Preface

This Lecture Notes in Computer Science (LNCS) volume contains the papers presented at the Third International Workshop on Computational Forensics (IWCF 2009), held August 13–14, 2009 at The Netherlands Forensic Institute in The Hague, The Netherlands.

Computational forensics is a research domain focusing on the investigation of forensic problems using computational methods. Its primary goal is the discovery and advancement of forensic knowledge involving modeling, computer simulation, and computer-based analysis and recognition in studying and solving forensic problems.

The Computational Forensics Workshop series is intended as a forum for researchers and practitioners in all areas of computational and forensic sciences. This forum discusses current challenges in computer-assisted forensics and presents recent progress and advances.

IWCF addresses a broad spectrum of forensic disciplines from criminal investigation. The NAS report “Strengthening Forensic Science in the United States: A Path Forward,” published in 2009, already concluded that: “With the exception of nuclear DNA analysis, no forensic method has been rigorously shown to have the capacity to consistently and with a high degree of certainty demonstrate a connection between evidence and specific individual or source.” Computational methods can assist with statistical methods using, for example, likelihood ratios to strengthen the different fields of forensic science.

The organization of such an event is not possible without the effort and the enthusiasm of everyone involved. We thank all the members of the Program Committee for the timely reviewing process and the adherence to high standards.

June 2009

Zeno J.M.H. Geradts
Katrin Y. Franke
Cor J. Veenman
IWCF 2009 Organization

IWCF 2009 was jointly organized by The Netherlands Forensic Institute, The Hague, The Netherlands and the University of Amsterdam, Amsterdam, The Netherlands.

Workshop Co-chairs

Zeno J.M.H. Geradts Netherlands Forensic Institute, The Netherlands
Katrin Y. Franke Gjøvik University College, Norway
Cor J. Veenman Netherlands Forensic Institute/University of Amsterdam, The Netherlands

Program Committee

Yoshinori Akao National Research Institute of Police Science, Japan
Faouzi Alaya Cheikh Gjøvik University College, Norway
Lashon B. Booker The MITRE Corporation, USA
Thomas Breuel University of Kaiserslautern, Germany
Joseph P. Campbell MIT Lincoln Laboratory, USA
Oscar Cordón European Centre for Soft Computing, Spain
Edward J. Delp Purdue University, USA
Patrick De Smet FOD Justitie, Belgium
Andrzej Drygajlo Swiss Federal Institute of Technology Lausanne, Switzerland
Robert P.W. Duin Delft University of Technology, The Netherlands
Cinthia Freitas Pontifical Catholic University of Parana, Brazil
Simson L. Garfinkel School of Engineering and Applied Sciences, USA
Peter Gill Strathclyde University, UK
Lawrence Hornak West Virginia University, USA
Anil K. Jain Michigan State University, USA
Mario Köppen Kyushu Institute of Technology, Japan
Deborah Leben US Secret Service, USA
Didier Meuwly Netherlands Forensic Institute, The Netherlands
Milan Milosavljević University of Belgrade, Serbia
Slobodan Petrović Gjøvik University College, Norway
Olivier Ribaux University of Lausanne, Switzerland
Hiroshi Sako Hitachi Central Research Laboratory, Japan
Reva Schwartz US Secret Service, USA
VIII Organization

Andrew Senior Google Inc., USA
Sargur N. Srihari University at Buffalo, USA
Chew Lim Tan National University of Singapore, Singapore
Dirk Vandermeulen Katholieke Universiteit Leuven, Belgium
Marcel Worring University of Amsterdam, The Netherlands
André Årnes Oracle Norge AS, Norway
Table of Contents

Speech and Linguistics

Statistical Evaluation of Biometric Evidence in Forensic Automatic Speaker Recognition .. 1
Andrzej Drygajlo

Forensic Authorship Attribution Using Compression Distances to Prototypes ... 13
Maarten Lambers and Cor J. Veenman

Printers

Estimation of Inkjet Printer Spur Gear Teeth Number from Pitch Data String of Limited Length ... 25
Yoshinori Akao, Atsushi Yamamoto, and Yoshiyasu Higashikawa

Detecting the Spur Marks of Ink-Jet Printed Documents Using a Multiband Scanner in NIR Mode and Image Restoration 33
Takeshi Furukawa

Fingerprints

A Computational Discriminability Analysis on Twin Fingerprints 43
Yu Liu and Sargur N. Srihari

Probability of Random Correspondence for Fingerprints 55
Chang Su and Sargur N. Srihari

Visualisation

A New Computational Methodology for the Construction of Forensic, Facial Composites ... 67
Christopher Solomon, Stuart Gibson, and Matthew Maylin

Geovisualization Approaches for Spatio-temporal Crime Scene Analysis – Towards 4D Crime Mapping 78
Markus Wolff and Hartmut Asche

Multimedia

Multimedia Forensics Is Not Computer Forensics 90
Rainer Böhme, Felix C. Freiling, Thomas Gloe, and Matthias Kirchner
Using Sensor Noise to Identify Low Resolution Compressed Videos from YouTube ... 104
 \textit{Wiger van Houten and Zeno Geradts}

Using the ENF Criterion for Determining the Time of Recording of Short Digital Audio Recordings ... 116
 \textit{Maarten Huijbregtse and Zeno Geradts}

\section*{Handwriting}

A Machine Learning Approach to Off-Line Signature Verification Using Bayesian Inference ... 125
 \textit{Danjun Pu, Gregory R. Ball, and Sargur N. Srihari}

 \textit{Kenneth A. Manning and Sargur N. Srihari}

Analysis of Authentic Signatures and Forgeries 150
 \textit{Katrin Franke}

\section*{Documents}

Automatic Line Orientation Measurement for Questioned Document Examination ... 165
 \textit{Joost van Beusekom, Faisal Shafait, and Thomas Breuel}

Color Deconvolution and Support Vector Machines 174
 \textit{Charles E.H. Berger and Cor J. Veenman}

\section*{Author Index} ... 181