Habib M. Ammari

Challenges and Opportunities of Connected k-Covered Wireless Sensor Networks
Studies in Computational Intelligence, Volume 215

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 195. Vivek Bannore and Leszek Swierkowski
Iterative-Interpolation Super-Resolution Image Reconstruction:
A Computationally Efficient Technique, 2009
ISBN 978-3-642-00384-4

Vol. 196. Valentina Emilia Balas, János Fodor and
Annamária R. Várkonyi-Kóczy (Eds.)
Soft Computing Based Modeling
in Intelligent Systems, 2009
ISBN 978-3-642-00447-6

Vol. 197. Mauro Birattari
Tuning Metaheuristics, 2009
ISBN 978-3-642-00482-7

Vol. 198. Efrén Mezura-Montes (Ed.)
Constraint-Handling in Evolutionary Optimization, 2009
ISBN 978-3-642-00618-0

Vol. 199. Kazumi Nakamatsu, Gloria Phillips-Wren,
Lakhmi C. Jain, and Robert J. Howlett (Eds.)
New Advances in Intelligent Decision Technologies, 2009
ISBN 978-3-642-00908-2

Vol. 200. Dimitri Plemenos and Georgios Miaoulis
ISBN 978-3-642-01258-7

Vol. 201. Aboul-Ella Hassanien, Ajith Abraham,
Athanasiou V. Vasilakos, and Witold Pedrycz (Eds.)
Foundations of Computational Intelligence Volume 1, 2009
ISBN 978-3-642-01081-1

Vol. 202. Aboul-Ella Hassanien, Ajith Abraham,
and Francisco Herrera (Eds.)
Foundations of Computational Intelligence Volume 2, 2009
ISBN 978-3-642-01532-8

Vol. 203. Ajith Abraham, Aboul-Ella Hassanien,
Patrick Siarry, and Andries Engelbrecht (Eds.)
Foundations of Computational Intelligence Volume 3, 2009
ISBN 978-3-642-01084-2

Vol. 204. Ajith Abraham, Aboul-Ella Hassanien, and
André Ponce de Leon F. de Carvalho (Eds.)
Foundations of Computational Intelligence Volume 4, 2009
ISBN 978-3-642-01087-3

Vol. 205. Ajith Abraham, Aboul-Ella Hassanien, and
Václav Snášel (Eds.)
Foundations of Computational Intelligence Volume 5, 2009
ISBN 978-3-642-01535-9

Vol. 206. Ajith Abraham, Aboul-Ella Hassanien,
André Ponce de Leon F. de Carvalho, and Václav Snášel (Eds.)
Foundations of Computational Intelligence Volume 6, 2009
ISBN 978-3-642-01635-6

Vol. 207. Santo Fortunato, Giuseppe Mangioni,
Ronaldo Menezes, and Vincenzo Nicosia (Eds.)
Complex Networks, 2009
ISBN 978-3-642-01205-1

Vol. 208. Roger Lee, Gongzu Hu, and Huaikou Miao (Eds.)
Computer and Information Science 2009, 2009
ISBN 978-3-642-01208-2

Vol. 209. Roger Lee and Naohiro Ishii (Eds.)
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2009
ISBN 978-3-642-01202-0

Vol. 210. Andrew Lewis, Sanaz Mostaghim, and
Marcus Randall (Eds.)
Biologically-Inspired Optimisation Methods, 2009
ISBN 978-3-642-01261-7

Vol. 211. Godfrey C. Onwubolu (Ed.)
Hybrid Self-Organizing Modeling Systems, 2009
ISBN 978-3-642-01529-8

Vol. 212. Viktor M. Kureychik, Sergey P. Malysyuk,
Vladimir V. Kureychik, and Alexander S. Malysyuk
Genetic Algorithms for Applied CAD Problems, 2009
ISBN 978-3-540-85280-3

Vol. 213. Stefano Cagnoni (Ed.)
Evolutionary Image Analysis and Signal Processing, 2009
ISBN 978-3-642-01635-6

Vol. 214. Been-Chian Chien and Tzung-Pei Hong (Eds.)
Opportunities and Challenges for Next-Generation Applied Intelligence, 2009
ISBN 978-3-540-92813-3

Vol. 215. Habib M. Ammari
Challenges and Opportunities of Connected k-Covered
Wireless Sensor Networks, 2009
ISBN 978-3-642-01876-3
Challenges and Opportunities of Connected k-Covered Wireless Sensor Networks

From Sensor Deployment to Data Gathering
This book is dedicated

To my first teachers: My mother, Mbarka, and my father, Mokhtar

To my very best friends: My wife, Fadhila, and my children,

Leena, Muath, Mohamed-Eyed, Lama, and Maitham
Preface

“The decomposition of the difficulties to be resolved, or the objects to be known, should be pushed up to the simplest elements … Such elements are seized directly and completely by the intuition.”

René Descartes, Discours de la méthode (1637)

Wireless sensor networks have received significant attention because of their important role and many conveniences in our lives. Indeed, the recent and fast advances in inexpensive sensor technology and wireless communications have made the design and development of large-scale wireless sensor networks cost-effective and appealing to a wide range of mission-critical situations, including civilian, natural, industrial, and military applications, such as health and environmental monitoring, seism monitoring, industrial process automation, and battlefields surveillance, respectively. A wireless sensor network consists of a large number of tiny, low-powered devices, called sensors, which are randomly or deterministically deployed in a field of interest while collaborating and coordinating for the successful accomplishment of their mission. These sensors suffer from very scarce resources and capabilities, such as bandwidth, storage, CPU, battery power (or energy), sensing, and communication, to name a few, with energy being the most critical one. The major challenge in the design process of this type of network is mainly due to the limited capabilities of the sensors, and particularly, their energy, which makes them unreliable.

This book aims to develop a reader’s thorough understanding of the opportunities and challenges of \(k \)-covered wireless sensor networks, where each point in a deployment field is covered (or sensed) by at least \(k \) sensors. Following René Descartes’ most elegant methodology of dividing each difficulty into as many parts as might be possible and necessary to best solve it (Discours de la Method, 1637), this book presents a variety of theoretical studies based on percolation theory and computational geometry as well as protocols that lead to the design of a unified framework, where connected \(k \)-coverage, sensor scheduling, and data routing and dissemination are jointly considered. I have written this book given the tremendous interest of numerous researchers in \(k \)-covered wireless sensor networks, which has been expressed by their very active and productive research for the last 6 years and until now. Indeed, several protocols have been proposed to solve problems related to the design and implementation of energy-efficient \(k \)-covered wireless sensor networks that span a variety of topics, such as sensor deployment, network connectivity, sensing coverage, sensor scheduling (or duty-cycling), and data routing and dissemination.

This text is mainly based on my research work that has been focused so far on the study of \(k \)-covered wireless sensor networks, which has been the main contribution
Preface

of my Ph.D. Dissertation. This is one of the major topics covered in both of the introductory and advanced courses on wireless sensor networks that I have taught at Hofstra University. This book will be useful to senior undergraduate and graduate students in computer science, computer engineering, and any related discipline. It will also be of interest to computer scientists, researchers, and practitioners in both academia and industry with interest in k-covered wireless sensor networks from their deployment until data gathering.

Book Organization

The book is divided into four parts which are described as follows.

In Part 1, we introduce wireless sensor networks as a new emerging technology and the background necessary. Chapter 1 gives a brief introduction to wireless sensor networks and presents the major challenging problems in their design. Also, it describes a sample of their potential applications as well as a key set of design requirements of the protocols proposed in this book. Moreover, it states the problems being investigated in this book along with a brief description of their solutions. Chapter 2 introduces the background that is necessary for the description of all the protocols discussed in this book.

In Part 2, we address the problem of almost sure integrated coverage and connectivity in wireless sensor networks from the perspective of percolation theory. Specifically, we are interested in finding the critical sensor density above which the network is almost surely connected and the deployment field is almost surely covered. Chapter 3 proposes our solution to this problem in two-dimensional deployment fields using a probabilistic approach. Chapter 4 discusses our solution to the same problem in three-dimensional deployment fields using an approach that is not a generalization of the one proposed for a two-dimensional space.

In Part 3, we focus on the problem of connected k-coverage in densely deployed wireless sensor networks. Precisely, we are interested in achieving connected k-coverage with a minimum number of sensors. Chapter 5 describes our solution to this problem under the assumption of static and homogeneous sensors while considering a deterministic sensing model. Chapter 6 extends our above solutions to account for heterogeneous k-covered wireless sensor networks. Also, it introduces our solution to the same problem in the context of mission-oriented wireless sensor networks while considering sensor mobility. Chapter 7 addresses the problem of connected k-coverage using a more realistic, stochastic sensing model. Moreover, it investigates the problem of connected k-coverage in three-dimensional wireless sensor networks using a deterministic sensing model. Chapter 8 gives our measures of unconditional and conditional connectivity and fault tolerance of k-covered wireless sensor networks while considering two-dimensional deployment fields.

In Part 4, we are interested in the problem of energy-efficient data forwarding in wireless sensor networks. Chapter 9 describes our solution to this problem for always-on wireless sensor networks using both short-range and long-range data forwarding schemes. Chapter 10 presents our solution to the problem of finding a trade-off between energy and delay when forwarding data to a central gathering point, such as the sink. Chapter 11 proposes our solution to the energy sink-hole
problem, which is inherent to static, always-on wireless sensor networks. Chapter 12 discusses our energy-efficient, unified framework for geographic forwarding in duty-cycled, \(k\)-covered wireless sensor networks while using deterministic sensing and communication models. Furthermore, it considers both two-dimensional and three-dimensional deployment fields.

In Part 5, we conclude and extend our measures of network and fault tolerance in Chap. 8 to account for three-dimensional settings. Chapter 13 focuses on the future trends in connected \(k\)-covered wireless sensor networks. Precisely, it concludes this book with both a summary and a discussion of potential future work and open problems that deserve more attention. Appendix provides measures of unconditional and conditional connectivity and fault tolerance of \(k\)-covered wireless sensor networks deployed in three-dimensional fields.

Acknowledgements

Numerous family members and friends made this book a reality. And, it is time to thank them and acknowledge their excellent support and highly appreciated efforts, which result in writing this book.

First and foremost, I would very much like to express my sincere and permanent gratitude to Allah—the Most Gracious, the Most Merciful for the wonderful opportunity He has given me to put together my research work in this book and for His blessing by helping me finish this project—one of my precious dreams—and make it available to others who are interested in its topics. This modest book is dedicated to Him and I hope He would kindly accept it. And, I always remember His Saying “And of knowledge, you (mankind) have been given only a little”.

Although writing a book is an individual process, it is in reality a shared experience with others who appreciate it and have tremendously helped me in order to make it a successful one. I have been fortunate to have shared this experience with my family closely or distantly. I would like to express my special thanks and deep appreciation to my beloved wife, Fadhila, for her beautiful mind and good humor, exceptional support, constant encouragements, and very constructive advices since the first time I thought about writing this book, and to my wonderful children, Leena, Muath, Mohamed-Eyed, Lama, and Maitham, for their very kind patience and understanding for the long time. I have spent away from them while setting in front of my laptop writing this book. Several times, Leena and Muath told me: “Dady, you are always spending too much time with that electronic rectangle!” – referring to my laptop. Both of my wife and children are providing me with the social and intellectual environment in which I thrive and survive. My hearty gratitude goes to my first teachers, my mother, Mbarka, and my father, Mokhtar, for teaching me the value of knowledge and the importance of family, for providing me with constant support and encouragements, for their wonderful prayers, and more importantly, for believing in me. Also, I would like to thank all my sisters, sisters in law, brothers, brothers in law, nieces, and nephews for their endless support and encouragement.
This book is dedicated to them and to the fond memory of my grand-parents, Fatma and Abdelkarim, and my uncle Mahfoudh, who always wished me to be very successful and well received.

