Nonlinear Model Predictive Control
Towards New Challenging Applications
Preface

Model Predictive Control (MPC) is an area in rapid development with respect to both theoretical and application aspects. The former petrochemical applications of MPC were ‘easy’, in the sense that they involved only a small number of rather similar problems, most of which required only control near steady-state conditions. Further control performance specifications were not very challenging. The improving of technology and control theory enabled the application of MPC in new problems often requiring Nonlinear MPC because of the large transients involved, as it has been already seen even in the chemical process industry for the control of product grade changes. There is now a great interest in introducing MPC in many process and non-process applications such as paper-making, control of many kinds of vehicles, including marine, air, space, road and off-road. Some interesting biomedical applications are also very promising. Finally, the interest in the control of complex systems and networks is significantly increasing.

The new applications frequently involve tight performance specifications, model changes or adaptations because of changing operating points, and, perhaps more significantly, safety-criticality. MPC formulations which offer guarantees of stability and robustness feasibility are expected to be of great importance for the deployment of MPC in these applications. The significant effort in developing efficient solutions of the optimisation problem both using an explicit and a numerical approach is of paramount importance for a wider diffusion of NMPC.

In order to summarize these recent developments, and to consider these new challenges, on September 5-9, 2008, we organized an international workshop entitled “International Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control” (NMPC08) which was held in Pavia, Italy. In the spirit of the previous successful workshops held in Ascona, Switzerland, in 1998, and in Freudenstadt-Lauterbad, Germany in 2005, internationally recognized researchers from all over the world, working in the area of nonlinear model predictive control, were joined together. The number of participants has sensibly increased with respect to the previous editions and 21 countries from 4 continents were represented. The aim of this workshop was to lead to an open and critical exchange of ideas and to lay the foundation for new research directions and future international collaborations, facilitating the practical and theoretical advancement of NMPC technologies.
This volume contains a selection of papers presented at the workshop that cover the following topics: stability and robustness, control of complex systems, state estimation, tracking, control of stochastic systems, algorithms for explicit solution, algorithms for numerical solutions and applications. The high quality of the papers has been guaranteed by a double careful peer-review process.

We would like to thank all authors for their interesting contributions. Likewise, we are grateful to all of the involved reviewers for their invaluable comments.

The workshop and the present volume have been supported by University of Pavia, Risk and Security Study Center of the Institute for Advanced Study (IUSS) and Magneti Marelli.

Lalo Magni
Davide Martino Raimondo
Frank Allgöwer
Contents

Stability and Robustness

Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control
D. Limon, T. Alamo, D.M. Raimondo, D. Muñoz de la Peña, J.M. Bravo, A. Ferramosca, E.F. Camacho 1

Self-optimizing Robust Nonlinear Model Predictive Control
M. Lazar, W.P.M.H. Heemels, A. Jokic 27

Set Theoretic Methods in Model Predictive Control
Saša V. Raković 41

Adaptive Robust MPC: A Minimally-Conservative Approach
Darryl DeHaan, Martin Guay, Veronica Adetola 55

Enlarging the Terminal Region of NMPC with Parameter-Dependent Terminal Control Law
Shuyou Yu, Hong Chen, Christoph Böhm, Frank Allgöwer 69

Model Predictive Control with Control Lyapunov Function Support
Keunmo Kang, Robert R. Bitmead 79

Further Results on “Robust MPC Using Linear Matrix Inequalities”
M. Lazar, W.P.M.H. Heemels, D. Muñoz de la Peña, T. Alamo 89
LMI-Based Model Predictive Control for Linear Discrete-Time Periodic Systems .. 99
Christoph Böhm, Tobias Raff, Marcus Reble, Frank Allgöwer

Receding Horizon Control for Linear Periodic Time-Varying Systems Subject to Input Constraints 109
Benjamin Kern, Christoph Böhm, Rolf Findeisen, Frank Allgöwer

Control of Complex Systems

Optimizing Process Economic Performance Using Model Predictive Control .. 119
James B. Rawlings, Rishi Amrit

Hierarchical Model Predictive Control of Wiener Models 139
Bruno Picasso, Carlo Romani, Riccardo Scattolini

Multiple Model Predictive Control of Nonlinear Systems 153
Matthew Kuure-Kinsey, B. Wayne Bequette

Stabilizing Nonlinear Predictive Control over Nondeterministic Communication Networks 167
R. Findeisen, P. Varutti

Distributed Model Predictive Control System Design Using Lyapunov Techniques ... 181
Jinfeng Liu, David Muñoz de la Peña, Panagiotis D. Christofides

Stabilization of Networked Control Systems by Nonlinear Model Predictive Control: A Set Invariance Approach 195
Gilberto Pin, Thomas Parisini

Nonlinear Model Predictive Control for Resource Allocation in the Management of Intermodal Container Terminals ... 205
A. Alessandri, C. Cervellera, M. Cuneo, M. Gaggero

Predictive Power Control of Wireless Sensor Networks for Closed Loop Control ... 215
Daniel E. Quevedo, Anders Ahlén, Graham C. Goodwin

On Polytopic Approximations of Systems with Time-Varying Input Delays .. 225
Rob Gielen, Sorin Olaru, Mircea Lazar
Stochastic Systems

A Vector Quantization Approach to Scenario Generation for Stochastic NMPC .. 235
Graham C. Goodwin, Jan Østergaard, Daniel E. Quevedo, Arie Feuer

