Dyke Swarms: Keys for Geodynamic Interpretation
Dyke Swarms: Keys for Geodynamic Interpretation

Foreword by Richard E. Ernst
Foreword

Only 25 years have passed since the initial conference that launched modern mafic dyke swarms studies. In 1985, Henry Halls gathered researchers from around the world to the Erindale Campus of the University of Toronto, Toronto, Canada for the first International Dyke Conference (IDC-1) that has led to subsequent gatherings in Australia (1990), Israel (1995), South Africa (2001), Finland (2005) and to the very successful 6th International dyke conference (IDC-6) recently held in Varanasi, India (February 4–7, 2010), organized by Rajesh K. Srivastava, and being celebrated in this volume. Book volumes from the prior dyke conferences were published in 1987 (Halls and Fahrig, Geol. Assoc. Canada Spec. Pap. 34), in 1990 (Parker et al., Balkema publisher), in 1995 (Baer and Heimann, Balkema publisher) and 2006 (Hanski et al., Taylor-Francis publisher).

Pioneers in Dyke Swarm Studies

In earlier days (prior to 1985) mafic dyke swarms were generally poorly understood and little appreciated by the broader geological community; they were typically conceived of as distractions to more important basement or supracrustal geology. However, some early interest in dykes came from paleomagnetism, and to some degree from geochronology and geophysical modeling (because of the simple tabular geometry of dykes). The work and inspiration of pioneering scientists opened new frontiers for dyke swarm studies. For instance, Walter Fahrig of the Geological Survey of Canada systematically (year-after-year starting in the early 1960s) distinguished the main swarms of the Canadian Shield, leading to the identification of the first radiating swarms. Another pioneer was Henry Halls (University of Toronto) who developed many key conceptual ideas that were summarized in his classic and influential paper, Halls (1982, Geoscience Canada). In 1985 Henry Halls also launched the series of International Dyke Conferences whose ongoing legacy we are celebrating in this volume. Elsewhere in the world, notable scientists were also making initial progress on characterizing the swarms of their regions (e.g., see regional papers in Halls and Fahrig, eds., 1987, Geol. Assoc. Canada Spec. Pap. 34).
For India, the history of dyke swarm research is reviewed in Srivastava et al. (in Srivastava et al., eds., 2008, Narosa publishers).

Through the vision of all these pioneering scientists, dyke swarms are now recognized as key indicators in geodynamic processes, the topic of the IDC-6 conference that has led to this volume.

Our early and continuing progress in dyke swarm studies has primarily come from the contributions of geochronology (especially the U-Pb method), paleomagnetism, and geochemistry which allow us to distinguish and characterize individual dykes, and group them into swarms, and from aeromagnetic maps which allow tracing of regional swarm distributions even under younger cover.

More recent progress derives from recognizing that regional-scale dyke swarms can be linked with other coeval intrusions, and volcanism, and related felsic magmatism, and collectively grouped into broader magmatic associations including Large Igneous Provinces (LIPs). This is leading to a prominent role for dyke swarms in efforts involving LIPs to reconstruct past supercontinents (e.g., www.supercontinent.org; Ernst and Bleeker, 2010, Can. J. Earth Sci., v. 47)

Dyke Swarm Myths

Recent studies have burst various long-standing myths about dyke swarms, and have resulted in important insights such as the following:

1. **Trend matters**: Various trends of dykes in a single region (e.g. “massif”) are sometimes assumed to all have the same age. However, from detailed studies, particularly in the Superior craton of the Canadian Precambrian Shield, it is now recognized that each distinct dyke swarm typically has a consistent linear trend or regional radiating pattern. Crosscutting regional dyke sets with different trends will almost certainly have different ages and belong to different swarms.

2. **Dominant emplacement as Mode 1 cracks (i.e. normal to sigma 3)**: Dykes sets that have regional trends defining an acute angle have often been inferred to be coeval and to be emplaced along conjugate shear sets. However, in every proposed case, subsequent study has revealed that the two trends of dykes have different ages and so are unrelated. Thus we are confident that regional dyke swarms are typically emplaced along principal stress directions (i.e., parallel to the maximum compressive stress, sigma 1, and normal to the minimum compressive stress, sigma 3), and are not emplaced along shear stress directions, except perhaps locally.

3. **Horizontal emplacement can be important**: It was automatically assumed that dykes were fed vertically from underlying source areas. However, starting in the 1980s, it became increasingly clear (based on magnetic fabric studies as well as modelling and other considerations) that dyke swarms can also be emplaced for long distances laterally in the crust into cratonic interiors (i.e. up to > 2,000 km).
A common style might be for vertical emplacement near the focus of a radiating swarm (above a mantle plume head) and lateral flow at all greater distances from the focus.

(4) *Each dyke is a unique event:* Each dyke in a swarm represents a distinct and independent emplacement event. This is evident from studies that have shown that pairs of long dykes (say 200 km long) that were only separated by a narrow gap (e.g., 10–20 km) could exhibit a consistent chemistry and paleomagnetic direction along the complete length of each dyke and yet be distinct in composition and paleomagnetic direction from that of the other dyke.

(5) *Radiating dyke swarms are the norm:* Work in the Superior craton of the Canadian Precambrian Shield has demonstrated that major Paleoproterozoic dyke swarms radiate into the interior of the Superior craton from discrete points along its margin. This observation is consistent with the identification of discrete mantle plume and associated breakup (or attempted breakup) events along the cratonic margin that collectively represent breakout of the Superior craton from a larger continent. As intraplate magmatic units from around the world continue to be precisely dated, such radiating dyke patterns are also becoming evident on other cratons (e.g. the Slave and Indian cratons). Similarly, the Phanerozoic record shows that LIPs are preferentially centred along the breakup margins within the Gondwana-Pangea supercontinent (in some cases the radiating swarms can be observed, but generally flood basalts obscure the plumbing system). It therefore seems likely that every major continental block through time will similarly host radiating dyke swarms (and their associated LIPs) which can be used to locate mantle plumes and help sort out the breakup history of Precambrian supercontinents.

