Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

For further volumes:
http://www.springer.com/series/3527
Hans-Joachim Bungartz • Miriam Mehl
Michael Schäfer
Editors

Fluid Structure Interaction II

Modelling, Simulation, Optimization

Springer
Preface

Modern Computational Science and Engineering (CSE) is confronted with several challenges of “multi-type”: Multi-physics problems involve more than one physical effect; multi-scale models involve different scales with respect to space or time; multi-level methods are needed to efficiently tackle large linear systems; multi-core architectures require a new access to parallelism; and much of the research in CSE requires the collaboration of experts from several disciplines – it is multi-disciplinary. Concerning the first issue, multi-physics problems such as fluid-structure interactions (FSI), i.e. the interplay of some moveable or deformable structure with an internal or surrounding flow field, are one of the most relevant and most intensely studied coupled problems. Despite this high attention, FSI are still not completely understood, and there is an obvious lack of reliable, robust, and efficient computational methods.

Furthermore, there is a somewhat astonishing discrepancy between, on the one hand, how complex specific scenarios have already been successfully simulated (think of airbags or parachutes, e.g.) and, on the other hand, how big the problems are that occur when those codes shall be used for different problems. Hence, there hasn’t been any widely accepted numerical benchmark for FSI before this volume’s predecessor LNCSE 53 in 2006. Also experimental validation has turned out to be far from trivial: either the experimental setting is too complicated for the numerical tools, or the numerical setting is not feasible for experiments; if, finally, both experiments and numerical simulations can deal with a certain scenario, the effects intended to study often do not show up. All this shows that there are still challenging questions in FSI research, ranging from modelling via numerical treatment up to implementation and software tools – and only their ensemble provides a key to deeper insight in FSI.

The present volume contains selected contributions from the “First International Workshop on Computational Engineering – special topic Fluid-Structure Interactions” held in Herrsching, Germany, in October 2009. This three-day workshop was jointly organized by three initiatives funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – the “International Graduate School of Computational Engineering” in Darmstadt, the “International Graduate School of Science and Engineering” in Munich, and the Research Unit 493 “Fluid-Structure Interaction: Modelling, Simulation, Optimization” (FOR 493). FOR 493
was established by the DFG in 2003. In this framework, researchers from seven German universities working in the fields of mathematics, informatics, mechanical engineering, chemical engineering, or civil engineering joined their forces to push forward the state-of-the-art of fundamental computational research in FSI. Designed as a forum for latest results in computational engineering in general and FSI in particular, the workshop in Herrsching brought together leading experts from all over the world, allowing for three highly interesting days of tutorials, invited lectures, and minisymposia, and, now, resulting in the fifteen papers collected in this volume – which is the second book on FSI published by our Research Unit FOR 493.

We would like to thank the editors of Springer’s Lecture Notes in Computational Science and Engineering (LNCSE) for admitting our collection to this series for the second time, as well as Springer Verlag and, in particular, Dr. Martin Peters, for their most valuable support from the first idea to the final layout. Furthermore, we are deeply obliged to Michael Lieb, who did a great job in compiling the single contributions to a finally harmonic ensemble. Last, but not least, we want to express our thanks to DFG for more than six years of ongoing funding. Without this support, neither many of the results presented in the contributions of this book nor this volume itself would have become reality.

Munich and Darmstadt
May 2010

Hans-Joachim Bungartz
Miriam Mehl
Michael Schäfer
Contents

Multi-Level Accelerated Sub-Iterations for Fluid-Structure Interaction ... 1
A.H. van Zuijlen and H. Bijl

A Classification of Interface Treatments for FSI 27
C.A. Felippa, K.C. Park, and M.R. Ross

Computer Modeling and Analysis of the Orion Spacecraft Parachutes ... 53
K. Takizawa, C. Moorman, S. Wright, and T.E. Tezduyar

Stability Issues in Partitioned FSI Calculations 83
J. Vierendeels, J. Degroote, S. Annerel, and R. Haelterman

Hydroelastic Analysis and Response of Pontoon-Type Very Large Floating Structures .. 103
C.M. Wang and Z.Y. Tay

Efficient Numerical Simulation and Optimization of Fluid-Structure Interaction .. 131
M. Schäfer, D.C. Stermel, G. Becker, and P. Pironkov

An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation 159
R. Rannacher and T. Richter

Numerical Simulation and Benchmarking of a Monolithic Multigrid Solver for Fluid-Structure Interaction Problems with Application to Hemodynamics ... 193
S. Turek, J. Hron, M. Mádlík, M. Razzaq, H. Wobker,
and J.F. Acker
Numerical Simulation of Fluid–Structure Interaction Using Eddy–Resolving Schemes ..221
M. Münsch and M. Breuer

Partitioned Simulation of Fluid-Structure Interaction on Cartesian Grids ...255
H.-J. Bungartz, J. Benk, B. Gatzhammer, M. Mehl, and T. Neckel

An Explicit Model for Three-Dimensional Fluid-Structure Interaction using LBM and \(p \)-FEM ..285
S. Geller, S. Kollmannsberger, M. El Bettah, M. Krafczyk, D. Scholz, A. Düster, and E. Rank

An XFEM Based Fixed-Grid Approach for 3D Fluid-Structure Interaction ...327
W.A. Wall, A. Gerstenberger, U. Küttler, and U.M. Mayer

Fluid-Structure Interaction in the Context of Shape Optimization and Computational Wind Engineering351
M. Hojjat, E. Stavropoulou, T. Gallinger, U. Israel, R. Wüchner, and K.-U. Bletzinger

Experimental Benchmark: Self-Excited Fluid-Structure Interaction Test Cases ..383
J. Pereira Gomes and H. Lienhart

Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches ...413
S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer