Preface

Artificial immune systems (AIS) is a diverse and maturing area of research that bridges the disciplines of immunology and engineering. The scope of AIS ranges from immune-inspired algorithms and engineering solutions in software and hardware, to the understanding of immunology through modeling and simulation of immune system concepts. AIS algorithms have been applied to a wide variety of applications, including computer security, fault tolerance, data mining and optimization. In addition, theoretical aspects of artificial and real immune systems have been the subject of mathematical and computational models and simulations.

The 8th International Conference on AIS (ICARIS 2009) built on the success of previous years, providing a forum for a diverse group of AIS researchers to present and discuss their latest results and advances. After two years outside Europe, ICARIS 2009 returned to England, the venue for the first ICARIS back in 2002. This year’s conference was located in the historic city of York, and was held in St. William’s College, the conference venue of York Minster, northern Europe’s largest Gothic cathedral.

Continuing the scope of previous ICARIS conferences, ICARIS 2009 was themed into three diverse areas: immune system modeling, theoretical aspects of AIS, and applied AIS. ICARIS this year saw the addition of published extended abstract submissions for the immune modeling stream, alongside full papers. Extended abstracts underwent the same rigorous review process, being checked for quality and relevance. In addition, we introduced a rebuttal system that allowed authors to respond directly to reviewers’ comments. Based on the rebuttals, we were able to conditionally accept a number of papers that were revised and checked before full acceptance, resulting in an increased quality of these papers. From 55 submissions, we were pleased to accepted 30 high-quality full-length papers and extended immune modeling abstracts for publication, giving us an acceptance rate of 55%.

ICARIS 2009 was delighted to play host to two fascinating keynote speakers. David Harel from the Weizmann Institute of Science, Israel, presented ways in which techniques from computer science and software engineering can be applied beneficially to research in the life sciences, such as T cell development in the thymus and lymph node behavior. Dario Floreano from the School of Engineering at the Swiss Federal Institute of Technology in Lausanne, Switzerland, presented an alternative approach to the design of control systems for micro and unmanned aerial vehicles that are heavily inspired by insect vision and flight control.

To supplement the technical papers and keynotes, three tutorials were presented by Susan Stepney, Thomas Stibor and Tim Hoverd. Stepney demonstrated the usefulness of statistics for AIS algorithms, Stibor described how AIS can benefit from techniques used in the field of machine learning, and
Hoverd gave us an overview of how modeling techniques like the Unified Modeling Language should, and should not, be applied to AIS and related techniques. In addition, ICARIS 2009 played host to a DSTL-sponsored workshop on AIS for anomaly detection in real-time spectra, organized by Mark Neal of Aberystwyth University. The workshop included a competition requiring participants to perform anomaly detection on real-time mass-spectrometry data.

We would like to thank the keynote and tutorial speaks, Program Committee, ICARIS Vice and Publicity Chairs, Mark Neal and finally the authors for their input into creating such a high-quality conference. We would also like to thank Bob French and Mandy Kenyon from the Research Support Office in the Department of Computer Science, University of York, for their invaluable assistance behind the scenes, helping to make ICARIS 2009 a great success.

May 2009

Paul Andrews
Jon Timmis
Organization

Organizing Committee

General Chair: Jon Timmis (University of York, UK)
General Chair: Paul Andrews (University of York, UK)
Vice Chair: Emma Hart (Napier University, UK)
Vice Chair: Andy Tyrrell (University of York, UK)
Vice Chair: Andy Hone (University of Kent, UK)
Vice Chair: Uwe Aickelin (University of Nottingham, UK)
Publicity: Nick Owens (University of York, UK)

Program Committee

Uwe Aickelin, Sang Wan Lee
Paul Andrews, Wenjian Luo
Iain Bate, Chris McEwan
Peter Bentley, Thiago Masutti
Hugo van den Berg, Carmen Molina-Paris
Hugues Bersini, Nikolaos Nanas
George Bezerra, Giuseppe Nicosia
Josh Carlin, Luis Fernando Nino
Leandro de Castro, Fabricio Olivetti
Ed Clark, Nick Owens
Carlos Coello Coello, Rodrigo Pasti
Vincenzo Cutello, Mario Pavone
Dipankar Dasgupta, Fiona Polack
Andries Engelbrecht, Mark Read
Stephanie Forrest, Peter Ross
Juan Carlos Galeano-Huertas, Siti Mariyam Shamsuddin
Maoguo Gong, Susan Stepney
Fabio Gonzalez, Thomas Stibor
Julie Greensmith, Alexander Tarakanov
Emma Hart, Jonathan Timmis
Andy Hone, Andy Tyrrell
Christian Jacob, Fernando Von Zuben
Colin Johnson, Andrew Watkins
Henry Lau, Slawomir Wierzchon
Doheon Lee
ICARIS Steering Committee

Jon Timmis University of York, UK
Emma Hart Napier University, UK
Leando de Castro McKenzie University, Brazil
Hugues Bersini ULB, Belgium
Stephanie Forrest University of New Mexico, USA
Christian Jacob University of Calgary, Canada
Guisussepe Nicosia University of Catania, Italy
Mark Neal Aberystwyth University, UK
Peter Bentley UCL, UK
Doheon Lee KAIST, Korea

Keynote Speakers

David Harel Weizmann Institute of Science, Israel
Dario Floreano Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland

Tutorial Speakers

Susan Stepney University of York, UK
Thomas Stibor Technische Universität München, Germany
Tim Hoverd University of York, UK