LIPs and Their Dyke Swarms as a System

I would like to address a frontier issue here. As more and more dyke swarms around the world are precisely dated, it becomes increasingly clear that regional dyke swarms belong to LIP events. In their fullest context such LIP events consist of flood basalts, their plumbing systems of dykes, sills and layered intrusions, and also felsic magmatism produced from subcrustal magmatic underplating. LIPs are often associated with carbonatites and, in some cases, even with kimberlites. In addition, it is clear that LIPs are linked with both magmatic ore deposits (e.g. Ni-Cu-PGE, Cr, and Fe-Ti-V) and hydrothermal deposits resulting from the thermal pulse setting up fluid circulation patterns that redistribute and concentrate metals. In addition, LIPs can have a role in petroleum exploration: (1) oceanic LIPs (plateaus) can cause anoxia events resulting in significant production of black shales (oil source rocks) (e.g., Kerr et al. 1998, J. Geol. Soc., London, v. 155), (2) LIPs associated with breakup can cause a thermal pulse that affects the thermal maturation of oil, (3) sills can also provide structural traps for hydrocarbons. Similarly, dykes and sills can have an effect on ground water circulation and the geometry of aquifers.
For all these reasons, I expect many new insights to arise from looking at LIPs and their dyke swarms as integrated mass/thermal transfer systems that in a complicated way: (1) transport magma upward into the lithosphere via point sources such as plumes, and linear sources such as rifts and translithospheric faults, (2) redistribute the magma through the mantle lithosphere and crust and also to the surface, and (3) along the way the magma interacts with host rocks to potentially produce ores of various types, and affect hydrocarbon potential and regional aquifers.

Present IDC-6 Volume

The IDC-6 conference and the present volume are focused on “Dyke Swarms as Keys for Geodynamic Interpretation”. This title accurately reflects the current ‘state of the art’, and represents a worthy continuation of the tradition of volumes produced after previous Dyke Swarm Conferences.

Given that IDC-6 was hosted in India then it is appropriate for a concentration of papers on Indian dyke swarms to appear in the current volume. Such an opportunity to shine the light on less well understood dykes of a particular region is the main reason that each IDC is hosted in a different country. Of the 30 papers in the current volume, 17 are from India of which 2 are on the classic 65 Ma Deccan flood basalt province and the remainder on older swarms. The other papers in the *Dykes of Gondwana* group address events in Antarctica, Australia, Brazil, Iran, Madagascar, Namibia, Oman, Pakistan, and South Africa. Most of the Gondwana papers are focussed on geochemistry and mostly on mafic units, but a few address felsic or intermediate dykes, and some address associated hydrothermal effects and one addresses U-Pb dating of kimberlites. The *Dykes of Laurasia* group contains five papers, two of which are on U-Pb geochronology in the UK and Greenland, one on melt emplacement in a deformational environment (Kazakhstan), and two of which assess patterns of crystallization in dykes (both from Russia).

We are in a golden era of mafic dyke swarm studies and need to continue to focus on understanding their regional distributions, and relationships to other coeval magmatism, and associated ore-deposits. Expanded U-Pb geochronology will be key to progress as well as asking questions about the context of dykes in the broader LIP systems.

Ottawa, Ontario, Canada

Richard E. Ernst
Preface

Dyke Swarms: Keys for Geodynamic Interpretation

Although research on dyke rocks has been of interest to many geologists since eighteenth century, 25 years ago Henry Halls realized that systematic study of dykes, particularly mafic dyke swarms, may play an important role in understanding many geological problems. Dykes swarms are key elements to understanding geodynamic processes. Their study is particularly important for understanding Precambrian terrains. We know that Earth history is punctuated by events during which large volumes of mafic magmas were generated and emplaced by processes unrelated to “normal” sea-floor spreading and subduction. These are recognized as Large Igneous Provinces (e.g. Coffin and Eldholm, 2005; Bryan and Ernst, 2008). Study of dyke swarms helps to recognize Large Igneous Provinces (LIPs), particularly for the Precambrian period. Many LIPs can be linked to regional-scale uplift, continental rifting and breakup, and climatic shifts (e.g., Ernst et al., 2005 and references therein). In the Paleozoic and Proterozoic, LIPs are typically deeply eroded. They are represented by deep-level plumbing systems consisting of giant dyke swarms, sill provinces and layered intrusions. In the Archean the most promising LIP candidates are greenstone belts containing komatiites. Therefore, such studies are considered to be an important tool for paleocontinental reconstructions. LIPs (and their dyke swarms) may help to solve the reconstruction puzzle for pre-Pangean supercontinents back to 2600 Ma as discussed in recent publications (e.g. Bleecker and Ernst, 2006; Ernst and Srivastava, 2008; Ernst and Bleecker, 2010; Ernst et al., 2010) and showcased in a recent special issue of Precambrian Research on “Precambrian Large Igneous Provinces (LIPs) and their dyke swarms: new insights from high-precision geochronology integrated with paleomagnetism and geochemistry” (Srivastava et al., eds, 2010).

Recognizing the unrealized potential and importance of dyke swarm studies, Henry Halls started a series of International Dyke Conferences in 1985. The first conference was held at the University of Toronto, Mississauga Campus, Canada. It attracted over 120 scientists from 20 countries. A book “Mafic Dyke swarms” (Halls and Fahrig, 1987) was published based on the conference proceedings. Shortly after, an IGCP project, number 257, “Precambrian Dyke Swarms” was launched.
by Henry Halls, this kept the momentum going in terms of bringing dykes to the
attention of the scientific community. Also important was special session orga-
nized by Henry Halls “Giant Radiating Dyke Swarms and Mantle Plumes” at the
Geological Association of Canada annual meeting in 1991. During IGCP 257 the
idea was borne and finally realized that an International Dyke Conference should
be held every 5 years. An important feature of all IDC meetings is the associated
field trips. The second IDC meeting (IDC-2) was held in Adelaide, Australia in
September 1990 and was organized by Peter Rickwood, Dave Tucker and John
Parker. It resulted in a proceedings volume (Parker et al., 1990). The third con-
ference (IDC-3) was held in Jerusalem, Israel, in September 1995, where the
principal organizer was Gideon Baer and Ariel Heimann and again an excellent
proceedings volume was produced (Baer and Heimann, 1995). The fourth meeting
(IDC-4) was held June 2001 in a game reserve in KwaZula, Natal, South Africa and
organized by Mike Watkeys. IDC-5 was held in July–August 2005 in Rovaniemi,
in the centre of Finland, and organized by Jouni Vuollo and Lauri Pesonen. A
proceedings volume (Hanski et al., 2006) was subsequently published, including
contributions from IDC-4. IDC-6 was held at Banaras Hindu University, Varanasi
during 4th to 7th February 2010. Considering multifaceted importance of study of
dykes, the Organizing Committee chose the overall theme “Dyke Swarms: Keys for
Geodynamic Interpretation” with the following 12 sub-themes:

