Agility Across Time and Space
Agility Across
Time and Space

Implementing Agile Methods
in Global Software Projects
Drawing from earlier definitions from Jim Highsmith or Steve Adolph and the OODA loop, I like to define agility as “the ability of an organization to react to change in its environment faster than the rate of these changes.” This definition uses the ultimate purpose or function of being agile for a business, rather than defining agility by a labeled set of practices (e.g., you’re agile when you do XP, Lean, or Scrum) or by a set of properties defined in opposition to another set (the agile manifesto approach).

An analogy could be the definition of a road. Would you define a road as something made of crushed rocks and tar, or define it as a surface that is black rather than white, flat rather than undulated, and with painted lines rather than monochrome? Or as a component of a transportation system, allowing people and goods to be moved on the ground surface from point A to point B? And let the properties or components be derived from this, allowing some novel approach in road design.

It is quite possible to adopt a labeled set of agile practices, or a set of practices that perfectly conform to the agile manifesto and not become agile. You then “do Agile” but are not agile.

Agile software development methods do succeed in contexts which are identical or very similar to the contexts in which they have been created. As these contexts—the “agile sweet spot”—are very frequent in software development, representing more than 50% of all software being developed, this may have led sometimes their proponents to a certain complacency: thinking that the method has universal value, that its represents some ultimate recipe, the holy grail.

Agile methods may fail in various ways when they are applied “out of the box”, i.e., with no or little adaptation, in contexts that are very far, at least on one dimension, from the context in which they have been originally created. Rather than an analysis of the root cause, this usually triggers screams of “you must have not done it right” by its proponents. And this again leads to discussion of “purity”, “scrumbutts”, etc.

Agile methods can be stretched with variable success outside of the context in which they have been created; for example, scaling them up to larger projects, or across distributed teams. In my experience, the contextual factors that have the greatest risks of derailing agile projects are:
• size
• large systems with a lack of architectural focus
• software development not driven by customer demand
• lack of support from surrounding stakeholders, traditional governance
• novice team
• very high constraint on some quality attribute (safety-critical system, real-time constraints)

As noted by many authors in the last few years, we cannot just rely on acts of faith by eloquent process gurus to help us define the adequate process, or set of practices outside of the agile sweet spot. Cold-headed, impartial investigation is required. Such research is generally not very easy to conduct; it is often qualitative, rather than quantitative, it draws more from social sciences than computer science, not easy to publish, not easy to carve down to masters’ thesis bite size.

This is the reason why I welcome this volume on agility across time and space. Looking at how agile practices performed once stretched outside of the agile sweet spot, for large projects and distributed projects, the non-trivial ones. The researchers and practitioners who collectively wrote this volume have been examining without prejudice what works and what does not, and trying to get at the root cause, giving us another and better perspective on this fascinating wave: the agile software development movement. They confront some of the factors I mentioned earlier: size, distribution, role of architecture, culture.

Because all things considered, our stakeholders do not care whether you did or not your daily stand-up meetings, whether pairing was followed religiously, how many columns in your kanban, or if you played poker for estimations. They only care about quality software hitting the market as fast as we possibly can. The software developer should only be concerned by what will allow her to achieve this in her specific context. And in a turbulent environment, can the organization react to change in its environment faster than the rate of these changes?

Vancouver, BC, Canada

Philippe Kruchten
Preface

Despite the progress in the field of software engineering, software projects are still being late, are over budget, and do not deliver the expected quality. Two major trends have emerged in response to these: global sourcing and the application of agile methods. The new paradigms soon became anecdotally popular for their benefits of cheaper and faster development of high quality software. Many companies recently started to look into merging these two promising approaches into one strategy.

Globally Distributed Development

Global sourcing promises organizations the benefits of reaching mobility in resources, obtaining extra knowledge through deploying the most talented people around the world, accelerating time-to-market, increasing operational efficiency, improving quality, expanding through acquisitions, reaching proximity to market and many more. However, these benefits are neither clear-cut nor can their realization be taken for granted, as the literature may lead one to believe [1]. In fact, there are many challenges related to communication, coordination and control when developing software with global software teams [2].

Agile Development

Agile development has recently attracted huge interest from software industry [3]. It is being recognized for its potential to improve communication and, as a result, reduce coordination and control overhead in software projects. Methods for agile software development constitute a set of practices for software development that have been created by experienced practitioners [4]. The “agile manifesto” was published in 2001 by the key people behind the early agile development methods. The manifesto states that agile development should focus on four core values [5]:

- Individuals and interactions over processes and tools,
• Working software over comprehensive documentation,
• Customer collaboration over contract negotiation,
• Responding to change over following a plan.

Agile methods can be seen as a reaction to plan-based or traditional methods, which emphasize “a rationalized, engineering-based approach” [6] in which it is claimed that problems are fully specifiable and that optimal and predictable solutions exist for every problem. The “traditionalists” are said to advocate extensive upfront planning, codified processes, and rigorous reuse to make development an efficient and predictable activity [7]. By contrast, agile processes address the challenges of the increasingly complex nature of software development by relying on people and their creativity rather than on formalized processes [6]. The goal of optimization is being replaced by those of flexibility and responsiveness [8]. Ericksson et al. [9] define agility as follows: agility means to strip away as much of the heaviness, commonly associated with the traditional software-development methodologies, as possible to promote quick response to changing environments, changes in user requirements, accelerated project deadlines and the like. (p. 89)

The Role of Agility in Distributed Development

Global software development has matured considerably since its inception and has become an integral part of the information technology landscape. Now, rather than deciding whether or not to get involved in global sourcing, many companies are facing decisions about whether or not to apply agile methods in their distributed projects. These companies are often motivated by the opportunities of solving the coordination and communication difficulties [4] associated with global software development.

Empirical evidence from case studies conducted by Paasivaara and Lassenius [10], and Holmström, Fitzgerald et al. [11] show successful implementation of agile values and principles in different globally distributed projects. This motivates assessing the viability of agile practices for distributed software development teams. The interest in becoming agile and distributed is also illustrated by the increasing number of research publications and seminars devoted to the topic.

Implementing Agility Across Time and Space

Despite the increased attention, merging the two strategies is no easy task due to significant differences in fundamental principles of agile and distributed development approaches. In particular, while agile principles prescribe close interaction and colocation, the very nature of distributed software development does not support these prerequisites. Taylor, Greer et al. [12] claim that distributed agile software development suffers substantial difficulties because of its complex development environment and there is little empirical evidence describing actual development experiences. The lack of clear understanding of who, what, when, why and how in agile
distributed development motivated us to collect experiences from various companies that had started, and also benefitted from, becoming agile and distributed.