Writing a book is a great pleasure yet a challenging project that could not have been accomplished without the support of the people around me who made this experience more joyful. I would like to thank my colleagues and friends at Hofstra University and the Department of Computer Science for the environment they created for me to finish this book. In particular, I am very thankful to Dr. Bernard Firestone, Professor of Political Science and Dean of the Hofstra College of Liberal Arts and Sciences (HCLAS), for supporting my research with a generous new faculty start-up research grant and his great support to WiSeMAN Research Lab; Mr. Richard Apollo, Senior Assistant Dean for HCLAS Planning and Budget, for his wonderful and continuous support to WiSeMAN Research Lab; Dr. John Impagliazzo, Professor Emeritus of Computer Science, Dr. Gretchen Ostheimer, Associate Professor of Computer Science, Dr. Krishnan Pillaiapakkamnatt, Associate Professor of Computer Science, and Ms. Zsa Zsa Tucker, Senior Executive Secretary, for their kind support and encouragement; and Mrs. Sofia Kakoulidis, Associate Provost for Research and Sponsored Programs, for her kind assistance with my research grant proposals. Their support has been very valuable since I joined the Department of Computer Science at Hofstra University on September 1, 2008.

I always remember the wonderful support and encouragements of my Professors and friends in my Department of Computer Science and Engineering at The University of Texas at Arlington—my Alma Mater Studiorum. Indeed, one of the steps towards my goals and success is the exciting and unforgettable years I have spent in the Department of Computer Science and Engineering completing my Ph.D. studies in Computer Science and Engineering. Over those years, I learned a lot from them and acquired solid background and knowledge in computer science, and particularly, the field of wireless sensor networks. Especially, I am very grateful to the following faculty members, Dr. Sajal K. Das (Ph.D. Advisor), Dr. Gautam Das (Ph.D. Committee Member), Dr. Bahram Khalili (Graduate Advisor), Dr. Yonghe Liu (Ph.D. Committee Member), Dr. Fillia Makedon (Chairperson), Dr. Lynn Peterson (Senior Associate Dean of the College of Engineering), Dr. Bob Weems (Ph.D. Committee Member, Associate Chair), and Dr. Gergely Zaruba, and the staff members, Camille Costabile, Pamela Mcbride, and Sherri Warwick for their kindness and for making things easier for me during my doctoral studies. I would like to sincerely thank all of them for helping me achieve my goals and objectives in my career. I am very proud to have graduated with my Ph.D. degree in Computer Science and Engineering from my Department of Computer Science and Engineering at The University of Texas at Arlington, and with two prestigious awards: John Steven Schuchman Award for 2006–2007 Outstanding Research by a PhD Student in February 2008 and Nortel Outstanding CSE Doctoral Dissertation Award in February 2009! I received both awards at the Engineering Week Banquet at my Alma Mater, The University of Texas at Arlington.

I would like to thank numerous experts and researchers for contributing to the growth and development of the field of wireless sensor networks, and particularly
the topics of this book. Especially, I gratefully thank Drs. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D. Gill, who introduced the concept of k-coverage as well as integrated coverage and connectivity in wireless sensor networks in their prestigious SenSys’03 conference and ACM TOSN 2005 journal papers.

I would like to give my sincere thanks to my professional editors, Dr. Janusz Kacprzyk, Editor-in-Chief, and Dr. Thomas Ditzinger, Senior Editor, of the book series, Studies in Computational Intelligence, Springer-Verlag, Heidelberg (Germany) and New York (USA), for their kind invitation, which stimulated me to write this book and devote considerable time to finish it, their enthusiasm, and their generous assistance throughout the entire writing process. It was a great pleasure to work with both of them. The other thing that most attracted me to have Drs. Kacprzyk and Ditzinger as my preferred editors for this book is the red-and-blue cover of their prestigious Studies in Computational Intelligence book series! I would like to acknowledge the publisher, Springer, who made this book possible. Last but not least, my special thanks go to SCI Data Processing Team – SPS for their professionalism and hard work.

January 2009

Habib M. Ammari
Contents

Part 1: Introduction and Background Concepts

1 Overview of Wireless Sensor Networks... 1
 1.1 Introduction.. 1
 1.2 Major Challenges... 2
 1.2.1 Limited Resources and Capabilities................................. 2
 1.2.2 Location Management... 3
 1.2.3 Sensor Deployment.. 3
 1.2.4 Time-Varying Network Characteristics............................. 3
 1.2.5 Network Scalability, Heterogeneity, and Mobility.............. 4
 1.2.6 Sensing Application Requirements.................................. 4
 1.3 Sample Sensing Applications... 5
 1.4 Motivations of This Book.. 6
 1.5 Design Requirements... 7
 1.6 Contributions of This Book.. 10
 1.7 Summary... 14

2 Background and Fundamentals.. 15
 2.1 Introduction.. 15
 2.2 Terminology.. 15
 2.3 Deterministic and Stochastic Sensing Models............................ 21
 2.4 Network Connectivity and Fault Tolerance............................... 22
 2.5 Energy Consumption Model.. 23
 2.6 Percolation Model... 24
 2.6.1 Why a Continuum Percolation Model? 25
 2.7 Network Model... 26
 2.8 Summary... 27

Part 2: Almost Sure Coverage and Connectivity

3 Phase Transitions in Coverage and Connectivity in Two-Dimensional
 Deployment Fields.. 29
 3.1 Introduction.. 29
 3.2 Phase Transition in Sensing Coverage.................................... 32
3.2.1 Estimation of the Shape of Covered Components…………… 32
3.2.2 Critical Density of Covered Components………………… 33
3.2.3 Critical Radius of Covered Components………………… 37
3.2.4 Characterization of Critical Percolation………………… 38
3.2.5 Numerical Results……………………………………… 41
3.3 Phase Transition in Network Connectivity…………………… 41
3.3.1 Integrated Sensing Coverage and Network Connectivity….. 41
 3.3.1.1 Simultaneous Phase Transitions When R ≥ 2r…….. 42
 3.3.1.2 Simultaneous Phase Transitions When r ≤ R < 2r… 42
3.4 Discussion…………………………………………………….. 46
3.5 Related Work…………………………………………………. 46
3.6 Summary…………………………………………………….. 48