1. Regional maps of dyke swarms and related magmatic units
2. Emplacement mechanism of dykes
3. Petrology, geochemistry and petrogenesis of dykes
4. Geophysics of dykes with special reference to paleomagnetism, new aeromag-
netic maps and remote sensing studies
5. Geochronology of dykes
6. Dykes as plumbing system for Large Igneous Provinces
7. Giant dyke swarm and Supercontinents
8. Alkaline dykes (including kimberlites, lamproites, lamprophyres and carbon-
atites)
9. Synplutonic mafic dykes
10. Dyke swarms and planetary bodies
11. Links to mineralization: e.g. U, PGE & Au, base metals, diamond, Ni-Cr-Co,
laterite, etc.
12. Miscellaneous: any other research related to dykes

Out of 175 abstracts submitted for the conference, 168 were included in the Abstract
Volume. 52 participants were from abroad, covering 15 countries, 86 participants
were from different parts of India and 128 local participants attended the conference
(see group photo). In addition to main conference, there were four field trips. These were

1. Mafic dyke swarms and synplutonic dykes emplaced within the Dharwar craton,
 Southern India (29th January – 4th February 2010)
2. Dyke Swarms of the Deccan Volcanic Province (29th January – 4th February 2010)
3. Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India (7th – 10th February 2010)
4. Mafic Intrusive Rocks from the Western Himalaya (7th – 12th February 2010)

Continuing the tradition of a volume associated with the IDC, we herein offer the IDC6 proceedings volume “Dyke Swarms as Keys for Geodynamic Interpretation”. A total 44 papers were submitted for the IDC-6 volume and after peer review 30 were accepted. All accepted manuscripts were submitted to Springer-Verlag at the end of August 2010. The manuscripts are divided into two parts i.e. “Dykes in Gondwana” and “Dykes in Laurasia” and are arranged in alphabetical order, country-wise.

Dykes in Gondwana

Twenty-five manuscripts fall in this group. **Sushchevskaya and Belyatsky** discuss geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica) and suggest that plume-related magmatism
within Antarctica shows the distribution of the Karoo-Maud plume, which is associated with splitting of the Gondwana continent and formation of the Indian Ocean. The time and spatial position of the dykes indicate eastward spreading of the plume material from Dronning Maud Land to the Schirmacher Oasis over at least 10 Ma. Oliveira studied the Late Archaean Uauá mafic dyke swarm of the São Francisco craton, Brazil. His studies are based on geological mapping and field relations which recognizes two dyke swarms in the Uauá block. Dyke branching suggests magma flow towards NE and this information is used to discuss potential centres of magma propagation in the ancient São Francisco-Congo craton.

There are five papers on the dykes of Dharwar craton, India. The Proterozoic mafic dyke swarms exposed in the Dharwar craton (Southern India) are of special interest because the craton has been a principal constituent of several ancient supercontinents (e.g. Rogers, 1996; Heaman, 2008; Srivastava et al., 2008). A number of reliable age determinations have been reported (e.g. Halls et al., 2007; French et al., 2008; French and Heaman, 2010). An integrated study (paleomagnetic, geochronological and geochemical) of Proterozoic dykes from Dharwar craton, Southern India by Piispa et al. supports the presence of at least two different E-W trending dyke swarms (~2370 and ~1890 Ma) in the Dharwar craton. These results are also consistent with the possibility that the Bastar and Dharwar cratons were amalgamated before ~2370 Ma. Goutham et al. provide integrated data on the Proterozoic mafic dykes located south of the southern margin of the Cuddapah Basin, India in two papers. In the first paper they provide the geochemistry of the mafic dykes and discuss their petrogenesis. They are interpreted as intraplate basalts with some crustal contamination or involvement of subduction modified lithospheric mantle (probably metasomatised). In the second paper they provide palaeomagnetism and Ar/Ar geochronology. The alternate interpretations are provided: Either the dykes record an Early Neoproterozoic continental rifting event or the magmatism and its magnetism are of Palaeo-Mesoproterozoic age and were overprinted during the Eastern Ghats (Grenville age) orogeny. Mohanty examined the palaeomagnetic database and Palaeoproterozoic evolution of the Indian and Western Australian cratons to determine the possible movement patterns for the assembly of Columbia (Nuna). He concluded that between 2500 to 1800 Ma the South Indian craton moved from high latitude to an equatorial position. Mafic dykes of ~2400 Ma age from the Western Australia and the South India provide evidence for the juxtaposition of the Yilgarn craton against the east coast of India and support the existence of a supercontinental block “SIWA” (an acronym for South India and Western Australia). Indian dykes of 2100–1800 Ma were possibly related to the breakup of SIWA at ~2000 Ma. Sesha Sai presented petrological and mineral chemical data on a picrite sill from the Peddakudala-Velpula area, in the southwestern part of the Proterozoic Cuddapah basin, Andhra Pradesh, India. This picrite body contains nearly 38% olivine (forestriite) by mode along with an enstatite-plagiophiste-plagioclase-magnetite-chrome-spinel association, depleted HREE signature and the presence of mantle xenoliths of garnet-lherzolite composition.

Gold mineralization reported from the Wayanad, Southern Granulite Terrain, India occurs closely associated with probable mantle-derived quartz-carbonate
dykes. Pruseth used field criteria, geochemistry of pyrite-hosted fluids and Rb-Sr geochronology of the quartz-carbonate dykes to constrain the source(s) for these auriferous veins.