Aims of the Book

The idea to write a book on agile and distributed software development gradually evolved as the critical mass of questions related to merging seemingly incompatible approaches emerged. The questions that the authors aimed to answer with this book include:

- What shall companies expect from merging agile and distributed strategies?
- What are the stumbling blocks that prevent companies from reaching the agile benefits in distributed environment, and how to recognize unfeasible strategies and unfavorable circumstances?
- What helps managers cope with the challenges of implementing agile approaches in distributed software development projects?
- How can distributed teams survive the decisions taken by the management and become efficient through the application of agile approaches?

Book Overview

This book consists of five parts.

1. In the **Motivation** part the editors introduce the fundamentals of agile distributed software development and explain the rationale behind the application of agile practices in globally distributed software projects.

 ![Fig. 1 Book layout](image)

2. The second part of the book is called **Transition**. Here we have gathered seven chapters that discuss the transition to being agile and distributed. The chapters describe implementation strategies, adoption of particular agile practices for distributed projects, and general concepts of agility.
3. The third part of the book, **Management**, focuses on managerial aspects and decisions in agile distributed software projects. Practical implications for project planning, time management, customer and sub-contractor interaction, tool support and architecture-centric development are presented in eight chapters.

4. The fourth part is devoted to agile and distributed **Teams**. Here we have collected six chapters that provide in-depth hands-on advice for the team members and their managers. Topics discussed include agile distributed team configuration, effective communication and knowledge transfer, the role of architecture in task division, and allocation of roles and responsibilities.

5. finally, in the **Epilogue** we summarize the contributions of the different chapters and present results from a Delphi-inspired study that highlights the major areas of concern and future trends for research and practice in agile distributed development.

Most of the chapters in this book offer practical advice based on experiences obtained in and from the industry. These experiences are collected through personal observations of practitioners, empirical research in particular studied contexts or extensive continuous observations gained from various sources.

Target Audience

This book is primarily targeted at practitioners (managers and team members) involved in globally distributed software projects - those who are practicing agile methods and those who are not. We believe that it will serve as a useful source of practical advice, which are based on the real life examples of application of agile practices in distributed development, and will hopefully motivate companies to try improving their sourcing strategies by adopting best practices and benefits that agile promises.

Many book chapters are based on the sound empirical research and identify gaps and commonalities in the existing state-of-the-art and state-of-the-practice. We thus believe that our book can be also of relevance and interest for the academic audience, in particular, researchers working in the field, as well as lecturers and students of global agile software development.

References

Darja Šmite
Nils Brede Moe
Pär J. Ågerfalk
Acknowledgements

We are thankful to all the authors for their valuable contributions and effort in creation of this book. We are also thankful to the external reviewers for their timely responses and valuable feedback. Springer Computer Science Editorial and especially Ralf Gerstner deserves a special gratitude for initiating the creation of this book and supporting our ideas on its way. A special thanks goes to Likoebe M. Maruping for the book title idea and to Claes Wohlin who has brought us together. Last but not the least we are thankful to our families and friends for their immeasurable support.

This book has been supported by

- the Software Engineering Research Lab in the School of Computing, Blekinge Institute of Technology,
- the Research Project “Agile”, funded by the Research Council of Norway under grant 179851/I40, and
- the Department of Informatics and Media, Uppsala University
Contents

Part I Motivation

1 Fundamentals of Agile Distributed Software Development 3
 Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk
 1.1 Introduction .. 3
 1.1.1 Distributed Software Development 3
 1.1.2 Agile Software Development 4
 1.2 Merging Agility with Distribution 4
 1.2.1 Potential Issues 5
 1.2.2 All or Nothing versus À la carte 6
 1.3 Current Practice .. 6
 1.4 Conclusions .. 7
 References .. 7

Part II Transition

2 Implementing Extreme Programming in Distributed Software
 Project Teams: Strategies and Challenges 11
 Likoebe M. Maruping
 2.1 Introduction .. 11
 2.2 Implementing XP Practices: Where Is an Organization to Start? . 12
 2.2.1 The Promise of XP 12
 2.2.2 Understanding How Your Software Project Team Is
 Structured and Why It Matters 13
 2.3 Case Overview .. 14
 2.4 XP in Distributed Software Project Teams: Implementation
 Strategies and Pitfalls to Avoid 16
 2.4.1 The Planning Game 16
 2.4.2 Collective Ownership 18
 2.4.3 Coding Standards 19
 2.4.4 Use of a Metaphor 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.5</td>
<td>Simplicity of Design</td>
<td>21</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Sustainable Pacing</td>
<td>22</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Pair Programming</td>
<td>23</td>
</tr>
<tr>
<td>2.4.8</td>
<td>Continuous Integration and Unit Testing</td>
<td>24</td>
</tr>
<tr>
<td>2.4.9</td>
<td>Refactoring</td>
<td>25</td>
</tr>
<tr>
<td>2.4.10</td>
<td>Customer Involvement</td>
<td>26</td>
</tr>
<tr>
<td>2.4.11</td>
<td>Small Functional Releases</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusions</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>30</td>
</tr>
</tbody>
</table>

3 Transitioning from Distributed and Traditional to Distributed and Agile: An Experience Report

Daniel Wildt and Rafael Prikladnicki

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Case Overview</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Transitioning to Agile in a Distributed Environment</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Don’t Tell What Agile Is and Be Successful</td>
<td>35</td>
</tr>
<tr>
<td>3.3.2</td>
<td>A Fully Cultural Transition from Traditional to Agile Development</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Benefits of Using Agile Methods in Distributed Environment</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Practical Recommendations</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>45</td>
</tr>
</tbody>
</table>

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation

Steve Tendon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>The Case</td>
<td>48</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Background</td>
<td>48</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Management Support and Sponsorship</td>
<td>50</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The Pilot Project</td>
<td>51</td>
</tr>
<tr>
<td>4.2.4</td>
<td>The Journey of Implementing Agility</td>
<td>53</td>
</tr>
<tr>
<td>4.2.5</td>
<td>The Final: Project Approval</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Benefits from Implementing Agility over Traditional Approaches</td>
<td>62</td>
</tr>
<tr>
<td>4.3.1</td>
<td>More Commonality</td>
<td>62</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Smaller Scope</td>
<td>63</td>
</tr>
<tr>
<td>4.3.3</td>
<td>ROI Anticipation</td>
<td>63</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Smaller Country-Specific Dependencies</td>
<td>63</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Avoiding Waste Upfront</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Why Agile Succeeded?</td>
<td>64</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Induction</td>
<td>64</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Co-location and Alternating On- and Off-Site Activities</td>
<td>65</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Promiscuous Pair Story Authoring</td>
<td>66</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Economic Value of Story Points</td>
<td>67</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>68</td>
</tr>
<tr>
<td>References</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