Successive Linearization NMPC for a Class of Stochastic Nonlinear Systems .. 249
Mark Cannon, Desmond Ng, Basil Kouvaritakis

Sequential Monte Carlo for Model Predictive Control 263
N. Kantas, J.M. Maciejowski, A. Lecchini-Visintini

State Estimation

An NMPC Approach to Avoid Weakly Observable Trajectories .. 275
Christoph Böhm, Felix Heß, Rolf Findeisen, Frank Allgöwer

State Estimation and Fault Tolerant Nonlinear Predictive Control of an Autonomous Hybrid System Using Unscented Kalman Filter ... 285
J. Prakash, Anjali P. Deshpande, Sachin C. Patwardhan

Design of a Robust Nonlinear Receding-Horizon Observer - First-Order and Second-Order Approximations ... 295
G. Goffaux, A. Vande Wouwer

State Estimation in Nonlinear Model Predictive Control, Unscented Kalman Filter Advantages 305
Giancarlo Marafioti, Sorin Olaru, Morten Hovd

Tracking

MPC for Tracking of Constrained Nonlinear Systems 315
D. Limon, A. Ferramosca, I. Alvarado, T. Alamo, E.F. Camacho

A Flatness-Based Iterative Method for Reference Trajectory Generation in Constrained NMPC 325
J.A. De Doná, F. Suryawan, M.M. Seron, J. Lévine

Nonlinear Model Predictive Path-Following Control 335
Timm Faulwasser, Rolf Findeisen
Algorithms for Explicit Solution

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Survey on Explicit Model Predictive Control</td>
<td>345</td>
</tr>
<tr>
<td>Alessandro Alessio, Alberto Bemporad</td>
<td></td>
</tr>
<tr>
<td>Explicit Approximate Model Predictive Control of Constrained Nonlinear Systems with Quantized Input</td>
<td>371</td>
</tr>
<tr>
<td>Alexandra Grancharova, Tor A. Johansen</td>
<td></td>
</tr>
<tr>
<td>Parametric Approach to Nonlinear Model Predictive Control</td>
<td>381</td>
</tr>
<tr>
<td>M. Herceg, M. Kvasnica, M. Fikar</td>
<td></td>
</tr>
</tbody>
</table>

Algorithms for Numerical Solution

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation</td>
<td>391</td>
</tr>
<tr>
<td>Moritz Diehl, Hans Joachim Ferreau, Niels Haverbeke</td>
<td></td>
</tr>
<tr>
<td>Nonlinear Programming Strategies for State Estimation and Model Predictive Control</td>
<td>419</td>
</tr>
<tr>
<td>Victor M. Zavala, Lorenz T. Biegler</td>
<td></td>
</tr>
<tr>
<td>A Framework for Monitoring Control Updating Period in Real-Time NMPC Schemes</td>
<td>433</td>
</tr>
<tr>
<td>Mazen Alamir</td>
<td></td>
</tr>
<tr>
<td>Practical Issues in Nonlinear Model Predictive Control: Real-Time Optimization and Systematic Tuning</td>
<td>447</td>
</tr>
<tr>
<td>Toshiyuki Ohtsuka, Kohei Ozaki</td>
<td></td>
</tr>
<tr>
<td>Fast Nonlinear Model Predictive Control via Set Membership Approximation: An Overview</td>
<td>461</td>
</tr>
<tr>
<td>Massimo Canale, Lorenzo Fagiano, Mario Milanese</td>
<td></td>
</tr>
<tr>
<td>Fast Nonlinear Model Predictive Control with an Application in Automotive Engineering</td>
<td>471</td>
</tr>
<tr>
<td>Jan Albersmeyer, Dörte Beigel, Christian Kirches, Leonard Wirsching, Hans Georg Bock, Johannes P. Schlöder</td>
<td></td>
</tr>
<tr>
<td>Unconstrained NMPC Based on a Class of Wiener Models: A Closed Form Solution</td>
<td>481</td>
</tr>
<tr>
<td>Shraddha Deshpande, V. Vishnu, Sachin C. Patwardhan</td>
<td></td>
</tr>
</tbody>
</table>
An Off-Line MPC Strategy for Nonlinear Systems Based on SOS Programming ... 491
Giuseppe Franzè, Alessandro Casavola, Domenico Famularo, Emanuele Garone

Applications

NMPC for Propofol Drug Dosing during Anesthesia Induction ... 501
S. Syafiie, J. Niño, C. Ionescu, R. De Keyser

Spacecraft Rate Damping with Predictive Control Using Magnetic Actuators Only 511
Christoph Böhm, Moritz Merk, Walter Fichter, Frank Allgöwer

Nonlinear Model Predictive Control of a Water Distribution Canal Pool .. 521
J.M. Igreja, J.M. Lemos

Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon ... 531
Levente L. Simon, Zoltan K. Nagy, Konrad Hungerbuehler

An Application of Receding-Horizon Neural Control in Humanoid Robotics ... 541
Serena Ivaldi, Marco Baglietto, Giorgio Metta, Riccardo Zoppoli

Particle Swarm Optimization Based NMPC: An Application to District Heating Networks 551
Guillaume Sandou, Sorin Olaru

Explicit Receding Horizon Control of Automobiles with Continuously Variable Transmissions 561
Takeshi Hatanaka, Teruki Yamada, Masayuki Fujita, Shigeru Morimoto, Masayuki Okamoto

Author Index .. 571