The next 11 manuscripts cover different aspects of mafic dykes exposed in different cratons of Indian shield. Lala et al. presents rock and mineral geochemistry (including isotopes) and paleomagnetic data on the mafic dykes of the Rewa Basin, central India. It is suggested that these dykes are late stage intrusions of Deccan magma along the Narmada lineament and were possibly emplaced along intrabasinal faults within the Rewa and other Gondwana basins of eastern India. The tectonic significance and age of doleritic sill near Bandhalimal in the Singhora protobasin of Chhattisgarh Basin, Central India is the subject of Sinha et al.’s manuscript. Their observations confirm the existence of igneous/hydrothermal activity in the Chhattisgarh Basin which is consistent with the Rb/Sr age of sill. A concomitant thermal event in the basin at ∼1100 Ma with related hydrothermal activity is thus proved by this communication. Mishra et al. discussed the genesis of the mafic-ultramafic intrusives and extrusives in relation to the basement gneiss of the Central Indian Tectonic Zone and suggested that the basement gneisses has been dissected by numerous mafic dykes, Padhar mafic–ultramafic complex and pillow lavas of Betul supra-crustal belt. They show depleted mantle model ages for the mafic volcanics of between 1951 and 2320 Ma and that for a pyroxenite from the PMUM of 2770 Ma. Based on the available age data they suggest that the basement gneiss and the PMUM rocks appear to have acted together as basement for the younger mafic magmatic dykes and flows. These basement rocks appear to have influenced the evolution of the younger volcanics and dykes through limited contamination.

Different generations of Precambrian mafic dyke swarms are well documented in different parts of the Archaean Bastar craton (Srivastava and Gautam, 2009). In the present communication Gautam and Srivastava present petrological and geochemical characteristics of the early Precambrian mafic dyke swarm from central part of Bastar craton. The authors conclude that there is a co-genetic relationship between these dyke samples and probably crystallized from a melt originated by ~25% melting of a depleted mantle source followed by 30–40% fractional crystallization. Chakraborty et al. studied mafic dykes that intrude the tremolite-zone siliceous dolomites of Palaeoproterozoic Mahakoshal Group of rocks of Central India which are exposed near Jabalpur, Madhya Pradesh, India. Fluid-rock interactions (in a partially open system) triggered substantial mass and fluid transfer across the contact between mafic dykes and the enclosing dolomitic marble. This mineralogical transformation of the mafic dykes changed the physical properties and allowed strain concentration preferentially along the dyke margins. The next paper by Bose et al. also deals with metamorphosed mafic dykes, in this case, exposed around Chilka Lake granulites, in the Eastern Ghats Belt, India. These mafic bodies were metamorphosed and deformed by tectono-thermal events at ca. 800–500 Ma. Ray et al. have explored the petrological controls on rheological inversion of a suite of deformed mafic dykes from parts of the Chhotanagpur Granite Gneiss Complex of eastern India; they propose a viable mechanism for the development of fish-head boudins. Formation of the dyke swarms in this area is correlated with the ca. 1.5 Ga
extension of their gneissic basement. Vallinayagam studied acid dyke rocks from the Malani Igneous Suite (MIS), northern Peninsular India. Petrological and geochemical studies of MIS dyke rocks indicate that they contain rare metals, rare earths and radioactive mineral resources.

Hari and Swarnkar present the petrogenesis of basaltic and doleritic dykes from Kawant in the Chhotaudepur province of Deccan Traps. The results of mass balance calculations for these Deccan units suggest a generalized differentiation scheme from picrite to the most evolved rock that involved removal of olivine, pyroxene and Fe-Ti oxides in the proportion 44:50:6 with ~ 64% of the magma remaining. Randive studied xenoliths encountered in the lamprophyre and picrobasalt dykes of Bakhatgarh-Phulmal area, Madhya Pradesh, India. The petrographic and geochemical characteristics of these xenoliths indicate that these are crustal in origin were incorporated into the magma by disaggregation of the country rocks. These xenoliths represent the quartzo-feldspathic residues left in the host magma after to variable degrees of partial melting of basement rocks. Ghose and Chatterjee used textural evidence to demonstrate felsic melt emplacement at a microscopic scale in quenched host basalt. The inter-relationship between basalt, plagiogranite and late-granitoids as well as source of sulphide mineralsation were evaluated on the basis of petrography, field relationships, and limited geochemical data. This study indicates that the origin of the late-granitoid intrusives in basalt may be related to hydrothermal metamorphism and partial melting of basalt in the contact aureole of a magma chamber beneath an oceanic spreading center.

Torkian describe magma mingling processes in the Parishan pluton in Qorveh area, southeastern Sanandaj, Iran. He suggested that the mafic enclaves could have been formed by magma mingling process within the host granitoid magma. Cucciniello et al. use geochemical data to model the evolution of Cretaceous mafic and silicic dykes and spatially associated lavas in central-eastern coastal Madagascar. They suggest that magmatic evolution of the mafic dykes is dominated by fractional crystallization of plagioclase and clinopyroxene with minor olivine. The Vatomandry silicic rocks are the result of prolonged fractional crystallization from basalt parental magmas coupled with small amounts of crustal contamination. They also report a 40Ar–39Ar date for rhyolite from the Sakanila massif, southwest of Vatomandr to evaluate the age relationship between basalt and rhyolite in this silicic massif of the east coast.

Mafic dyke swarms are major components of the South Atlantic Large Igneous Province, which originated during the Cretaceous break up of western Gondwana. Wiegand et al. present magnetic fabric studies on these mafic dykes at a volcanic rifted margin in the Henties Bay – Outjo Dyke Swarm, NW Namibia. The dykes were emplaced in the NE-SW trending, Neoproterozoic Damara mobile belt. Their results point to magma ascent both far inland and close to the coast. Subhorizontal magma flow directions can be observed in each area. Since there is no lateral continuity in dyke trends because of segmentation, strictly horizontal transport over long distances is not possible. They presume a complex magma flow model, with multiple conduits of magma ascent for the Henties Bay-Outjo dyke swarm. Python et al. studied diopsidites and rodingites (which are two specific kinds of altered mafic
dykes) that outcrop in the mantle section of the Oman ophiolite. Both result from alteration in the Ca-rich environment of the mantle or pre-existing gabbroic dykes. **Khan et al.** presented petrogenetic studies on mafic dykes of the Kohistan paleo-island arc-back-arc system, from the Himalayas of North Pakistan. Mafic dykes of the Jaglot Group show enriched MORB-type affinity whereas mafic dykes of the Chilas Complex and the tholeiitic dykes of the Kohistan Batholith give island arc type signatures. The authors suggest that all mafic dykes of the area are derived by the partial melting of depleted, heterogeneous mantle and enriched mantle sources during island arc, continental margin and back-arc tectonic settings. The last paper in this section is on the Monastery Kimberlite, South Africa. **Noyes et al.** investigated for the first time the feasibility of U-Pb ilmenite geochronology as a new tool for determining the age of kimberlite emplacement and formation of kimberlite indicator minerals. The U-Pb results for nine ilmenite fractions prepared from six megacrysts yield a date of 95.0±14.0 Ma, which is less precise but is in good agreement with the 90.1±0.7 Ma composite age determined by other radiometric techniques for the Monastery kimberlite. This study has also demonstrated that the large variations in ilmenite $^{238}\text{U}/^{204}\text{Pb}$ ratios are primary and indicates the feasibility of dating a single ilmenite megacryst. They also suggest that this could have importance for evaluating the provenance of ilmenite from indicator mineral suites during diamond exploration.

