Applications of Declarative Programming and Knowledge Management

17th International Conference, INAP 2007
and 21st Workshop on Logic Programming, WLP 2007
Würzburg, Germany, October 4-6, 2007
Revised Selected Papers
This volume contains a selection of papers presented at the 17th International Conference on Applications of Declarative Programming and Knowledge Management INAP 2007 and the 21st Workshop on Logic Programming WLP 2007, which were held jointly in Würzburg, Germany, during October 4–6, 2007.

Declarative programming is an advanced paradigm for the modeling and solving of complex problems. This specification method has become more and more attractive over the last years, e.g., in the domains of databases, for the processing of natural language, for the modeling and processing of combinatorial problems, and for establishing knowledge–based systems for the Web.

The INAP conferences provide a forum for intensive discussions of applications of important technologies around logic programming, constraint problem solving, and closely related advanced software. They comprehensively cover the impact of programmable logic solvers in the Internet society, its underlying technologies, and leading-edge applications in industry, commerce, government, and societal services.

The Workshops on Logic Programming are the annual meeting of the Society for Logic Programming (GLP e.V.). They bring together researchers interested in logic programming, constraint programming, and related areas like databases and artificial intelligence. Previous workshops have been held in Germany, Austria and Switzerland.

The topics of the selected papers of this year’s joint conference concentrated on three currently important fields: constraint programming and constraint solving, databases and data mining, and declarative programming with logic languages.

During the last couple of years a lot of research has been conducted on the usage of declarative programming for databases and data mining. Reasoning about knowledge wrapped in rules, databases, or the Web allows one to explore interesting hidden knowledge. Declarative techniques for the transformation, deduction, induction, visualization, or querying of knowledge, or data mining techniques for exploring knowledge have the advantage of high transparency and better maintainability compared to procedural approaches.

The problem when using knowledge to find solutions for large industrial tasks is that these problems have an exponential complexity, which normally prohibits the fast generation of exact solutions. One method which has made substantial progress over the last years is the constraint programming paradigm. The declarative nature of this paradigm offers significant advantages for software engineering both in the implementation and in the maintenance phase. Different interesting aspects are under discussion: how can this paradigm be improved or combined with known, classical methods; how can practical problems be modeled as con-
straint problems; and what are the experiences of applications in really large industrial planning and simulation tasks?

Another area of active research is the extension of the logic programming paradigm and its integration with other programming concepts. The successful extension of logic programming with constraints has been already mentioned. Other extensions intend to increase the expressivity of logic languages by including new logical constructs, such as contextual operators or temporal annotations. The integration of logic programming with other programming paradigms has been mainly investigated for the case of functional programming. This combination is beneficial from a software engineering point of view: well–known functional programming techniques to improve the structure and quality of the developed software, e.g., types, modules, higher–order operators, or lazy evaluation, can be also used for logic programming in an integrated language.

The two conferences INAP 2007 and WLP 2007 were jointly organized at the University of Würzburg, Germany, by the following institutions: the University of Würzburg, the Society for Logic Programming (GLP e.V.), and the Fraunhofer Institute for Computer Architecture and Software Technology (FhG FIRST). We would like to thank all authors who submitted papers and all conference participants for the fruitful discussions. We are grateful to the members of the Program Committee and the external referees for their timely expertise in carefully reviewing the papers, and we would like to express our thanks to the Institute for Bioinformatics of the University of Würzburg for hosting the conference.

September 2008

Dietmar Seipel
Michael Hanus
Armin Wolf
Organization

Program Chair

Dietmar Seipel
University of Würzburg, Germany

Program Committee of INAP

Sergio A. Alvarez
Boston College, USA
Oskar Bartenstein
IF Computer Japan, Japan
Joachim Baumeister
University of Würzburg, Germany
Henning Christiansen
Roskilde University, Denmark
Ulrich Geske
University of Potsdam, Germany
Parke Godfrey
York University, Canada
Petra Hofstedt
Technical University of Berlin, Germany
Thomas Kleemann
University of Würzburg, Germany
Ilkka Niemelä
Helsinki University of Technology, Finland
David Pearce
Universidad Rey Juan Carlos, Madrid, Spain
Carolina Ruiz
Worcester Polytechnic Institute, USA
Dietmar Seipel
University of Würzburg, Germany (Chair)
Osamu Takata
Kyushu Institute of Technology, Japan
Hans Tompits
Technical University of Vienna, Austria
Masanobu Umeda
Kyushu Institute of Technology, Japan
Armin Wolf
Fraunhofer FIRST, Germany
Osamu Yoshie
Waseda University, Japan