4 Phase Transitions in Coverage and Connectivity in
Three-Dimensional Deployment Fields…………………………… 51
4.1 Introduction………………………………………………… 51
4.2 Three Percolation Problems…………………………………… 52
 4.2.1 Sensing Coverage Percolation………………………… 53
 4.2.2 Network Connectivity Percolation…………………….. 58
 4.2.3 Coverage and Connectivity Percolation………………… 61
 4.2.3.1 Two-Concentric-Sphere Model…………………. 62
 4.2.3.2 Integrated Continuum Percolation……………… 62
4.3 Further Discussion…………………………………………… 66
 4.3.1 Practicality and Generalizability Issues…………………. 66
 4.3.2 Sensor Deployment in Three-Dimensional Fields ………. 67
 4.3.3 Relaxations of Assumptions………………………… 67
 4.3.3.1 Relaxing the Unit Sphere Model……………… 67
 4.3.3.2 Relaxing the Homogeneous Sensor Model……… 68
4.4 Related Work…………………………………………………. 69
4.5 Summary…………………………………………………….. 70

Part 3: Connected k-Coverage

5 Connected k-Coverage in Two-Dimensional Deployment
Fields…………………………………………………………………… 73
5.1 Introduction………………………………………………….. 73
5.2 Achieving Connected k-Coverage……………………………. 75
 5.2.1 Connected k-Coverage Problem Modeling……………… 75
 5.2.2 Sufficient Condition to Ensure k-Coverage…………….. 75
5.3 Centralized k-Coverage Protocol…………………………….. 79
 5.3.1 Deployment Field Slicing………………………………. 80
 5.3.2 Sensor Selection………………………………………. 81
 5.3.3 Slicing Grid Dynamics………………………………… 82
5.4 Clustered k-Coverage Protocol……………………………… 84
 5.4.1 Cluster-Head Selection and Attributed Roles……………. 85
5.4.2 The T-CRACC\textsubscript{k} Protocol... 85
5.4.3 The D-CRACC\textsubscript{k} Protocol... 86
5.4.3.1 Deployment Field Clustering... 86
5.4.3.2 Cluster-Heads Coordination and Sensor Selection... 87
5.5 Distributed \(k\)-Coverage Protocol... 89
5.5.1 \(k\)-Coverage Checking Algorithm and Sensor Selection.. 90
5.5.2 State Transition Diagram of Trig-DIRACC\textsubscript{k}... 91
5.5.3 Ensuring Network Connectivity.. 92
5.6 Self-scheduling Based \(k\)-Coverage... 94
5.6.1 \(k\)-Coverage Candidacy Algorithm... 94
5.6.2 State Transition Diagram of Self-DIRACC\textsubscript{k}.. 94
5.6.3 Tri-DIRACC\textsubscript{k} Versus Self-DIRACC\textsubscript{k}.. 96
5.7 Relaxation of Assumptions... 96
5.7.1 Relaxing the Unit Disk Model.. 96
5.7.2 Relaxing the Sensor Homogeneity Model.. 97
5.8 Performance Evaluation... 98
5.8.1 Simulation Settings.. 98
5.8.2 Simulation Results.. 98
5.8.3 Comparison of Self-DIRACC\textsubscript{k} with CCP.. 105
5.9 Related Work.. 107
5.10 Summary... 108

6 Heterogeneous and Mobile Connected \(k\)-Coverage in Two-Dimensional Deployment Fields... 111
6.1 Introduction... 111
6.2 Heterogeneous Connected \(k\)-Coverage.. 112
6.2.1 Random Deployment Approach... 113
6.2.1.1 Centralized Connected \(k\)-Coverage Protocol... 113
6.2.1.2 Distributed Connected \(k\)-Coverage Protocol (R-Het-DCC\textsubscript{k}).......................... 113
6.2.2 Pseudo-random Deployment Approach.. 115
6.2.2.1 Centralized Connected \(k\)-Coverage Protocol (PR-Het-CCC\textsubscript{k}).................. 116
6.2.2.2 Distributed Connected \(k\)-Coverage Protocol (PR-Het-DCC\textsubscript{k})........................ 117
6.2.3 Performance Evaluation.. 117
6.3 Mobile Connected \(k\)-Coverage.. 119
6.3.1 Pseudo-random Sensor Placement.. 119
6.3.2 Sensor Mobility for \(k\)-Coverage of a Region of Interest............................ 120
6.3.2.1 Centralized Approach for Mobile Sensor Selection (CAMSEL).................... 120
6.3.2.2 Distributed Approach for Mobile Sensor Selection (DAMSEL).................... 121
6.3.2.3 How to Ensure Network Connectivity?.. 123
6.3.3 Performance Evaluation .. 123
6.4 Related Work .. 127
6.4.1 Sensor Heterogeneity ... 127
6.4.2 Sensor Mobility ... 128
6.5 Summary ... 130

7 Two-Dimensional Stochastic Connected k–Coverage and
Three-Dimensional Connected k–Coverage 133
7.1 Introduction .. 133
7.2 Two-Dimensional Stochastic Connected k–Coverage 134
 7.2.1 Stochastic k–Coverage Characterization 136
 7.2.2 Stochastic k–Coverage-Preserving Scheduling 140
 7.2.2.1 k–Coverage Candidacy Algorithm 140
 7.2.2.2 State Transition of SCP$_k$ 140
 7.2.3 Simulation Results ... 140
7.3 Three-Dimensional Connected k–Coverage 147
 7.3.1 Problem Analysis: The Curse of Dimensionality 148
 7.3.2 Our Distributed k–Coverage Protocol 151
 7.3.3 Performance Evaluation ... 152
7.4 Related Work .. 154
7.5 Summary ... 155