Dykes in Laurasia

There are five papers included in this section. **Hamilton and Pearson** provided a precise U-Pb age determination of 297.4±0.4 (21σ) Ma for baddeleyite for the Great Whin Dolerite Complex (GWDC), northeastern England. This new age places the most precise minimum constraint on the absolute age of the Permo-Carboniferous stratigraphic boundary in the UK and provides a maximum age of mineralization in the North Pennine orefield. The precise age determination of this large intrusive complex also permits improved understanding of the timing of structural evolution in the Northumberland basin. The reversed paleomagnetic polarity of the GWDC is in accord with intrusion during the Kiaman reversed superchron and provides firm geochronological support for establishment of this long-lived reversed interval before 297 Ma. **Halls et al.** presented data on the Melville Bugt dyke swarm of Greenland. They obtained paleomagnetic and geochemical data and U-Pb age for this NNW-trending dyke swarm. This study suggest that at 1.6 Ga Greenland lay in such a position to allow the Melville Bugt dyke swarm to trend towards the 1.5–1.6 Ga Fennoscandian rapakivi province, raising the conjecture that the dyke swarm was fed laterally from this magmatic centre. Satellite imagery from southeast Greenland shows several NNW-trending dykes that may represent a southerly continuation of the Melville Bugt swarm, necessary if the dykes are to have a source in Fennoscandia. **Dokukina and Konilov** discuss mafic melt emplacement during the shock deformation in the subvolcanic environment. They have taken Tastau volcanoplutonic ring complex, Eastern Kazakhstan as an example. On the basis
of their study they propose the a synkinematic model of mafic melt fragmentation and mixing between magma and deforming rock at the hypabyssal levels in the crust (i.e. at about 3 km deep). The next two papers discuss chemical zonation in thin dykes. In the first paper Chistyakova and Latypov studied a 16 cm thick, fine-grained, dacitic dyke from Southern Urals that reveals a remarkable internal zonation with a systematic inward increase in normative An (100An/(An+Ab)), normative Opx, and whole-rock MgO and FeO, and a decrease in normative Pl content, whole-rock SiO₂, Na₂O, Ba and Sr. All these compositional trends indicate that the dyke becomes more primitive in composition inwards from its margin, the opposite to normal in situ fractionation. This suggests that, despite being fine-grained, the dacitic dyke should be interpreted as a cumulate that provides only indirect information on the parental magma composition. In the other paper they (Latypov and Chistyakova) present primary and secondary chemical zonation in the Vochelambina dolerite dyke, Kola Peninsula, Russia. This 140 cm thick dolerite dyke has an unexpected internal zonation that combines the features of both reverse and normal differentiation trends. These trends likely reflect increasing alteration caused by the concentration of post-magmatic fluids in the centre of the dyke (secondary zonation).

Future Perspectives

Richard Ernst in his Foreword rightly mention that we are in a golden era of mafic dyke swarm studies and that there is a need to focus on understanding their regional distributions, and relationships to other coeval magmatism, and associated ore-deposits. Most important part of future work would be robust U-Pb geochronology and paleomagnetic studies which certainly help to understand paleocontinental reconstructions, particularly during Precambrian.

During the concluding session of IDC-6 it was also recommended that, in the future, dykes should be studied in the context of global or regional geodynamics and they can be especially useful in deciphering paleo-plumes and related LIPs and as a tool for deciphering supercontinent reconstructions. M. Ramakrishnan emphasized the need to obtain expanded coverage of low altitude (<500 feet) aeromagnetic maps and the need for developing baddeleyite dating techniques through collaborative efforts. Henry Halls suggested, in the context of future Indian research on dykes, that a concerted program of study be carried out on the Godavari rift that separates the Dharwar and Bastar cratons. It was observed that this rift must be of major importance since it separates two Archean cratons with completely different ages and trends of dyke swarms.

The LIP record for a crustal block can be summarized as a barcode and the LIP barcodes of different blocks can be compared to determine which blocks have matching barcodes and were therefore probably nearest neighbors during the interval of matching (Bleeker and Ernst, 2006; Ernst et al., 2008). We need robust U-Pb geochronology of major dyke swarms to achieve this goal. In the context of Indian shield, very limited precise ages for mafic dykes are available (e.g. Halls et al.,
As high-precision U-Pb geochronology is increasingly applied to the multitude of poorly dated swarms of dolerite dykes and sills of India, it will be expected that barcode comparisons between the Indian Shield and other crustal blocks will become increasingly more robust for testing paleocontinental reconstructions.

References

Ernst RE, Wingate MTD, Buchan KL, Li ZX (2008) Global record of 1600–700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents Precamb Res 160: 159–178
Acknowledgements

This proceedings volume presents a collection of 30 papers (out of 44 submitted) which were presented during the 6th International Dyke Conference (IDC-6). At the foremost, I would like to thank all the participants of IDC-6 who made this event as a grand success. I am grateful to those who have taken interest in this proceedings volume and submitted their work for consideration. I wish to thank all the contributors to this volume for their full support and cooperation during its preparation by responding very promptly and efficiently. It is also a pleasure to acknowledge that many of the authors have chosen to submit contributions containing new data, including some significant findings, to this volume contrary to the solely review type papers that characterise many such endeavours.

I am grateful to Prof. D. P. Singh, Vice-Chancellor, Banaras Hindu University and Prof H. B. Srivastava, Head, Department of Geology and other University authorities for their unstinted support and constant encouragement.

