth birthday. It exemplifies his extraordinary vision and unique way of thinking. A number of colleagues and friends, all top authorities in their fields, have contributed their latest research papers to this volume. The topics include extensions and applications of the regularity lemma, the existence of k-term arithmetic progressions in various subsets of the integers, extremal problems in hypergraph theory, and random graphs. All of them are beautiful, Szemerédi type mathematics. It also contains published accounts of the first two, very original and highly successful Polymath projects, one led by Tim Gowers and the other by Terry Tao, and a short and lovely article by András Hajnal on his early encounters with Szemerédi. It is a great shame that Erdős was not able to write one. We finish this foreword by quoting from Hajnal’s article:

“Endre has grown to be a great mathematician, one of the best our country has ever given to the world. That is what this conference and this book is about.”

Budapest Imre Bárány
June 2010 József Solymosi
LIST OF PUBLICATIONS OF ENDRÉ SZEMERÉDI

List of Publications of Endre Szemerédi

List of Publications of Endre Szemerédi

List of Publications of Endre Szemerédi

[117] N. Nissan, A. Wigderson and E. Szemerédi, Undirected connectivity in \(O \left(\log^{1.5} n \right) \) space, in: *Proceedings 33rd IEEE FOCS*, *Pittsburgh, PA* (1992), 24–29.

List of Publications of Endre Szemerédi

[150] A. Khalfalah, S. Lodha and E. Szemerédi, Tight bound for the density of sequence of integers the sum of no two of which is a perfect square, *Discrete Math.*, **256** (2002), 243–255.