8 Network Connectivity and Fault-Tolerance Measures in
Two-Dimensional Deployment Fields 157
8.1 Introduction .. 157
8.2 Unconditional Fault-Tolerance Measures 159
 8.2.1 Homogeneous Sensors ... 160
 8.2.2 Heterogeneous Sensors .. 163
 8.2.3 Conditional Fault-Tolerance Measures 168
 8.2.4 Homogeneous Sensors ... 168
 8.2.5 Heterogeneous Sensors .. 171
8.3 Related Work .. 173
8.4 Summary ... 174

Part 4: Data Forwarding and Gathering

9 Geographic Forwarding on Always-On Sensors 175
9.1 Introduction .. 175
9.2 The WLDT Protocol .. 176
 9.2.1 Long-Range Versus Short-Range Forwarding 176
 9.2.2 A Two-Step Data Forwarding Protocol 180
 9.2.2.1 Checkpoint Selection 180
 9.2.2.2 Checkpoint-Based Short-Range Forwarding 181
 9.2.3 Illustrative Example .. 182
10 Trade-Off between Energy and Delay in Geographic Forwarding on Always-On Sensors

10.1 Introduction .. 201
10.2 A Slicing Approach ... 202
 10.2.1 Slicing of Communication Range .. 202
 10.2.2 Selection of Candidate Proxy Forwarders .. 204
 10.2.3 Uniform Energy Depletion Characterization ... 205
10.3 Trading-Off Energy with Delay .. 205
 10.3.1 Simple Analytical Bounds .. 206
 10.3.1.1 Data Forwarding along Shortest Paths .. 206
 10.3.1.2 Data Forwarding along Non-direct Paths .. 208
 10.3.1.3 Numerical Results .. 210
 10.3.2 Multi-objective Optimization Approach ... 213
 10.3.2.1 Overview of the WES Approach .. 213
 10.3.2.2 Solving the Trade-Off Problem Using WES .. 216
 10.3.2.3 Numerical Results .. 218
 10.3.3 TED Detailed Description .. 225
 10.3.3.1 Communication Range Slicing ... 225
 10.3.3.2 Concentric Circular Band Selection ... 225
 10.3.3.3 Proxy Forwarder Selection .. 226
 10.3.3.4 Is k Fixed for All Proxy Forwarders or Not? .. 226
10.4 Relaxation of Several Key Assumptions ... 228
 10.4.1 Relaxing the Sensor Homogeneity Model ... 228
 10.4.2 Relaxing the Communication Disk Model .. 229
 10.4.3 Relaxing the Dense Network Model .. 229
 10.4.4 Relaxing the Energy Consumption Model .. 229
 10.4.5 Relaxing the Always-On Sensors Model ... 230
10.5 Simulation Results ... 230
 10.5.1 Simulation Settings ... 231
 10.5.2 Impact of Selection Space Size .. 231
 10.5.3 Using the Energy \times Delay Metric .. 234
 10.5.4 Impact of Variability of k .. 237
 10.5.5 Impact of Sensor Heterogeneity .. 238
10.6 Related Work ... 238
10.7 Summary ... 239
11 Energy Sink-Hole Problem with Always-On Sensors in Two-Dimensional Deployment Fields

11.1 Introduction

11.2 Energy Sink-Hole Problem Analysis

11.2.1 Base Protocol Average Energy Consumption

11.2.2 Nominal Communication Range-Based Data Forwarding

11.2.3 Adjustable Communication Range-Based Data Forwarding

11.2.3.1 Perfect Uniform Energy Depletion

11.2.3.2 Partial Uniform Energy Depletion

11.3 Using Heterogeneous Sensors

11.3.1 Multi-tier Architecture

11.3.2 NEAR Performance Evaluation

11.4 Sink Mobility and Energy Aware Voronoi Diagram

11.4.1 Why Energy Aware Voronoi Diagram?

11.4.2 EVEN Detailed Description

11.4.2.1 Computing Relative Positions

11.4.2.2 Computing Energy-Aware Voronoi Diagram

11.4.3 EVEN Performance Evaluation

11.4.3.1 Impact of Sink Mobility

11.4.3.2 Comparing EVEN with VGF

11.4.3.3 Comparing EVEN with Another Protocol

11.5 Related Work

11.5.1 Balancing Energy Consumption

11.5.2 Minimizing Energy Consumption

11.5.3 Mobility-Based Forwarding Protocols

11.6 Summary

12 Geographic Forwarding on Duty-Cycled Sensors in Two-Dimensional and Three-Dimensional Deployment Fields

12.1 Introduction

12.2 Two-Dimensional Sensor Deployment

12.2.1 Potential Fields Based Modeling Approach

12.2.2 Data Forwarding without Aggregation

12.2.3 Data Forwarding with Aggregation

12.2.3.1 Locally Aggregated Data Forwarding

12.2.3.2 Globally Aggregated Data Forwarding

12.2.4 Generalizability of GEFIB

12.2.4.1 Convex Sensing and Communication Model

12.2.4.2 Sensor Heterogeneity Model

12.2.5 Performance Evaluation

12.3 Three-Dimensional Sensor Deployment

12.3.1 Hybrid Geographic Forwarding

12.3.2 Performance Evaluation
List of Figures

2.1 Schematic of overlapping concentric disks (respectively, spheres)… 16
2.2 (a) Collaborating, (b) communicating, and (c) coordinating sensors……………………………………………………………………... 16
2.3 (a) Covered, (b) connected, and (c) coordinated components……… 17
2.4 Voronoi diagram……………………………………………………….. 19
2.5 The Delaunay triangulation (bold lines) on top of the Voronoi diagram (dotted lines) of a wireless sensor network………………. 19
2.6 Localized Voronoi diagram………………………………………….. 20