All efforts were made to complete this volume within 6 months time from the last date of submission of the manuscripts (i.e. February 28, 2010). All accepted manuscripts were submitted to Springer-Verlag at the end of August 2010. I am grateful to Springer-Verlag, particularly Chris Bendall, Helen Rachner and Janet Sterritt for efficiently handling the final manuscripts and bringing out the volume in time.

My special thanks go to few people who helped and encouraged me a lot during organization of IDC-6, field-trips, and also towards the completion of this volume.

All the events related to the IDC-6 were made possible by the financial support of several organizations including Department of Science & Technology, Ministry of Earth Sciences, Council of Scientific and Industrial Research, Oil & Natural Gas Corporation Ltd., Cameca & Gannon Dunkerley & Co. Ltd., Hutti Gold Mines Ltd., Banaras Hindu University, National Geophysical Research Institute, Board of Research in Nuclear Sciences, Buehler & Censico International Pvt. Ltd., Atomic Minerals Directorate for Exploration and Research, and Indian Association of Geochemists. The Geological Society of India is thanked for constant technical support since beginning.

Final thanks must go to my wife Ranjana and son Chinmaya for their enormous patience and constant support all these months.

Varanasi, India

Rajesh K. Srivastava

September 27, 2010
Contents

Part I Dykes in Gondwana

1 Geochemical and Petrological Characteristics of Mesozoic Dykes from Schirmacher Oasis (East Antarctica) ... 3
 Nadezhda Sushchevskaya and Boris Belyatsky

2 The Late Archaean Uauá Mafic Dyke Swarm, São Francisco Craton, Brazil, and Implications for Palaeoproterozoic Extrusion Tectonics and Orogen Reconstruction .. 19
 Elson P. Oliveira

3 An Integrated Study of Proterozoic Dykes, Dharwar Craton, Southern India .. 33

4 Proterozoic Mafic Dykes from the Southern Margin of Cuddapah Basin, India: Part 1 – Geochemistry and Petrogenesis ... 47

5 Proterozoic Mafic Dykes from the Southern Margin of Cuddapah Basin, India: Part 2 – Palaeomagnetism and Ar/Ar Geochronology .. 73
 M.R. Goutham, K.V. Subbarao, C.V.R.K. Prasad, J.D.A. Piper, and D.P. Miggins

6 Palaeoproterozoic Dykes and Event Stratigraphy of the South Indian and Western Australian Cratons: Implications for Assembly of an Archaean Supercontinent “SIWA” and Its Breaking ... 95
 S. Mohanty
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrology and Mineral Chemistry of Picrite Sill from Peddakudala-Velpula Area, in Southwestern Part of the Proterozoic Cuddapah Basin, Andhra Pradesh, India</td>
<td>115</td>
</tr>
<tr>
<td>V.V. Sesha Sai</td>
<td></td>
</tr>
<tr>
<td>Mantle-Derived Carbonate Fluid Alteration and Gold Mineralization in Southern Granulite Terrain, Wynad, India</td>
<td>125</td>
</tr>
<tr>
<td>K.L. Pruseth, V. Ravikant, S. Varghese, and R. Krishnamurthi</td>
<td></td>
</tr>
<tr>
<td>Mafic Dykes of Rewa Basin, Central India: Implications on Magma Dispersal and Petrogenesis</td>
<td>141</td>
</tr>
<tr>
<td>Trisha Lala, A.K. Choudhary, S.K. Patil, and D.K. Paul</td>
<td></td>
</tr>
<tr>
<td>Tectonic Significance and Age of Doleritic Sill Near Bandhalimal in the Singhora Protobasin of Chhattisgarh Basin, Central India</td>
<td>167</td>
</tr>
<tr>
<td>Petrogenesis and Tectonic Setting of the Proterozoic Mafic Magmatic Rocks of the Central Indian Tectonic Zone, Betul Area: Geochemical Constraints</td>
<td>189</td>
</tr>
<tr>
<td>Petrology, Geochemistry and Petrogenesis of Early Precambrian Mafic Dyke Swarm from Dondi-Bhanupratappur-Keshkal Area, Central Bastar Craton, India</td>
<td>203</td>
</tr>
<tr>
<td>Gulab C. Gautam and Rajesh K. Srivastava</td>
<td></td>
</tr>
<tr>
<td>Fluid Induced Metamorphism in a Suite of Mafic Dykes from PalaeoProterozoic Mahakoshal Group, Central India</td>
<td>219</td>
</tr>
<tr>
<td>Kasturi Chakraborty, Sanjoy Sanyal, and Pulak Sengupta</td>
<td></td>
</tr>
<tr>
<td>Petrology and Geochemistry of Metamorphosed Basic Intrusives from Chilka Lake Granulites, Eastern Ghats Belt, India: Implications for Rodinia Breakup</td>
<td>241</td>
</tr>
<tr>
<td>Sankar Bose, Kaushik Das, Supriya Chakraborty, and Hiroyuki Miura</td>
<td></td>
</tr>
<tr>
<td>Mineralogical Control on Rheological Inversion of a Suite of Deformed Mafic Dykes from Parts of the Chottanagpur Granite Gneiss Complex of Eastern India</td>
<td>263</td>
</tr>
<tr>
<td>Sayan Ray, Sanjoy Sanyal, and Pulak Sengupta</td>
<td></td>
</tr>
<tr>
<td>Petrology and Geochemistry of Acid Dyke Rocks with Reference to their Bearing on Rare Metal and Rare Earth Mineralisation: Studies from Malani Igneous Suite, Northern Peninsular India</td>
<td>277</td>
</tr>
<tr>
<td>G. Vallinayagam</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Petrogenesis of Basaltic and Doleritic Dykes from Kawant, Chhotaudepur Province, Deccan Traps</td>
</tr>
<tr>
<td>18</td>
<td>Occurrence of Xenoliths in the Lamprophyre and Picrobasalt Dykes of Bakhatgarh – Phulmal Area, Jhabua District, Madhya Pradesh, India</td>
</tr>
<tr>
<td>19</td>
<td>Diorite Vein in Quenched Basalt and Its Implication for the Origin of Late-Granitoid Intrusives in Naga Hills Ophiolite, Northeast India</td>
</tr>
<tr>
<td>20</td>
<td>The Parishan Pluton in Qorveh Area, an Example for Magma Mingling Process, Southeastern Sanandaj, Iran</td>
</tr>
<tr>
<td>22</td>
<td>Magnetic Fabric Studies on Mafic Dykes at a Volcanic Rifted Margin in the Henties Bay – Outjo Dyke Swarm, NW Namibia</td>
</tr>
<tr>
<td>23</td>
<td>Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle</td>
</tr>
<tr>
<td>24</td>
<td>Petrogenetic Comparison of the Mafic Dykes in the Kohistan Paleo-Island Arc-Back-Arc System, Himalayas of North Pakistan</td>
</tr>
</tbody>
</table>
Part II Dykes in Laurasia