5	Scrum and Global Delivery: Pitfalls and Lessons Learned	71
Cristian Sadun		
5.1	Introduction	71
5.2	Cases Overview	72
5.2.1	Background	72
5.2.2	Project NOR1	74
5.2.3	Project NOR2	76
5.3	The Experiences	77
5.3.1	Signing Agreements	77
5.3.2	Establishing Remote Access	79
5.3.3	Overcoming Communication Barriers	80
5.3.4	Actively Managing Distributed Agile Projects	82
5.3.5	Dealing with Idle Time	84
5.3.6	Achieving Motivation and Peer Feeling	86
5.3.7	Adapting Governance and Steering	87
5.4	Conclusions	88
References	89	

6	Onshore and Offshore Outsourcing with Agility: Lessons Learned	91
Clifton Kussmaul		
6.1	Introduction	91
6.2	Case Overview	92
6.2.1	Background	92
6.2.2	Project Organization	93
6.2.3	Introduction of Agility	95
6.2.4	Overview of Project Activities	95
6.2.5	Cross-border Relationship Dynamics	97
6.3	Lessons Learned	98
6.3.1	People	99
6.3.2	Processes	100
6.3.3	Coordination	102
6.4	Conclusions	104
References	105	
Further Reading		

7	Contribution of Agility to Successful Distributed Software Development	107
Saonee Sarker, Charles L. Munson, Suprateek Sarker, and Suranjan Chakraborty		
7.1	Introduction	107
7.2	Distributed Project Success	108
7.3	Types of Agility	109
8 Preparing your Offshore Organization for Agility: Experiences in India

Jayakanth Srinivasan

8.1 Introduction
8.2 Distributed Agile Software Development in India
8.3 Experiences from AgileCo
 8.3.1 Case Overview
 8.3.2 Personnel Selection and Training
 8.3.3 Teaching and Mentoring
 8.3.4 Managing Customer Expectations
8.4 Experience from BankCo
 8.4.1 Case Overview
 8.4.2 Impact of Senior Leadership Vision
 8.4.3 Heterogeneous Process Environment
 8.4.4 Agile Coaching
8.5 Conclusions
References

Part III Management

9 Improving Global Development Using Agile

Alberto Avritzer, Francois Bronsard, and Gilberto Matos

9.1 Introduction
9.2 The Projects
9.3 Deploying Agile Techniques in Global Projects
 9.3.1 Organizational Issues
 9.3.2 Communication Issues
 9.3.3 Process Issues
 9.3.4 Tools and Technical Issues
9.4 Improving Global Projects Using Agile Processes
9.5 Conclusions
References

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique

Xiaofeng Wang, Federico Gobbo, and Michael Lane

10.1 Introduction
10.2 Time Is an Enemy?
10.3 The Pomodoro Technique
 10.3.1 Pomodoro as Time-box
 10.3.2 Pomodoro as Unit of Effort
10.4 The Application of the Pomodoro Technique in Sourcesense Milan Team
10.4.1 Background of Sourcesense Milan Team
10.4.2 The Development Process of Sourcesense Milan Team
10.4.3 Pomodoro as Time-box
10.4.4 Pomodoro as a Unit of Effort
10.4.5 Addressing Remote Collaboration with Teams That Do Not Employ the Pomodoro Technique
10.5 Turning Time into an Ally
10.5.1 Shared Pomodoro
10.5.2 Collective Breaks
10.5.3 Estimation and Tracking
10.5.4 One Pomodoro Rules All Sites?
10.6 Conclusions

11 MBTA: Management By Timeshifting Around
Erran Carmel
11.1 Management by Wandering and Flying Around
11.2 Enter Timeshifting
11.3 Conclusions

12 The Dilemma of High Level Planning in Distributed Agile Software Projects: An Action Research Study in a Danish Bank
Per Svejvig and Ann-Dorte Fladkjær Nielsen
12.1 Introduction
12.2 Research Methodology
12.2.1 Action Research
12.2.2 Research Settings
12.3 The Action Research Cycle
12.3.1 Diagnosing the Problem and the Underlying Causes
12.3.2 Action Planning
12.3.3 Action Taking
12.3.4 Evaluating and Learning
12.4 Conclusions
12.4.1 Applying a Holistic Approach to High Level Planning
12.4.2 Using Action Research to Software Process Improvement
12.4.3 Summary

13 Tools for Supporting Distributed Agile Project Planning
Xin Wang, Frank Maurer, Robert Morgan, and Josyleuda Oliveira
13.1 Introduction
13.2 Distributed Planning Tool Requirements
13.2.1 Agile Planning Requirements
13.2.2 Requirements for Collaborative Interactions 187
13.3 Tool Review ... 188
13.3.1 Wikis ... 188
13.3.2 Web Form-Based Applications 189
13.3.3 Card-Based Planning Systems 190
13.3.4 Plugin for Integrated Development Environment 190
13.3.5 Synchronous Project Planning Tool 191
13.3.6 Digital Tabletop-Based Agile Planning Tool 193
13.4 Tool Evaluation .. 193
13.5 Practical Advice ... 195
13.5.1 Advice for Agile Planning Tool User 195
13.5.2 Advice for Designers of Distributed Agile Planning Tools 196
13.6 Conclusions .. 198
References .. 199

14 Combining Agile and Traditional: Customer Communication in Distributed Environment .. 201
Mikko Korkala, Minna Pikkarainen, and Kieran Conboy
14.1 Introduction .. 201
14.2 Customer Communication in Distributed Agile Development . 202
14.2.1 Issues Hindering the Customer Communication in Distributed Agile Development 204
14.3 Findings ... 205
14.3.1 Case Context ... 205
14.3.2 The Use of Agile Methodologies in the Case Project 207
14.3.3 The Use of Customer Communication Media 208
14.3.4 Identified Customer Communication Challenges 211
14.4 Discussion and Lessons Learned 214
References .. 216