3.1 Schematic of overlapping disks (three covered components of size 1, two of size 2, one of size 3, and one of size 4)…………………. 30
3.2 Shape of a covered component……………………………………. 31
3.3 No critical percolation at $k = 2$……………………………………. 39
3.4 No critical percolation at $k = 3$……………………………………. 39
3.5 Critical percolation at $k = 4$ and $A_c(r) = 0.575$…………………. 40
3.6 Plot of the function $g_3(A_c(r), \alpha, k)$ for different values of α
 (1 ≤ α < 2). No critical percolation occurs at $k = 2$……………… 43
3.7 Plot of the function $g_3(A_c(r), \alpha, k)$ for different values of α
 (1 ≤ α < 2). No critical percolation occurs at $k = 3$……………… 44
3.8 Plot of the function $g_3(A_c(r), \alpha, k)$ for different values of α
 (1 ≤ α < 2). For $k = 4$, critical percolation depends on the value of α …… 45
3.9 Plot of the function $g_3(A_c(r), \alpha, k)$ for different values of α
 (1 ≤ α < 2). For $k = 4$, critical percolation depends on the value of α …. 45

4.1 Plot of the function $\mu_c(\omega_s)$ for $0 < \omega_s < 1$………………….. 57
4.2 Minimum overlap volume for communication……………………….. 58
4.3 Plot of the function $\mu_c(\omega_t)$ for $0.3125 \leq \omega_t < 1$…………… 60
4.4 Plot of the function $\mu_c(\omega_s, \alpha)$ for $\vartheta(\alpha) \leq \omega_s < 1$ and $1 \leq \alpha < 2$ … 65
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Symmetric intersection of three sensing disks</td>
<td>76</td>
</tr>
<tr>
<td>5.2</td>
<td>Reuleaux triangle</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Three lenses of a slice</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>Adjacent slices</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Slicing grid of a square field</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Sensor selection for k-coverage of a field</td>
<td>80</td>
</tr>
<tr>
<td>5.7</td>
<td>Random slicing grid</td>
<td>82</td>
</tr>
<tr>
<td>5.8</td>
<td>Adjacent cluster-heads</td>
<td>84</td>
</tr>
<tr>
<td>5.9</td>
<td>Clustering for D-CRACC$_k$</td>
<td>84</td>
</tr>
<tr>
<td>5.10</td>
<td>Clustering for D-CRACC$_k$</td>
<td>87</td>
</tr>
<tr>
<td>5.11</td>
<td>Slicing grids of the sensing disk of a sensor</td>
<td>88</td>
</tr>
<tr>
<td>5.12</td>
<td>k-Coverage checking algorithm of Trig-DIRACC$_k$</td>
<td>89</td>
</tr>
<tr>
<td>5.13</td>
<td>State diagram of Trig-DIRACC$_k$</td>
<td>90</td>
</tr>
<tr>
<td>5.14</td>
<td>Maximum distance between sensors in two lenses</td>
<td>92</td>
</tr>
<tr>
<td>5.15</td>
<td>k-Coverage candidacy algorithm of Self-DIRACC$_k$</td>
<td>93</td>
</tr>
<tr>
<td>5.16</td>
<td>State transition diagram of Self-DIRACC$_k$</td>
<td>95</td>
</tr>
<tr>
<td>5.17</td>
<td>$\lambda(r,k)$ vs. k</td>
<td>99</td>
</tr>
<tr>
<td>5.18</td>
<td>$\lambda(r,k)$ vs. r</td>
<td>99</td>
</tr>
<tr>
<td>5.19</td>
<td>Number of active sensors vs. number of deployed sensors (k variable)</td>
<td>100</td>
</tr>
<tr>
<td>5.20</td>
<td>Number of active sensors vs. number of deployed sensors (r variable)</td>
<td>100</td>
</tr>
<tr>
<td>5.21</td>
<td>k vs. number n_a of active sensors</td>
<td>101</td>
</tr>
<tr>
<td>5.22</td>
<td>Remaining energy vs. time</td>
<td>101</td>
</tr>
<tr>
<td>5.23</td>
<td>Trig-DIRACC$_k$ vs. Self-DIRACC$_k$ (Sensor density vs. coverage degree)</td>
<td>102</td>
</tr>
<tr>
<td>5.24</td>
<td>Trig-DIRACC$_k$ vs. Self-DIRACC$_k$ (Sensor density vs. sensing range)</td>
<td>103</td>
</tr>
<tr>
<td>5.25</td>
<td>Trig-DIRACC$_k$ vs. Self-DIRACC$_k$ (Total remaining energy vs. time)</td>
<td>103</td>
</tr>
<tr>
<td>5.26</td>
<td>Self-DIRACC$_k$ compared to CCP (k vs. n_a)</td>
<td>104</td>
</tr>
<tr>
<td>5.27</td>
<td>Self-DIRACC$_k$ compared to CCP (remaining energy vs. time)</td>
<td>104</td>
</tr>
<tr>
<td>5.28</td>
<td>Self-DIRACC$_k$ compared to CCP (n_a vs. R)</td>
<td>105</td>
</tr>
<tr>
<td>5.29</td>
<td>Self-DIRACC$_k$ compared to CCP (n_a vs. r)</td>
<td>106</td>
</tr>
<tr>
<td>6.1</td>
<td>Three-lens flowers of s_i</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>A field decomposed into circular bands</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>R-Het-DCC$_k$ vs. R-Hom-DCC$_k$</td>
<td>118</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparing PR-Het-CCC$_k$, PR-Het-DCC$_k$, and R-Het-DCC$_k$</td>
<td>118</td>
</tr>
<tr>
<td>6.5</td>
<td>Decomposition of a square region of interest into Reuleaux triangles, where mobile sensors should be located in lenses to k-cover a region of interest</td>
<td>119</td>
</tr>
<tr>
<td>6.6</td>
<td>State diagram of DAMSEL</td>
<td>122</td>
</tr>
</tbody>
</table>
List of Figures

6.7 CAMSEL compared to the result of Theorem 5.3 in Chap. 5 …… 124
6.8 DAMSEL compared to the result of Theorem 5.3 in Chap. 5…….. 124
6.9 CAMSEL compared to DAMSEL (Number of sensors)………….. 125
6.10 CAMSEL compared to DAMSEL (Total remaining energy)…….. 126
6.11 DAMSEL compared to Competition (Number of sensors)………. 126
6.12 DAMSEL compared to Competition (Total remaining energy)….. 127