26 Precise U-Pb Age for the Great Whin Dolerite Complex, N.E. England and Its Significance 495
 M.A. Hamilton and D.G. Pearson

27 The Melville Bugt Dyke Swarm of Greenland: A Connection to the 1.5-1.6 Ga Fennoscandian Rapakivi Granite Province? .. 509
 H.C. Halls, M.A. Hamilton, and S.W. Denyszyn

28 Mafic Melt Emplacement During the Shock Deformation in the Subvolcanic Environment: Example from Tastau Volcanoplutonic Ring Complex, Eastern Kazakhstan 537
 Ksenia Dokukina and Alexander Konilov

29 Small Dacite Dyke, Southern Urals, Russia: Rapidly Quenched Liquid or Fine-Grained Cumulate? 569
 S.Yu. Chistyakova and R.M. Latypov

30 Primary and Secondary Chemical Zonation in Mafic Dykes: A Case Study of the Vochelambina Dolerite Dyke, Kola Peninsula, Russia .. 583
 S.Yu. Chistyakova and R.M. Latypov

Index .. 603
Contributors

T. Ahmad Department of Geology, Centre for Advance Studies, University of Delhi, Delhi 110007, India, tahmad001@yahoo.co.in

Shoji Arai Division of Earth and Environmental Sciences, Graduate School of Natural Science and Technology, Kanazawa University – Kakuma-machi, Kanazawa, 920-1192, Japan, ultrasa@kenroku.kanazawa-u.ac.jp

Boris Belyatsky VNIIOkeangeologiya Russia Research Institute of the Geology and Mineral Resources of the Ocean, St. Petersburg, 190121 Russia, bbelyatsky@mail.ru

Sankar Bose Department of Geology, Presidency College, Kolkata 700073, India, sankar.bose@gmail.com

Kasturi Chakraborty Geological Survey of India, Southern Region, Hyderabad, Andhra Pradesh, India, kasturi.c8@gmail.com

Supriya Chakraborty Department of Geology, Presidency College, Kolkata 700073, India, suppresi1985@gmail.com

Nilanjan Chatterjee Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, nchat@mit.edu

S. Yu. Chistyakova Department of Geosciences, University of Oulu, FIN-90014 Oulu, Finland, sofya.chistyakova@oulu.fi

A.K. Choudhary Indian Institute of Technology, Roorkee 247667, Uttaranchal, India, akc.iitr@gmail.com

J. Conrad USGS, Menlo Park, CA, USA, jconrad@usgs.gov

R.A. Creaser Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3, robert.creaser@ualberta.ca

C. Cucchielli Dipartimento di Scienze della Terra, Università di Napoli Federico II, Napoli, Italy, ciro.cucchielli@unina.it
Kaushik Das Department of Geology, Bengal Engineering and Science University, Howrah 711103, India, kaushik.met@gmail.com

K.C. Dass Department of Geology, Centre for Advance Studies, University of Delhi, Delhi 110007, India, kanhu65@gmail.com

S.W. Denyszn Berkeley Geochronology Center, Berkeley, CA 94709, USA, sdenyszn@bgc.org

T.C. Devaraju Department of Studies in Geology, Karnataka University, Dharwad 580001, Karnataka, India, tcdevaraju38@gmail.com

S.J. Devi Department of Geology, Centre for Advance Studies, University of Delhi, Delhi 110007, India, 1785jwellys@gmail.com

Ksenia Dokukina Geological Institute of Russian Academy Science, Moscow 119017, Russia, ksdokukina@gmail.com

Gulab C. Gautam Department of Geology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221 005, India, gcgautam@gmail.com

Naresh C. Ghose G/608, Raheja Residency, Koramangala, Bangalore 560034, India, ghosenc2008@gmail.com

M.R. Goutham Dr. K.S. Krishnan Geomagnetic Research Laboratory, Indian Institute of Geomagnetism, Allahabad 221 505, India, gouthammr@rediffmail.com

Reinhard O. Greiling Institut für Angewandte Geowissenschaften, Karlsruhe Institute of Technology, 76187 Karlsruhe, FR Germany, er8@agk.uka.de

C. Grifa Dipartimento di Studi Geologici ed Ambientali, Università del Sannio, Benevento, Italy, celgrifa@unisannio.it

H.C. Halls Department of Geology, University of Toronto, Toronto, ON, Canada M5S 3B1; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6, henry.halls@utoronto.ca

M.A. Hamilton Jack Satterly Geochronology Laboratory, Department of Geology, Earth Sciences Centre, Toronto, ON, Canada M5S 3B1, mahamilton@geology.utoronto.ca

K.R. Hari Government V.Y.T.P.G. Autonomous College, Durg, Chhattisgarh 491001, India, krharigeology@gmail.com

I.M. Heaman Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3, larry.heaman@ualberta.ca

S.K. Jain Atomic Mineral Division, Department of Atomic Energy, Nagpur 440001, India, dr.guddu1962@rediffmail.com

T. Kaulina Geological Institute of the Kola Science Centre, Apatity, Russia, tatiana_kaulina@yahoo.com
Tahseenullah Khan Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan, bangash1444@hotmail.com

Alexander Konilov Institute of Experimental Mineralogy of the Russian Academy Science, Institutskaya ulitsa, Moscow 142432, Russia, konilov@iem.ac.ru

R. Krishnamurthi Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667, India, krishnamurthi.iitr@gmail.com

S. Kumar Department of Geology, Centre for Advance Studies, University of Delhi, Delhi 110007, India, santoshgeology@gmail.com

Trisha Lala Department of Geology, Presidency College, Kolkata 700073, India, geoltrisha@gmail.com

R.M. Latypov Department of Geosciences, University of Oulu, FIN-90014 Oulu, Finland, rais.latypov@oulu.fi