15 Coordination Between Global Agile Teams: From Process to Architecture ... 217
Jan Bosch and Petra Bosch-Sijtsema
15.1 Introduction .. 217
15.2 Large-Scale Software Development 220
15.3 Case Study Companies .. 221
15.3.1 Case Company GLOembed 221
15.3.2 Case Company GLOtelcom 222
15.3.3 Case Company GLOsoftware 222
15.4 Coordination and Integration Inter-team Challenges 224
15.4.1 Top-Down Approach Challenges 224
15.4.2 Interaction Problems .. 225
15.5 Coordination Through Architecture 226
15.5.1 Road Mapping ... 227
15.5.2 Requirements ... 228
15.5.3 Architecture ... 229
16 Considering Subcontractors in Distributed Scrum Teams 235
Jakub Rudzki, Imed Hammouda, Tuomas Mikkola, Karri Mustonen, and Tarja Systä
16.1 Introduction .. 235
16.1.1 Company Context 236
16.1.2 Methodology 236
16.1.3 Main Results 237
16.2 Subcontractors in an SSP Company 238
16.2.1 Why Subcontractors? 239
16.2.2 Distributed Development Stakeholders 239
16.2.3 Subcontractor Selection Process 240
16.3 Subcontractors in Scrum Teams 242
16.3.1 Scrum .. 242
16.3.2 Communication 243
16.3.3 Planning and Progress Tracking 244
16.3.4 Code Sharing and Development Feedback 245
16.3.5 Knowledge Sharing 246
16.3.6 Team Spirit 246
16.4 Subcontractors and Project Phases 247
16.4.1 Preparation 247
16.4.2 Development 248
16.4.3 Release .. 251
16.5 Conclusions .. 251
16.5.1 Practical Implications 252
16.5.2 Research Implications 252
16.5.3 Summary .. 253
Appendix .. 253
References ... 255
Further Reading ... 255

Part IV Teams

17 Using Scrum Practices in GSD Projects 259
Maria Paasivaara and Casper Lassenius
17.1 Introduction .. 259
17.2 Research Methodology 260
17.3 Distributed Daily Scrumss 260
17.3.1 Application of Daily Scrumss to Distributed Projects 262
17.3.2 Benefits of Daily Scrumss 263
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.3</td>
<td>Challenges of Daily Scrums</td>
<td>263</td>
</tr>
<tr>
<td>17.4</td>
<td>Scrum-of-Scrums Meetings</td>
<td>264</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Application of Scrum-of-Scrums to Distributed Projects</td>
<td>265</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Benefits of Scrums-of-Scrums</td>
<td>265</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Challenges of Scrums-of-Scrums</td>
<td>266</td>
</tr>
<tr>
<td>17.5</td>
<td>Sprints</td>
<td>266</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Application of Sprints to Distributed Projects</td>
<td>267</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Benefits of Sprints</td>
<td>267</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Challenges of Sprints</td>
<td>268</td>
</tr>
<tr>
<td>17.6</td>
<td>Sprint Planning Meetings</td>
<td>268</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Application of Sprint Planning Meetings to Distributed Projects</td>
<td>268</td>
</tr>
<tr>
<td>17.6.2</td>
<td>Benefits of Sprint Planning Meetings</td>
<td>269</td>
</tr>
<tr>
<td>17.6.3</td>
<td>Challenges of Sprint Planning Meetings</td>
<td>270</td>
</tr>
<tr>
<td>17.7</td>
<td>Sprint Demos</td>
<td>270</td>
</tr>
<tr>
<td>17.7.1</td>
<td>Application of Sprint Demos to Distributed Projects</td>
<td>270</td>
</tr>
<tr>
<td>17.7.2</td>
<td>Benefits of Sprint Demos</td>
<td>271</td>
</tr>
<tr>
<td>17.7.3</td>
<td>Challenges of Sprint Demos</td>
<td>271</td>
</tr>
<tr>
<td>17.8</td>
<td>Retrospective Meetings</td>
<td>271</td>
</tr>
<tr>
<td>17.8.1</td>
<td>Application of Retrospective Meetings to Distributed Projects</td>
<td>271</td>
</tr>
<tr>
<td>17.8.2</td>
<td>Benefits of Retrospective Meetings</td>
<td>272</td>
</tr>
<tr>
<td>17.8.3</td>
<td>Challenges of Retrospective Meetings</td>
<td>272</td>
</tr>
<tr>
<td>17.9</td>
<td>Backlogs</td>
<td>272</td>
</tr>
<tr>
<td>17.9.1</td>
<td>Application of Backlogs to Distributed Projects</td>
<td>273</td>
</tr>
<tr>
<td>17.9.2</td>
<td>Benefits of Backlogs</td>
<td>273</td>
</tr>
<tr>
<td>17.9.3</td>
<td>Challenges of Backlogs</td>
<td>273</td>
</tr>
<tr>
<td>17.10</td>
<td>Frequent Visits</td>
<td>273</td>
</tr>
<tr>
<td>17.10.1</td>
<td>First Visit</td>
<td>274</td>
</tr>
<tr>
<td>17.10.2</td>
<td>Further Visits</td>
<td>274</td>
</tr>
<tr>
<td>17.10.3</td>
<td>Benefits of Frequent Visits</td>
<td>275</td>
</tr>
<tr>
<td>17.10.4</td>
<td>Challenges of Frequent Visits</td>
<td>275</td>
</tr>
<tr>
<td>17.11</td>
<td>Multiple Communication Modes</td>
<td>276</td>
</tr>
<tr>
<td>17.11.1</td>
<td>Benefits of Multiple Communication Modes</td>
<td>276</td>
</tr>
<tr>
<td>17.11.2</td>
<td>Challenges of Multiple Communication Modes</td>
<td>277</td>
</tr>
<tr>
<td>17.12</td>
<td>Conclusions</td>
<td>277</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>277</td>
</tr>
</tbody>
</table>

18 Feature Teams—Distributed and Dispersed | 279 |
Jutta Eckstein | 279 |
18.1 Introduction | 279 |
18.2 Context | 280 |
18.3 Historical Structures of Distributed Teams | 280 |
18.3.1 Consequences | 281 |
18.4 Building Agile Teams | 281 |
21.3.1 Joint Task Planning 316
21.3.2 Question-Driven Task Scheduling 316
21.3.3 Adequate Task Design 317
21.3.4 Scrupulous Task Sign-Off 318
21.4 Conclusion ... 319
References .. 319

22 Architecture-Centric Development in Globally Distributed Projects 321
Joachim Sauer
22.1 Introduction ... 321
22.2 Case Overview .. 322
22.3 Software Architecture and Architecture-Centric Development 323
 22.3.1 Software Architecture 323
 22.3.2 Architecture-Centric Development in General 324
 22.3.3 Architecture-Centric Development in Agile Distributed Settings 324
22.4 Distributed Continuous Integration and Collective Ownership 325
22.5 Practical Advice for Software Architects ... 326
22.6 Conclusions ... 328
References .. 328