Sponsors

Intelligent Systems Group, Department of Electronics, University of York
Non-Standard Computation Group, Department of Computer Science, University of York
AISWeb: The on-line home of artificial immune systems
Table of Contents

Immune System Modeling

Agent Based Modeling of Lung Metastasis-Immune System Competition .. 1
Marzio Pennisi, Francesco Pappalardo, and Santo Motta

Using UML to Model EAE and Its Regulatory Network 4
Mark Read, Jon Timmis, Paul S. Andrews, and Vipin Kumar

Non-deterministic Explanation of Immune Responses: A Computer Model .. 7
Anastasio Salazar-Bañuelos

Dendritic Cell Trafficking: From Immunology to Engineering 11
Emma Hart and Despina Davoudani

A Hybrid Agent Based and Differential Equation Model of Body Size Effects on Pathogen Replication and Immune System Response 14
Soumya Banerjee and Melanie E. Moses

Nonself Detection in a Two-Component Cellular Frustrated System . . . 19
F. Vistulo de Abreu and P. Mostardinha

Questions of Function: Modelling the Emergence of Immune Response .. 22
Tom Hebbron and Jason Noble

Object-Oriented Refactoring of Existing Immune Models 27
Hughes Bersini

Mathematical Model of HIV Superinfection and Comparative Drug Therapy .. 41
Anil Sorathiya, Pietro Liò, and Luca Sguanci

Theoretical Aspects of Artificial Immune Systems

Exploration of the Dendritic Cell Algorithm Using the Duration Calculus .. 54
Feng Gu, Julie Greensmith, and Uwe Aickelin

On AIRS and Clonal Selection for Machine Learning 67
Chris McEwan and Emma Hart
A Theoretical Analysis of Immune Inspired Somatic Contiguous Hypermutations for Function Optimization ... 80
 Thomas Jansen and Christine Zarges

Comparing Different Aging Operators 95
 Thomas Jansen and Christine Zarges

Efficient Algorithms for String-Based Negative Selection 109
 Michael Elberfeld and Johannes Textor

T Cell Receptor Signalling Inspired Kernel Density Estimation and Anomaly Detection ... 122
 Nick D.L. Owens, Andy Greensted, Jon Timmis, and Andy Tyrrell

Applied Artificial Immune Systems

An Immuno-engineering Approach for Anomaly Detection in Swarm Robotics .. 136
 HuiKeng Lau, Iain Bate, and Jon Timmis

An Immune-Inspired Approach to Qualitative System Identification of the Detoxification Pathway of Methylglyoxal 151
 Wei Pang and George M. Coghill

Application of AIS Based Classification Algorithms to Detect Overloaded Areas in Power System Networks 165
 N.C. Woolley and J.V. Milanović

Artificial Immune System Applied to the Multi-stage Transmission Expansion Planning 178
 Leandro S. Rezende, Armando M. Leite da Silva, and Leonardo de Mello Honório

Immune Learning in a Dynamic Information Environment 192
 Nikolaos Nanas, Manolis Vavalis, and Lefteris Kellis

Unsupervised Structure Damage Classification Based on the Data Clustering and Artificial Immune Pattern Recognition 206
 Bo Chen and Chuanzhi Zang

A Sense of ‘Danger’ for Windows Processes 220
 Salman Manzoor, M. Zubair Shafiq, S. Momina Tabish, and Muddassar Farooq

An Immunity Inspired Real-Time Cooperative Control Framework for Networked Multi-agent Systems 234
 Steven Y.P. Lu and Henry Y.K. Lau
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Diversity on an AIS That Solves 3-Colouring Problems</td>
<td>248</td>
</tr>
<tr>
<td>María-Cristina Riff and Elizabeth Montero</td>
<td></td>
</tr>
<tr>
<td>An Error Propagation Algorithm for Ad Hoc Wireless Networks</td>
<td>260</td>
</tr>
<tr>
<td>Martin Drozda, Sven Schaut, Sebastian Schildt, and Helena Szczerbicka</td>
<td></td>
</tr>
<tr>
<td>Grammar-Based Immune Programming for Symbolic Regression</td>
<td>274</td>
</tr>
<tr>
<td>Heder S. Bernardino and Helio J.C. Barbosa</td>
<td></td>
</tr>
<tr>
<td>A New Algorithm Based on Negative Selection and Idiotypic Networks for Generating Parsimonious Detector Sets for Industrial Fault Detection Applications</td>
<td>288</td>
</tr>
<tr>
<td>Eduard Plett and Sanjoy Das</td>
<td></td>
</tr>
<tr>
<td>Parametric Modelling of a Flexible Plate Structure Using Artificial Immune System Algorithm</td>
<td>301</td>
</tr>
<tr>
<td>S.M. Salleh and M.O. Tokhi</td>
<td></td>
</tr>
<tr>
<td>A Hybrid Approach for Learning Concept Hierarchy from Malay Text Using GAHC and Immune Network</td>
<td>315</td>
</tr>
<tr>
<td>Mohd Zakree Ahmad Nazri, Siti Mariyam Shamsuddin, Azuraliza Abu Bakar, and Salwani Abdullah</td>
<td></td>
</tr>
<tr>
<td>An Immune Inspired Algorithm for Solving Dynamic Vehicle Dispatching Problem in a Port Container Terminal</td>
<td>329</td>
</tr>
<tr>
<td>N.M.Y. Lee, H.Y.K. Lau, and A.W.Y. Ko</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>343</td>
</tr>
</tbody>
</table>