M. Lingadevaru Department of Applied Geology, Kuvempu University, Shankaraghatta 577451, Karnataka, India, ml_devaru@yahoo.com

L. Melluso Dipartimento di Scienze della Terra, Università di Napoli Federico II, Napoli, Italy, melluso@unina.it

M. Mercurio Dipartimento di Studi Geologici ed Ambientali, Università del Sannio, Benevento, Italy, mamercur@unisannio.it

D.P. Miggins Denver Argon Geochronology Laboratory, USGS, Denver Federal Center, Denver, CO 80225, USA, dmiggins@usgs.gov

M.K. Mishra Department of Geology, Centre for Advance Studies, University of Delhi, Delhi 110007, India, geo_mukesh@yahoo.com

Hiroyuki Miura Department of Natural History Sciences, Hokkaido University, Sapporo 0600810, Japan, hiro@ep.sci.hokudai.ac.jp

S. Mohanty Department of Applied Geology, Indian School of Mines, Dhanbad 826004, India, mohantysp@yahoo.com

V. Morra Dipartimento di Scienze della Terra, Università di Napoli Federico II, Napoli, Italy, vimorra@unina.it

Mamuro Murata Department of Geosciences, Faculty of Science, Naruto University of Education, National University Corporation Naruto, Tokushima 772-8502, Japan, atarumm@naruto-u.ac.jp

K.S. Anantha Murthy Department of Applied Geology, Kuvempu University Shankaraghatta 577451, Karnataka, India, murthy_ask@yahoo.co.in

Kusum P. Naganath Atomic Mineral Division, Department of Atomic Energy, Bangalore 560072, India, kusum_amd@rediffmail.com
A.K. Noyes Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3, noyes_andreak@hotmail.com

Elson P. Oliveira Department of Geology, Institute of Geosciences, University of Campinas, Campinas, Brazil, elson@ige.unicamp.br

S.K. Patil Dr. K. S. Krishnan Geomagnetic Research Laboratory, Allahabad 221505, India, skpatil13@gmail.com

D.K. Paul Department of Geology, Presidency College, Kolkata 700073, India, dalimpaul@yahoo.co.in

D.G. Pearson Department of Earth Sciences, Durham University, Durham DH1 3LE, UK, d.g.pearson@durham.ac.uk

L.J. Pesonen Division of Geophysics and Astronomy, University of Helsinki, FI-00014 Helsinki, Finland, lauri.pesonen@helsinki.fi

E.J. Piispa Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA, ejpiispa@mtu.edu

J.D.A. Piper Geomagnetism Laboratory, Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 7ZE, UK, sg04@liverpool.ac.uk

C.V.R.K. Prasad AMARARAMA, Vijayawada, India, prasadcvrk@yahoo.com

K.L. Pruseth Department of Geology & Geophysics, Indian Institute of Technology, Kharagpur-721302, India, klpruseth@gmail.com

Marie Python Division of Earth and Environmental Sciences, Graduate School of Natural Science and Technology, Kanazawa University – Kakuma-machi, Kanazawa, 920-1192, Japan; Institute for Geothermal Sciences, Graduate School of Science, Kyoto University, Beppu 874-0903, Japan, marie@bep.vgs.kyoto-u.ac.jp

K.R. Randive Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440001, India, randive101@yahoo.co.in

V. Ravikant Indian Institute of Science Education and Research-Kolkata, Mohanpur 721452, India, ravikant.vadlamani@gmail.com

Sayan Ray Department of Geological Sciences, Jadavpur University, Kolkata 700032, India, ry.syn05@gmail.com

V. Damodara Reddy Department of Geology, Sri Venkateswara University, Tirupati, India

Hafiz Ur Rehman Department of Earth and Environmental Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan, hzbangash@hotmail.com

Sanjoy Sanyal Department of Geological Sciences, Jadavpur University, Kolkata 700032, India, sanyal.sn@gmail.com
Contributors

Pulak Sengupta Department of Geological Sciences, Jadavpur University, Kolkata 700032, India, pulaksg@gmail.com

V.V. Sesha Sai Petrology Division, Geological Survey of India, Shillong 793003, India, seshubb@yahoo.co.in

Tomoyuki Shibata Graduate School of Science, Institute for Geothermal Sciences, Kyoto University, Beppu 874-0903, Japan, tomo@bep.vgs.kyoto-u.ac.jp

D.K. Sinha Atomic Mineral Division, Department of Atomic Energy, Hyderabad 500016, India, dksjai@gmail.com

A.V. Smirnov Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA, asmirnov@mtu.edu

Rajesh K. Srivastava Department of Geology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221 005, India, rajeshgeolbhu@yahoo.com

K.V. Subbarao University Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad 500 046, India, kvsbarao_iitb@yahoo.co.in

Nadezhda Sushchevskaya Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia, nadyas@geokhi.ru

Vikas Swarnkar Government V.Y.T.P.G. Autonomous College, Durg, Chhattisgarh 491001, India, vikash_geology@yahoo.co.in

Ashraf Torkian Department of Geology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran, a-torkian@basu.ac.ir

Robert B. Trumbull GFZ German Research Centre for Geosciences, 14473 Potsdam, FR Germany, bobby@gfz-potsdam.de

R.D. Tucker USGS, Reston, VA, USA, rtucker@usgs.gov

G. Vallinayagam Department of Geology, Kurukshetra University, Kurukshetra 136 119, India, gvallinayagam@rediffmail.com

S. Varghese Department of Earth Sciences, Indian Institute of Technology, Roorkee 247667, India, saajuvarghese@gmail.com

Tim Vietor NAGRA, CH-5430 Wettingen, Switzerland, tim_vietor@yahoo.com

M. Vincent CNRIT, Antananarivo, Madagascar, modvincent@yahoo.fr

J.N. Walsh Department of Geology, Royal Holloway, University of London, Egham, TW 20 OEX, UK, j.walsh@gl.rhul.ac.uk

Miriam Wiegand Institut für Angewandte Geowissenschaften, Karlsruhe Institute of Technology, Karlsruhe, Germany, miriam.wiegand@kit.edu
Contributors

Masako Yoshikawa Graduate School of Science, Institute for Geothermal Sciences, Kyoto University, Beppu 874-0903, Japan, masako@bep.vgs.kyoto-u.ac.jp

Mohammad Zafar Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan, to_mzaf@yahoo.com