Computational Space Flight Mechanics
Claus Weiland

Computational Space Flight Mechanics

Springer
The mechanics of space flight is an old discipline. Its topic originally was the motion of planets, moons and other celestial bodies in gravitational fields. Kepler's (1571 - 1630) observations and measurements have led to probably the first mathematical description of planet's motion. Newton (1642 - 1727) gave then, with the development of his principles of mechanics, the physical explanation of these motions.

Since then man has started in the second half of the 20th century to capture physically the Space in the sense that he did develop artificial celestial bodies, which he brought into Earth's orbits, like satellites or space stations, or which he did send to planets or moons of our planetary system, like probes, or by which people were brought to the moon and back, like capsules. Further he developed an advanced space transportation system, the U.S. Space Shuttle Orbiter, which is the only winged space vehicle ever in operation.

In the last two and a half decades there were several activities in the world in order to succeed the U.S. Orbiter, like the HERMES project in Europe, the HOPE project in Japan, the X-33, X-34 and X-37 studies and demonstrators in the United States and the joint U.S. - European project X-38. However, all these projects were cancelled.

The motion of these vehicles can be described by Newton's equation of motion. The problem is complicated firstly by the translational and rotational movements of the various needed non-inertial frames, defined for example for the proper physical description of the motion of celestial bodies as well as space vehicles. Secondly, during atmospheric flight of space vehicles the description of the aerodynamic forces and moments is a challenging task, which is also true for the propulsion and reaction control forces.

Today it is no problem to solve the governing equations in the most general form using discrete numerical methods. The numerical approximation schemes, the computer power and the modern storage capacity are in such an advanced state, that solutions with high degree of accuracy can be obtained in a few seconds. Therefore the general practice in this book is to provide numerical solutions for all discussed topics and problems. This could be the orbit determination by the orbital elements, Lagrange's perturbation equations for disturbed Earth's orbits, the flight of a mass point in flight path coordinates (three degree of freedom), and the flight of a controlled space vehicle in body fixed coordinates (six degree of freedom).
This book has been written not only for graduate and doctoral students but also for non-specialists who may be interested in this subject or concerned with space flight mechanics.

The author has worked for many years in the field of fluid dynamics at research institutes and in industry. In the mid of the 1990s his responsibility expanded to re-entry and landing systems, which of course had included the disciplines of guidance and navigation as well as trajectory determination, the classical operational area of space flight mechanics. At that time he evolved besides his management obligations a personal interest for the discipline of space flight mechanics in particular with view to numerical solution methods. He does not regard himself as a specialist in this field and it is with humility that he has contributed to the subject of this book to which so many have contributed so much more and where a lot of others are much more proficient.

December 2009

Claus Weiland
Acknowledgements

When I talked to my colleague E.H. Hirschel, who authored books on aerodynamics/aerothermodynamics and on the history of aeronautical research in Germany, about the idea of writing a book on computational space flight mechanics, I got the answer that this is a good but also a very challenging idea.

Therefore I started with some trial chapters. After in-depth discussions of content and design of these chapters and the cordial encouragement and support by him, I came to the decision to commence with the writing of such a book.

So, I am much indebted to him, also that he read several times all the chapters of the book and that he provided me with a lot of critical and constructive comments.

Many thanks are due also to O. Wagner, who reads parts of the book.

Last but not least I wish to thank my wife for her support and patience.

Claus Weiland
Table of Contents

1 Introduction ... 1
References ... 4

2 Coordinate Transformations .. 7
2.1 Basic Rotational Transformations .. 8
2.2 Time Derivative of Vectors in Moving Frames .. 11
 2.2.1 The Velocity Vector ... 11
 2.2.2 The Acceleration Vector .. 14
2.3 The Angular Velocity in a Body Frame: Euler Angles 17
2.4 Problems ... 22
References ... 23

3 Transformations between Often Used Coordinate Systems 25
3.1 Transformation from Geodetic to Body Frame .. 25
3.2 Transformation from Air Path to Body Frame .. 26
3.3 Transformation from Geodetic to Flight Path Frame 27
3.4 Transformation from Planetocentric to Orbital Frame 28
3.5 Problems ... 30
References ... 31

4 Kepler’s Laws of Planetary Motion and Newton’s Celestial Mechanics 33
4.1 Kepler’s 1. Law ... 33
4.2 Kepler’s 2. Law ... 34
4.3 Kepler’s 3. Law ... 36
4.4 Newton’s Celestial Mechanics ... 37
4.5 Problems ... 42
References ... 43

5 The Two-Body Problem ... 45
5.1 The Equation of Motion ... 45
5.2 The Energy Conservation .. 47
5.3 The Angular Momentum Conservation 48
5.4 The Orbit Equation ... 49
5.5 The Various Orbits ... 51
 5.5.1 The Eccentricity $e < 1$ 51
 5.5.2 The Eccentricity $e \geq 1$ 53
5.6 Test Cases for the Three Classes of Orbits 54
5.7 Time Dependency of the Orbital Variables r and θ and
 Kepler’s Equation ... 56
 5.7.1 The Elliptical Orbit 59
 5.7.2 Solutions of the Elliptical Test Case 1 62
 5.7.3 The Hyperbolic Orbit 64
 5.7.4 Solutions of the Hyperbolic Test Case 3 66
5.8 The Classical Orbital Elements 67
 5.8.1 Derivation of Relations 67
 5.8.2 Sample Calculations of Test Case 1 Using Orbital
 Elements ... 71
 5.8.3 Sample Calculations of Test Case 1 Using the General
 Equations of Planetary Flight 73
5.9 Perturbations of Orbital Dynamics 75
 5.9.1 Lagrange’s Planet Equations 76
 5.9.2 Numerical Solutions of Lagrange’s Planet
 Equations ... 80
 5.9.3 Numerical Solution of the General Equations of
 Planetary Flight for an Aspherical Earth 87
5.10 Problems ... 91
References .. 92