Part V Epilogue

23 Agility Across Time and Space: Summing up and Planning for the Future 333
Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk
23.1 The Beginning of the End 333
23.2 Current Themes .. 334
23.3 Practical Advice .. 334
23.4 Areas for Improvement and Future Research ... 336
23.5 The End of The End 337

Index .. 339
Darja Šmite is a Senior Researcher at Blekinge Institute of Technology, which has recently been ranked as number 11 among the top institutions in the world in systems and software engineering by the Journal of Systems and Software. She also holds an Associate Professorship form University of Latvia and has been previously engaged in industrial positions at a number of software houses in Latvia before pursuing an academic career. Her major research interests lie in the area of global software development, software process improvement and agile software development. Smite received her Ph.D. from the University of Latvia for her work on addressing the software project risks in globally distributed environment. Contact her at darja.smite@bth.se or darja.smite@lu.lv

Nils Brede Moe is a Research Scientist at SINTEF the largest independent research organisation in Scandinavia. He has 12 years of experience working as a researcher within software development and in consulting software companies around Norway. His research interests include global software development, process improvement, self-management, and agile software development. Moe has a master’s of science degree in computer science from the Norwegian University of Science and Technology. Contact him at nilsm@sintef.no

Pär J. Ågerfalk is a Professor at Uppsala University where he holds the Chair in Computer Science in Intersection with Social Sciences. He received his Ph.D. from Linköping University an has held fulltime positions at Örebro University, Lero—The Irish Software Engineering Research Centre, Jönköping International Business School, and University of Limerick, where he is also currently an Adjunct Professor. His work has appeared in a number of leading journals in the software and information systems area, including MIS Quarterly, Information Systems Research, Communications of the ACM, and Information and Software Technology. He is currently the Dean of the Swedish National Research School on Management and IT, a
Senior Associate Editor with the European Journal of Information Systems, a Secretary of IFIP WG 2.13 on Open Source Software, and the founding Chair of the AIS Special Interest Group on Pragmatist Information Systems Research. Contact him at par.agerfalk@im.uu.se.

Contributing Authors

Alberto Avritzer, Siemens Corporate Research, USA
Alberto Avritzer received a Ph.D. in Computer Science from the University of California, Los Angeles. He is currently a Senior Member of the Technical Staff in the Software Engineering Department at Siemens Corporate Research, Princeton, New Jersey. Before moving to Siemens Corporate Research, he spent 13 years at AT&T Bell Laboratories, where he developed tools and techniques for performance testing and analysis. His research interests are in software engineering, particularly software testing, monitoring and rejuvenation of smoothly degrading systems, and metrics to assess software architecture, and he has published over 50 papers in journals and refereed conference proceedings in those areas.

Jan Bosch, Intuit, USA
Jan Bosch is VP, Engineering Process at Intuit Inc. Earlier, he was head of the Software and Application Technologies Laboratory at Nokia Research Center, Finland. Before joining Nokia, he headed the software engineering research group at the University of Groningen, The Netherlands, where he holds a professorship in software engineering. He received a MSc degree from the University of Twente, The Netherlands, and a Ph.D. degree from Lund University, Sweden. His research activities include compositional software engineering, software architecture design, software product families and software variability management. He is the author of a book “Design and Use of Software Architectures: Adopting and Evolving a Product Line Approach” published by Pearson Education (Addison-Wesley and ACM Press), (co-) editor of several books and volumes in, among others, the Springer LNCS series and (co-) author of a significant number of research articles. He is editor for Science of Computer Programming, has been guest editor for journal issues, chaired several conferences as general and program chair, served on many program committees and organized numerous workshops.

Petra Bosch-Sijtsema, Helsinki University of Technology, FINLAND and Stanford University, USA
Petra Bosch-Sijtsema is a senior researcher at Aalto University School of Science and Technology, Laboratory of Work Psychology and Leadership in Finland and currently a visiting scholar at Stanford University, USA, School of Engineering, Project Based Learning Lab, USA. She received her licentiate from Lund University (Sweden) and her Ph.D. from the University of Groningen (The Netherlands) in Management and Organization. She has worked at universities in Sweden, the
Netherlands, Canada, Finland and the US. Her research focuses on innovation, knowledge transfer, management and coordination in global distributed organizations and teams.

Francois Bronsard, Siemens Corporate Research, USA

Francois Bronsard is a Software Engineering Consultant in the Software Development Technologies Group at Siemens Corporate Research in Princeton, NJ. He has a Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign and over 15 years of industrial experience. He has been active in the areas of static analysis, quality assurance, global software development and agile processes for many years and he is a certified SCRUMMaster.

Erran Carmel, American University, USA

Erran Carmel is a Professor at the American University in Washington D.C. His area of expertise is globalization of technology. He studies global software teams, offshoring of information technology, and emergence of software industries around the world. His 1999 book “Global Software Teams” was the first on this topic and is considered a landmark in the field helping many organizations take their first steps into distributed tech work. His second book “Offshoring Information Technology” came out in 2005 and has been especially successful in outsourcing and offshoring classes. He has written over 80 articles, reports, and manuscripts. He consults and speaks to industry and professional groups. He is a tenured full Professor at the Information Technology department, Kogod School of Business at American University. In the 1990s he co-founded and led the program in Management of Global Information Technology. In 2005–2008 he was department Chair. In 2009 he was awarded the International Business Professorship. He has been a Visiting Professor at Haifa University (Israel) and University College Dublin (Ireland). In 2008–2009 he was the Orkand Endowed Chaired Professor at the University of Maryland University College. He received his Ph.D., in Management Information Systems from the University of Arizona; his MBA from the University of California at Los Angeles (UCLA), and his B.A. from the University of California at Berkeley.

Suranjan Chakraborty, Towson University, USA

Suranjan Chakraborty is an assistant professor in the Department of Computer and Information Sciences at Towson University. He also has prior industry experience, having worked for eight years in Wipro Technologies. He completed his Ph.D. in Information Systems from Washington State University. His research interests include requirements engineering, behavioral processes in information systems development, distributed information systems development, and use of qualitative methods in IS research. His research has been published (or accepted for publication) in Journal of Association of Information Systems, European Journal of Information systems, Decision Support Systems, and Group Decision and Negotiation. His work has also been presented or appeared in the proceedings of America’s Conference on Information Systems, Hawaii International Conference on System Sciences, European Conference on Information Systems, and the annual SIG-ED conference.
Kieran Conboy, National University of Ireland Galway, IRELAND
Kieran Conboy is a lecturer in information systems at NUI Galway. His research focuses on agile systems development. Kieran is currently involved in numerous projects in this area, and has worked with many companies on their agile initiatives including Intel, Microsoft, Accenture, HP, and Fidelity Investments. Some of his research has been published in various leading journals and conferences such as ISR, EJIS, TOSEM, IFIP 8.6 and the XP200n conference series. Prior to joining NUI Galway, Kieran was a management consultant with Accenture, where he worked on a variety of projects across Europe and the US.