7.1 Reuleaux triangle………………………………………………….. 135
7.2 Location of a least k-covered point………………………………... 135
7.3 Upper bound of r_s vs. k for $\alpha = 2$................................. 137
7.4 Upper bound of r_s vs. k for $\alpha = 3$................................. 138
7.5 Upper bound of r_s vs. k for $\alpha = 4$................................. 138
7.6 k-Coverage candidacy algorithm…………………………………... 139
7.7 Sensor spatial density vs. degree of coverage k for $\alpha = 2$........ 141
7.8 Sensor spatial density vs. degree of coverage k for $\alpha = 3$........ 141
7.9 Sensor spatial density vs. degree of coverage k for $\alpha = 4$........ 142
7.10 Degree of coverage k vs. number of deployed sensors for $\alpha = 2$... 143
7.11 Degree of coverage k vs. number of deployed sensors for $\alpha = 3$... 143
7.12 Degree of coverage k vs. number of deployed sensors for $\alpha = 4$... 144
7.13 Number n_a of active sensors vs. β for $k = 3$ and $\alpha = 2$…… 144
7.14 Number n_a of active sensors vs. β for $k = 3$ and $\alpha = 3$…… 145
7.15 Number n_a of active sensors vs. β for $k = 3$ and $\alpha = 4$…… 145
7.16 Total remaining energy vs. time for $k = 3$, $\alpha = 2$, and $p_{th} = 0.7$.. 146
7.17 Total remaining energy vs. time for $k = 3$, $\alpha = 2$, and $p_{th} = 0.8$.. 146
7.18 Total remaining energy vs. time for $k = 3$, $\alpha = 2$, and $p_{th} = 0.9$.. 147
7.19 Intersection of four symmetric spheres and their Reuleaux tetrahedron... 149
7.20 Five regular tetrahedra about a common edge and twenty regular tetrahedra about a shared vertex [66]................................. 149
7.21 Two-dimensional projection of a slice................................. 150
7.22 k-Coverage-Candidacy algorithm.. 152
7.23 $\lambda(r,k)$ vs. k... 153
7.24 $\lambda(r,k)$ vs. r... 153
7.25 $\lambda(r,k)$ vs. R... 154

8.1 Sensor distribution in a square field of area A. The radius of the sensing ranges of the sensors is r while the radius of their communication ranges is R.. 159
8.2 First non-trivial connected component of the disconnected network... 162
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Second non-trivial connected component of the disconnected network</td>
<td>162</td>
</tr>
<tr>
<td>8.4</td>
<td>1-Coverage and $R_i \geq 2r_i$ do not imply connectivity</td>
<td>163</td>
</tr>
<tr>
<td>8.5</td>
<td>$RT(\xi_0, r)$ and $A(\xi_0, R)$ regions</td>
<td>168</td>
</tr>
<tr>
<td>8.6</td>
<td>The forbidden fault set constraint is violated (neighbor set of s_i is</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>within the circular band of width R_{max})</td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>Connectivity is maintained (the radius of s_j’s communication disk is</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>larger than R_{min})</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Single-hop vs. two-hop data forwarding</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>The WLDT protocol</td>
<td>179</td>
</tr>
<tr>
<td>9.3</td>
<td>Localized DT and candidate checkpoints</td>
<td>180</td>
</tr>
<tr>
<td>9.4</td>
<td>Data forwarding path between s_0 and s_{p2}</td>
<td>183</td>
</tr>
<tr>
<td>9.5</td>
<td>Energy function $E(m)$ for $\alpha = 2$</td>
<td>187</td>
</tr>
<tr>
<td>9.6</td>
<td>Energy function $E(m)$ for $\alpha = 3$</td>
<td>187</td>
</tr>
<tr>
<td>9.7</td>
<td>Progress made towards s_p and s_m</td>
<td>189</td>
</tr>
<tr>
<td>9.8</td>
<td>$E_{\text{exp}}(s_0, s_m)$ for $\alpha = 2$</td>
<td>191</td>
</tr>
<tr>
<td>9.9</td>
<td>$E_{\text{exp}}(s_0, s_m)$ for $\alpha = 2$</td>
<td>191</td>
</tr>
<tr>
<td>9.10</td>
<td>Impact of r and θ_0 on $E_G(s_0, s_m)$</td>
<td>194</td>
</tr>
<tr>
<td>9.11</td>
<td>Impact of α on $E_G(s_0, s_m)$</td>
<td>195</td>
</tr>
<tr>
<td>9.12</td>
<td>Impact of r on $E_G(s_0, s_m)$</td>
<td>198</td>
</tr>
<tr>
<td>10.1</td>
<td>Slicing of the communication range of sensors</td>
<td>203</td>
</tr>
<tr>
<td>10.2</td>
<td>Impact of k on the size of the subset $CPF(s_j, s_m; k, \beta)$</td>
<td>204</td>
</tr>
<tr>
<td>10.3</td>
<td>Non-shortest path between s_0 and s_m</td>
<td>208</td>
</tr>
<tr>
<td>10.4</td>
<td>Impact of CCB id (k) and angle θ on the energy consumption</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>for $\alpha = 2$</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>Impact of CCB id (k) and angle θ on the energy consumption</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>for $\alpha = 3$</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>Impact of CCB id (k) and angle θ on the energy consumption</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>for $\alpha = 4$</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>Impact of CCB id (k) and angle θ on the delay for $\alpha = 2$</td>
<td>212</td>
</tr>
<tr>
<td>10.8</td>
<td>Impact of CCB id (k) and angle θ on the delay for $\alpha = 3$</td>
<td>212</td>
</tr>
<tr>
<td>10.9</td>
<td>Impact of CCB id (k) and angle θ on the delay for $\alpha = 4$</td>
<td>213</td>
</tr>
<tr>
<td>10.10</td>
<td>Impact of CCB id, k, and angle θ on $PF_{\text{exp}}(s_0, s_m, k)$ for $\alpha = 2$</td>
<td>214</td>
</tr>
<tr>
<td>10.11</td>
<td>Impact of CCB id, k, and angle θ on $PF_{\text{exp}}(s_0, s_m, k)$ for $\alpha = 3$</td>
<td>214</td>
</tr>
<tr>
<td>10.12</td>
<td>Impact of CCB id, k, and angle θ on $PF_{\text{exp}}(s_0, s_m, k)$ for $\alpha = 4$</td>
<td>215</td>
</tr>
<tr>
<td>10.13</td>
<td>Trade-off between the three metrics with $(w_1 > w_2, w_3)$ for $\alpha = 2$</td>
<td>219</td>
</tr>
</tbody>
</table>
10.14 Trade-off between the three metrics with \((w_1 > w_2, w_3)\) for \(\alpha = 3\).... 219
10.15 Trade-off between the three metrics with \((w_1 > w_2, w_3)\) for \(\alpha = 4\).... 220
10.16 Trade-off between the three metrics with \((w_2 > w_1, w_3)\) for \(\alpha = 2\).... 220
10.17 Trade-off between the three metrics with \((w_2 > w_1, w_3)\) for \(\alpha = 3\).... 221
10.18 Trade-off between the three metrics with \((w_2 > w_1, w_3)\) for \(\alpha = 4\).... 221
10.19 Trade-off between the three metrics with \((w_3 > w_1, w_2)\) for \(\alpha = 2\).... 222
10.20 Trade-off between the three metrics with \((w_3 > w_1, w_2)\) for \(\alpha = 3\).... 223
10.21 Trade-off between the three metrics with \((w_3 > w_1, w_2)\) for \(\alpha = 4\).... 223
10.22 Trade-off between the three metrics with \((w_1 = w_2 = w_3 = 1/3)\) for \(\alpha = 2\)... 224
10.23 Trade-off between the three metrics with \((w_1 = w_2 = w_3 = 1/3)\) for \(\alpha = 3\)... 224
10.24 Trade-off between the three metrics with \((w_1 = w_2 = w_3 = 1/3)\) for \(\alpha = 4\) ... 225
10.25 The TED data forwarding protocol.. 227
10.26 Uniform energy depletion.. 232
10.27 Impact of sensor density... 232
10.28 Impact of location of the sink... 233
10.29 Impact of data packet size.. 233
10.30 TED compared to SRF.. 235
10.31 TED compared to LRF... 235
10.32 Impact of variability of \(k\)... 236
10.33 Impact of sensor heterogeneity... 237