6 General Equations for Planetary Flight 93
 6.1 Equations of Translational Motion 93
 6.1.1 Flight without Bank Angle 93
 6.1.2 Flight with Bank Angle 101
 6.1.3 Equations Including Side Forces 103
 6.1.4 Flight with Propulsion Force 105
 6.1.5 Orbital Flight Around an Aspherical Earth 106
 6.2 Equations of Rotational Motion 109
 6.3 Set of Equations for Six Degree of Freedom Simulations ... 114
 6.4 Problems ... 118
References .. 119

7 A Resumé of the Aerothermodynamics of Space Flight
 Vehicles .. 121
 7.1 Conventions for Aerothermodynamic Data 121
 7.2 Flow Regimes and Physical Phenomena 123
7.3 Aerothermodynamic Data of the X-38 Vehicle .. 126
 7.3.1 Data of Longitudinal Motion ... 128
 7.3.2 Data of Lateral Motion ... 132
7.4 Problems ... 135
References ... 135

8 Three and Six Degree of Freedom Trajectory Simulations
 8.1 Three Degree of Freedom Simulation for a Winged Space Vehicle 137
 8.2 Three Degree of Freedom Simulation for a Non-Winged Space Vehicle 141
 8.3 Six Degree of Freedom Simulations for a Winged Space Vehicle 145
 8.3.1 Flight with Statically Stable Longitudinal Motion 145
 8.3.2 Flight with Statically Stable Longitudinal and Yaw Motion 150
 8.4 Problems ... 152
References ... 152

9 Numerical Applications of the General Equations for Planetary Flight 153
 9.1 Flight in Geostationary Orbit .. 154
 9.2 Flight in Low Earth Orbit ... 156
 9.2.1 Circular Equatorial Orbit (Inclination Angle \(\phi = 0 \)) 156
 9.2.2 Circular Orbit with Inclination Angle \(\phi \neq 0 \) 158
 9.3 Elliptical Orbits ... 160
 9.3.1 Elliptical Orbit without Aerodynamic Forces 162
 9.3.2 Elliptical Orbit with Aerodynamic Forces 167
 9.3.3 Elliptical Orbits with Flight in Other Directions Than West-East 172
 9.4 Re-entry Flight .. 174
 9.4.1 Deceleration of Space Vehicles and g-Loads 180
 9.5 Planetary Flight and Aero capturing Mission 186
 9.6 Artillery Ballistics ... 193
 9.6.1 Projectile’s Flight without Aerodynamic Drag 193
 9.6.2 Projectile’s Flight with Aerodynamic Drag 195
 9.6.3 The Principle Equation of Ballistics 199
 9.6.4 Approximate Solutions of the Principle Equation of Ballistics 203
 9.6.5 Shots of Shells towards the Four Cardinal Points 206
 9.7 Another Illustrating Case .. 208
 9.8 Conclusion .. 212
 9.9 Problems .. 213
References ... 214
10 The Earth Atmosphere .. 215
 References ... 221

11 Solution of Problems ... 223
 11.1 Problems of Chapter 2 223
 11.2 Problems of Chapter 3 224
 11.3 Problems of Chapter 4 225
 11.4 Problems of Chapter 5 228
 11.5 Problems of Chapter 6 229
 11.6 Problems of Chapter 7 231
 11.7 Problems of Chapter 8 232
 11.8 Problems of Chapter 9 232
 Reference .. 233

Appendix A Our Planetary System 235
 A.1 The First Four Planets in the Solar System 235
 A.2 The First Six Planets in the Solar System 236
 A.3 The Entire Solar System 237
 References .. 238

Appendix B FORTRAN Codes 239
 B.1 General Equations for Planetary Flight - Three Degree of
 Freedom Simulation 239
 B.2 Orbit Determination with Orbital Elements 245
 B.3 Lagrange’s Planet Equations 250
 References .. 259

Appendix C MATLAB Codes ... 261
 C.1 Kepler’s Equation for Elliptical Orbits 261
 C.2 Area Approach for Elliptical Orbits 263
 C.3 Area Approach for Hyperbolic Orbits 266
 C.4 Six Degree of Freedom Simulation 268
 References .. 282

Appendix D Constants, Relations, Units and Conversions 283
 D.1 Constants and Relations 283
 D.2 Units and Conversions 284
 References .. 286

Appendix E Symbols .. 287
 E.1 Latin Letters .. 287
 E.2 Greek Letters .. 290
 E.3 Indices ... 291
 E.3.1 Upper Indices 291
 E.3.2 Lower Indices 291
 E.4 Other Symbols .. 292
Appendix F Glossary, Abbreviations, Acronyms 293
 F.1 Glossary .. 293
 F.2 Abbreviations, Acronyms 294

Name Index .. 295

Subject Index .. 297