Jutta Eckstein, IT communication, GERMANY
Jutta Eckstein, a partner of IT communication, is an independent consultant and trainer from Braunschweig, Germany. Her know-how in agile processes is based on over ten years experience in developing object-oriented applications. She has helped many teams and organizations all over the world to make the transition to an agile approach. She has a unique experience in applying agile processes within medium-sized to large distributed mission-critical projects with up to 300 project members. This is also the topic of her books ‘Agile Software Development in the Large’ and ‘Agile Software Development with Distributed Teams’.

Besides engineering software she has been designing and teaching technology courses in industry. Having completed a course of teacher training and led many ‘train the trainer’ programs in industry, she focuses also on techniques which help teach technology and is a main lead in the pedagogical patterns project. She has presented work in her main areas at ACCU (UK), JAOO (Denmark), OOPSLA (USA), XP (Europe) and Agile (USA).

Ann-Dorte Fladkjær Nielsen, Jyske Bank, DENMARK
Ann-Dorte Fladkjær Nielsen is Project Manager at the Jyske Bank Group. She holds an MSc in Business Systems and Management Engineering, Aalborg University. She has more than 14 years business experience as Project Manager, Project Mentor and Facilitator. She is Certified Project Manager (IPMA level C).

Federico Gobbo, University of Insubria, ITALY
Federico Gobbo owns a Ph.D. in Computer Science since 2009 obtained at the University of Insubria Varese-Como (Italy), where he actually works with a post-doc grant. Since 2005, he has participated to diverse Italian research national projects and he is member of the PASCAL European network of excellence. Before that, he has worked as a web specialist in start-up companies settled in Milan, Italy.

Imed Hammouda, Tampere University of Technology, FINLAND
Imed Hammouda received his Ph.D. in Software Engineering from Tampere University of Technology (TUT)—Finland in 2005. He is currently an adjunct professor at TUT where he is heading the international masters programme at the Department of Software Systems. Dr. Hammouda’s research areas include software architectures, variability management, social software engineering, and open source software development.
Jörn Koch, C1 WPS GmbH, GERMANY
Jörn Koch works as senior software architect at C1 WPS GmbH since 2001. Starting as a developer in 1994 he later got his diploma in computer science and until now gained many years of experience in leading and coaching of agile projects, doing business analysis, and designing and analyzing object-oriented software architectures. From 2005 to the end of 2008 Jörn was a member of the distributed team of the case study’s project.

Mikko Korkala, VTT Technical Research Centre of Finland, FINLAND
Mikko Korkala has been involved in agile development since 2002 and is currently working on his Ph.D. thesis on customer communication in distributed agile development. He has been working at VTT Technical Research Centre of Finland since 2007 as a research scientist and has previously worked at the Department of Information Processing Science, University of Oulu, Finland from which he also received his M.Sc. He has also worked as a software engineer. In addition to research, he has provided several agile trainings and workshops and has held invited agile talks both in Finland and abroad. He has also worked as an onsite agile consultant for management in a large software company and has helped to outline agile processes for software companies.

Clifton Kussmaul, Muhlenberg College and Elegance Technologies, Inc., USA
Clifton Kussmaul is Associate Professor of Computer Science at Muhlenberg College, in Allentown, PA. He is also Chief Technology Officer for Elegance Technologies, Inc., which develops software products and provides software development consulting and services. During 2009–2010 he was a visiting Fulbright-Nehru Scholar at the University of Kerala, in southern India. His professional interests include software engineering, free and open source software, scientific computation, and auditory perception.

Michael Lane, University of Limerick, IRELAND
Michael Lane is a lecturer in the department of computer science and information systems at the University of Limerick, Ireland. Michael’s research interests revolve around the area of distributed software development. His Ph.D. research is investigating project management in distributed teams leveraging agile software development practices. Prior to joining the University of Limerick in 2005, Michael had spent over 20 years in software development working in various domains. This experience incorporated a number of roles ranging from design and programming of bespoke services in the direct marketing sector to research and development manager of ERP products in the manufacturing sector. His teaching experience includes the delivery of a wide range of subjects to both undergraduate and postgraduate students. Additional educational activities have included the provision of various management training courses.

Casper Lassenius, Helsinki University of Technology, FINLAND
Prof. Casper Lassenius is a professor (pro tem) at the Software Business and Engineering Institute at Aalto University, where he heads the software process research
group. His research interests include software processes, software measurement, quality assurance, and software portfolio and product management.

Likoebe M. Maruping, University of Arkansas, USA
Likoebe M. Maruping is an assistant professor of Information Systems in the Sam M. Walton College of Business at the University of Arkansas. Likoebe’s research is primarily focused on the activities through which software development teams improve software project outcomes. His current work in this area focuses on understanding how teams cope with uncertainty in software development projects. He also enjoys conducting research on virtual teams and the implementation of new technologies in organizations. His research has been published or is forthcoming in premier information systems, organizational behavior, and psychology journals including *MIS Quarterly, Information Systems Research, Organization Science, Journal of Applied Psychology,* and *Organizational Behavior and Human Decision Processes.*

Gilberto Mato, Siemens Corporate Research, USA
Gilberto Mato is a Software Engineering Consultant in the Software Development Technologies Group at Siemens Corporate Research in Princeton, NJ. He has a Ph.D. in Computer Science from the University of Maryland at College Park and over 15 years of industrial experience developing end-user applications and software development tools. He has been actively involved in agile and distributed development projects since 2003 and is a certified SCRUMMaster.

Frank Maurer, University of Calgary, CANADA
Dr. Frank Maurer is a Full Professor at the University of Calgary and the head of the Agile Software Engineering (ASE) group at the University of Calgary. His research interests are agile software methodologies, engineering digital table applications, executable acceptance test driven development, integrating agile methods and interaction design, framework and API usability, tools for agile teams, specifically for globally distributed software development and experience and knowledge management. More information about his research can be found at http://ase.cpsc.ucalgary.ca/. Currently, the group focuses on empirical investigations of agile techniques, agile product lines, agile interaction design, software design guidelines and application engineering for digital surfaces. He is a member of the Agile Alliance, a Certified Scrum Master, a founding member of the Canadian Agile Network (CAN)—Le Réseau Agile Canadien (RAC), part of the organizers of the Calgary Agile Methods Users Group and Associate Editor of IEEE Software responsible for the Process and Practices area.