11.1 Slicing field into circular bands... 242
11.2 Circular field with a centered static sink.............................. 242
11.3 Plot of \(ER(C_{\sigma})\) ... 244
11.4 Plot of \(k_u = \sqrt{0.000067 D_k^2 + 2/3}\) for \(\alpha = 2\).................. 248
11.5 Plot of \(k_u = \sqrt{87 \times 10^{-10} D_k^2 + 2/3}\) for \(2 < \alpha \leq 4\)........ 249
11.6 Plot of \(i_{opt}\) for \(\alpha = 2\)... 252
11.7 Plot of \(i_{opt}\) for \(2 < \alpha \leq 4\)... 252
11.8 Plot of \(g(i,k)\) for \(\alpha = 2\)... 256
11.9 Plot of \(g(i,k)\) for \(2 < \alpha \leq 4\)... 256
11.10 Average energy consumption of NEAR................................... 257
11.11 Uniform energy depletion of all sensors.............................. 257
11.12 The EVEN Protocol... 260
11.13 Voronoi diagram \(Vor(s_0, s_m) \cup SNS(s_0, s_m)\)...................... 261
11.14 Energy-aware Voronoi diagram \(EAVor(s_0, s_{ref}, s_m) \cup SNS(s_0, s_m)\)... 262
11.15 VGF – static sink vs. mobile sink... 264
List of Figures

11.16 Comparing EVEN with VGF ... 264
11.17 Impact of pause time on EVEN .. 265
11.18 Joint mobility and routing strategy [148] 266

12.1 Joint k-coverage and forwarding (GEFIB-1) 274
12.2 Communication between adjacent cluster-heads 275
12.3 Joint k-coverage and forwarding (GEFIB-2) 275
12.4 DAT construction algorithm (DAT-C) 277
12.5 Data forwarding on a random data aggregation tree 278
12.6 Linear representation of a random data aggregation tree 278
12.7 Joint k-coverage and forwarding (GEFIB-3) 279
12.8 GEFIB-1 compared to GEFIB-2 (total remaining energy vs. time) 283
12.9 GEFIB-1 compared to GEFIB-2 (average delay vs. k) 283
12.10 GEFIB-1 compared to CCP+BVGF (data delivery ratio vs. k) 284
12.11 GEFIB-1 vs. CCP+BVGF (total remaining energy vs. time) 284
12.12 Joint k-coverage and hybrid forwarding protocol 287
12.13 Data delivery vs. p ... 289
12.14 Delay vs. p ... 289
12.15 Remaining energy vs. p .. 290

A.1 Sensor spatial density $\lambda(r,k)$ vs. k 302
A.2 Sensor spatial density $\lambda(r,k)$ vs. r 303
A.3 Plot of the function $\kappa_i(G)$ (fix k and vary $\alpha = R/r$) 305
A.4 Plot of the function $\kappa_i(G)$ (fix $\alpha = R/r$ and vary k) 306
A.5 Two nested concentric Reuleaux tetrahedra 309
A.6 Eight boundary sensors located on the corners of a cube 315
A.7 Upper bound of r_s vs. k for $\alpha = 2$ 316
A.8 Upper bound of r_s vs. k for $\alpha = 4$ 317
A.9 Sensor spatial density vs. k ... 318
A.10 k vs. number of deployed sensors 318
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Parameters setting</td>
<td>210</td>
</tr>
<tr>
<td>11.1</td>
<td>Values of E_{elec} and ε depending on α</td>
<td>249</td>
</tr>
</tbody>
</table>