Tuomas Mikkola, Solita Oy, FINLAND
Tuomas Mikkola is an Account Manager in Solita working as the supervisor of several software implementation projects and services under maintenance. Previously he has worked as Team Manager and Project Manager in Solita. He received MSc in Software Engineering from Tampere University of Technology in 1999.
Robert Morgan, Red Duck Solutions, CANADA
Robert Morgan received a M.Sc. from the University of Calgary’s Department of Computer Science and is a former member of the Agile Software Engineering group. In addition to developing distributed agile planning tools, he has had experience working in the financial and oil and gas sectors as a business analyst, developer and agile champion. He is the founder and CEO of Red Duck Solutions, a Calgary based agile software development and consulting firm. You can visit the web site at: www.redducksolutions.com.

Charles L. Munson, Washington State University, USA
Charles L. Munson is an associate professor in the Department of Management and Operations at Washington State University. His Ph.D. and M.S.B.A. in Operations Management, as well as his B.S.B.A. summa cum laude in finance, are from the John M. Olin School of Business at Washington University in St. Louis. For 2 years he was Associate Dean for Graduate Programs in Business at Washington State University. He also worked for 3 years as a financial analyst for Contel. His research interests include supply chain management, quantity discounts, international operations management, purchasing, and inventory control. Munson has published in journals such as IIE Transactions, Production and Operations Management, Naval Research Logistics, Decision Sciences, European Journal of Operational Research, Journal of the Operational Research Society, Interfaces, Business Horizons, and International Journal of Procurement Management. He currently serves as a senior editor of Production and Operations Management and on the editorial board of the International Journal of Procurement Management.

Karri Mustonen, Solita Oy, FINLAND
Karri Mustonen is a Subcontracting Manager at Solita Oy. He is responsible for building supplier network, supplier development and supplier performance management. He received MSc in Computer Science from Tampere University of Technology, in Finland.

Josy Oliveira, University of Calgary, CANADA
Josyleuda Oliveira is a Ph.D. student in Computer Science at the University of Calgary. Her research interest is agile software methodologies, specifically in globally distributed software development. She received a M.Sc. in Software Engineering from University of Fortaleza-Brazil in 2006. She has had 11 years of experience in industry, in Brazil. She worked as a Project Manager, Software Quality Assurance Analyst and Business Analyst.

Maria Paasivaara, Helsinki University of Technology, FINLAND
Dr. Maria Paasivaara works as a researcher and project manager at the Software Business Engineering Institute at Aalto University. Her main research interest is global software engineering, with a particular focus on collaboration and communication problems and practices.
Minna Pikkarainen, VTT Technical Research Centre of Finland, FINLAND
Minna Pikkarainen has graduated from University of Oulu and has a Ph.D. about
the topic of improving software development mediated with CMMI and agile prac-
tices. Minna has been working as researcher, project manager and senior research
scientist in VTT Technical Research Centre of Finland more than 13 years. During
that time she has worked in 18 industrial driven research projects doing close indus-
trial collaboration with more than 15 organizations in Finland, Ireland and Belgium.
Minna’s research has been published in 25+ journal and conference papers in the
forums like ICSE, ICIS and Empirical Software Engineering Journal. So far Minna
has provided trainings, workshops and invited talks for 10+ different industries re-
lated to agile methods and participated in several conference program committees.
Minna has been member of Lero, The Irish Software Engineering Research Centre
since 2006. For the past 4 years, her work and publications have been focused on
research in the area of agile development.

Rafael Prikladnicki, PUCRS, BRAZIL
Dr. Rafael Prikladnicki is Assistant Professor of Computer Science School at PU-
CRS. He has been active in the global software engineering (GSE) community for
the last nine years and in the agile software development community for the last five
years. For the last two years he has been interested in how GSE and agile methodolo-
gies impact organizational decisions on software development, including business
and technical decisions. He has been acting as coach and instructor in agile software
development (focusing on Scrum, XP and Lean). He was member of the organizing
committee of the 2009 Latin-American Conference on Agile Development Method-
ologies, and he is involved with the ICGSE series organizing committee since the
first edition in 2006. He is also the general chair of the Brazilian Conference on
Agile Software Development, to be organized in 2010. More information online at
http://www.inf.pucrs.br/~rafael

Jakub Rudzki, Solita Oy, FINLAND
Jakub Rudzki is a Project Manager at Solita Oy. He has worked primarily with
distributed Scrum teams. He was also involved in subcontracting initiatives from
the beginning at Solita. Jakub Rudzki is a Ph.D. student at Tampere University of
Technology, in Finland. His research interests focus on software quality assurance
in medium and small software companies. He received MSc in Computer Science
from Kielce University of Technology, in Poland.

Cristiano Sadun, Tieto Norway AS, NORWAY
Cristiano Sadun, born 1970 in Milan, Italy, has a degree in Computer Science from
the University of Milan, Italy and has been working actively in the software en-
geineering industry since 1990, both as individual advisor and within commercial
companies. He has extensive experience with software development, architecture
and methodologies, together with business management and sales, primarily in IT
consultancy and services areas. He is particularly focused on organizational effi-
ciency, quality of delivery and the continuous improvement of his organization; he
loves to bring together engineering and business perspectives to create value for his company and its employees and customers. When not busy doing all of the above, he can be found playing the guitar at excessive volumes, checking out good restaurants and mostly trying to see the world through the wise eyes of his 10-years old son.

Jan-Erik Sandberg, Det Norske Veritas, NORWAY

Jan-Erik Sandberg has been working as an agile Coach more or less for 10 years now. He currently works as an agile Coach for “Det Norske Veritas”, a world wide organization with more than 200 locations. In 2001 he founded the Norwegian Forum For agile Development. He is an active speaker at many different conferences and seminars, like Microsoft TechEd, Agile200x and XP200X conferences. He is the sponsor chair for XP2010 and has been awarded the “Microsoft Most Valuable Professional” award five years in a row. Jan-Erik is a believer of high quality craftsmanship, pride and enjoyment of work even in large projects.

Saonee Sarker, Washington State University, USA

Saonee Sarker is currently an associate professor in the Department of Information Systems at Washington State University. Professor Sarker received her Ph.D. in Management Information Systems from Washington State University, and an M.B.A. from the University of Cincinnati prior to that. Her research focuses on globally distributed software development teams and other types of computer-mediated groups, technology adoption by groups, technology-mediated learning, and information technology capability of global organizations, and has appeared (or scheduled to appear) in outlets such as Information Systems Research, Journal of the Association of Information Systems, Journal of Management Information Systems, Decision Support Systems, and Journal of Computer-Mediated Communication.

Suprateek Sarker, Copenhagen Business School, DENMARK

Suprateek Sarker is a professor and Microsoft chair of Information Systems at the Copenhagen Business School, Denmark. Until recently, he was Associate Professor and Parachini Faculty Fellow at Washington State University, U.S.A. Much of his research has involved the use of qualitative research approaches, including positivist or interpretive case studies, grounded theory methodology, hermeneutics, and virtual ethnography to study phenomena such as IT-enabled organizational change, ERP implementation, offshoring, and virtual and mobile collaboration. He is currently serving on the editorial boards of journals such as MIS Quarterly, Journal of the AIS, IEEE Transactions of Engineering Management, IT and People, IT for Development, and JITCAR.

Joachim Sauer, C1 WPS GmbH, GERMANY

Joachim Sauer works as software architect at C1 WPS GmbH in the roles of IT consultant, project leader and architect for agile development projects. He holds a diploma in computer science and regularly addresses topics of software engineering and architecture in teaching and research at the University of Hamburg and the HAW Hamburg.
Lars Arne Skår, Miles, NORWAY
Lars Arne Skår—Lars is the CTO of Miles—a Norwegian IT-consulting company focusing on system integration and applying agile practices with established IT departments. Previously he has worked as CTO of a Nordic software development company and as CTO in a Norwegian portal consulting company after some time in an international consulting company. He has been active in the Norwegian agile community which meet regularly at xp.meetup.com in Oslo. As a developer/architect for about 20 years, he is concerned with effective architecture supported by healthy processes. Agile practices are important in this regard, as this has led us back to being conscious about what we really should deliver and engage actively together with the stakeholders both to figure that out and work diligently towards that goal. He has run workshops on former XP conferences (XP2009, XP2008, XP2007, XP2006 and XP2005) as well as on Agile2008.

Jayakanth Srinivasan, Malardalen University, SWEDEN and Massachusetts Institute of Technology, USA
Jayakanth “JK” Srinivasan is a researcher with the Lean Advancement Initiative at MIT, where he focuses on applying and extending lean enterprise thinking to knowledge-intensive industries. His forthcoming book, Lean Enterprise Thinking: Driving Enterprise Transformation (co-authored with Debbie Nightingale), presents both the seven underlying principles of lean enterprise thinking as well as field-tested frameworks and tools that organizations can adopt to drive their transformation efforts. His current research focuses on the twin tracks of the sources of enterprise agility in software organizations and the architecture of innovative organizations. Prior to joining MIT, Dr. Srinivasan worked in the public sector on avionics systems and in the private sector writing networking software. His academic training includes a bachelor’s degree in computer engineering, masters degrees in avionics and aeronautics and astronautics respectively, and a doctoral degree in computer science.

Per Svejvig, Aarhus University, DENMARK
Per Svejvig is a Ph.D. student at the Aarhus School of Business, Aarhus University. His research interests are in the area of implementation and use of enterprise systems, managing IT-enabled change, interplay between technology and organizations, and IT project management. He holds a BSc in Engineering, Engineering College of Aarhus and MSc in IT, Aarhus University. He has more than 25 years of business experience as manager, project manager and consultant. He is Certified Senior Project Manager (IPMA level B).

Tarja Systä, Tampere University of Technology, FINLAND
Tarja Systä is a professor at Tampere University of Technology, Department of Software Systems. Her main field of research is software engineering, including e.g. topics related to software development, maintenance and analysis, and software architectures.
Steve Tendon, Agiliter Consultancy Ltd., CYPRUS
Steve Tendon is a Senior Consultant with Agiliter Consultancy, Ltd, Limassol, Cyprus (http://agiliter.com). He has matured more than twenty-five years of professional experience, mainly in the field of software engineering; he is a member of the ACM and of the IEEE. He is currently pursuing a MSc in Software Project Management at the University of Aberdeen. His current interests are in employing innovative or emergent methods and concepts from the fields of services management and systems engineering to help businesses improve their internal and external processes, particularly when bridging software development processes to other business processes and functional areas. You can reach him through email: steve.tendon@gmail.com.

Xiaofeng Wang, Lero, The Irish Software Engineering Research Centre, IRELAND
Xiaofeng Wang is a research fellow in Lero, the Irish Software Engineering Research Centre. Her research areas include software development process, methods, agile software development, and complex adaptive systems theory. Her doctoral study investigated the application of complex adaptive systems theory in the research of agile software development. She has also worked in a research institute in Italy for several years in the area of enterprise knowledge systems. She has published several papers in major Information Systems journals and conferences.

Xin Wang, Ivrnet Inc., CANADA
Xin Wang is a software developer for the telephony products at Ivrnet Inc. He has written and presented on topics such as using digital tabletops to support agile project planning, the design and implementation experiences on tabletop applications and migrating user interface from desktops to digital tabletops. He received his Msc. in computer science from the University of Calgary in 2009.

Daniel Wildt, FACENSA, BRAZIL
Daniel Wildt is Professor of System Information School at FACENSA. He has been active in the Agile Methodologies community since 2004, leading the Rio Grande do Sul Agile User’s Group (Brazil) and acting as coach and trainer in agile methodologies adoption, focused on Lean, eXtreme Programming and Scrum. He was member of the organizing committee of the 2009 Latin-American Conference on Agile Development Methodologies, and is member of the organizing committee of the Agile Brazil 2010, a Brazilian Conference on Agile Software Development. More information online at http://danielwildt.com.

Scientific Reviewers

Gabriela Avram
Lero, The Irish Software Engineering Research Centre, IRELAND

Gerry Coleman
Dundalk Institute of Technology, IRELAND
Torgeir Dingsøyr
SINTEF, NORWAY

Tor Erlend Fægeri, SINTEF, NORWAY

Alberto Espinosa
American University, USA

Helena Holmström
IT University, SWEDEN

Daniel Luebke
InnoQ, SWITZERLAND

Bala Ramesh
University College London, UNITED KINGDOM

Jonas Sjöström
Uppsala University, SWEDEN

Richard Vidgen
University of Bath, UNITED KINGDOM