Program Committee of WLP

Slim Abdennadher
German University Cairo, Egypt
Christoph Beierle
Fern University Hagen, Germany
Jürgen Dix
Technical University of Clausthal, Germany
Thomas Eiter
Technical University of Vienna, Austria
Tim Furche
University of München, Germany
Ulrich Geske
University of Potsdam, Germany
Michael Hanus
Christian Albrechts University Kiel, Germany (Chair)
Petra Hofstedt
Technical University of Berlin, Germany
Sebastian Schaffert
Salzburg Research, Austria
Torsten Schaub
University of Potsdam, Germany
Sibylle Schwarz
University of Halle, Germany
Dietmar Seipel
University of Würzburg, Germany
VIII Organization

Michael Thielscher Technical University of Dresden, Germany
Hans Tompits Technical University of Vienna, Austria
Armin Wolf Fraunhofer FIRST, Berlin, Germany

Local Organization

Dietmar Seipel University of Würzburg, Germany
Joachim Baumeister University of Würzburg, Germany

External Referees for INAP and WLP

Stephan Frank Martin Grabmüller
Table of Contents

Invited Talk
Ulrich Geske and Hans-Joachim Goltz

Constraints
Linear Weighted-Task-Sum – Scheduling Prioritized Tasks on a Single
Resource ... 21
Armin Wolf and Gunnar Schrader
Efficient Edge-Finding on Unary Resources with Optional Activities
(Revised and Extended Version) .. 38
Sebastian Kuhnert
Encoding of Planning Problems and Their Optimizations in Linear
Logic ... 54
Lukáš Chrpa, Pavel Surynek, and Jiří Vyskočil
Constraint-Based Timetabling System for the German University in
Cairo ... 69
Slim Abdennadher, Mohamed Aly, and Marlien Edward

Databases and Data Mining
Squash: A Tool for Analyzing, Tuning and Refactoring Relational
Database Applications .. 82
Andreas M. Boehm, Dietmar Seipel, Albert Sickmann, and
Matthias Wetzka
Relational Models for Tabling Logic Programs in a Database 99
Pedro Costa, Ricardo Rocha, and Michel Ferreira
Integrating XQuery and Logic Programming 117
Jesús M. Almendros-Jiménez, Antonio Becerra-Terón, and
Francisco J. Enciso-Baños
Causal Subgroup Analysis for Detecting Confounding 136
Martin Atzmueller and Frank Puppe
Using Declarative Specifications of Domain Knowledge for Descriptive
Data Mining .. 149
Martin Atzmueller and Dietmar Seipel
Extensions of Logic Programming

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrating Temporal Annotations in a Modular Logic Language</td>
<td>165</td>
</tr>
<tr>
<td>Vitor Nogueira and Salvador Abreu</td>
<td></td>
</tr>
<tr>
<td>Visual Generalized Rule Programming Model for Prolog with Hybrid</td>
<td>178</td>
</tr>
<tr>
<td>Operators</td>
<td></td>
</tr>
<tr>
<td>Grzegorz J. Nalepa and Igor Wojnicki</td>
<td></td>
</tr>
<tr>
<td>The Kiel Curry System KiCS</td>
<td>195</td>
</tr>
<tr>
<td>Bernd Braßel and Frank Huch</td>
<td></td>
</tr>
<tr>
<td>Narrowing for First Order Functional Logic Programs with Call-Time</td>
<td>206</td>
</tr>
<tr>
<td>Choice Semantics</td>
<td></td>
</tr>
<tr>
<td>Francisco J. López-Fraguas, Juan Rodríguez-Hortalá, and</td>
<td></td>
</tr>
<tr>
<td>Jaime Sánchez-Hernández</td>
<td></td>
</tr>
<tr>
<td>Java Type Unification with Wildcards</td>
<td>223</td>
</tr>
<tr>
<td>Martin Plümicke</td>
<td></td>
</tr>
</tbody>
</table>

System Demonstrations

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Relativised Uniform Equivalence under Answer-Set Projection in the System cc⊤</td>
<td>241</td>
</tr>
<tr>
<td>Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran</td>
<td></td>
</tr>
<tr>
<td>spock: A Debugging Support Tool for Logic Programs under the</td>
<td>247</td>
</tr>
<tr>
<td>Answer-Set Semantics</td>
<td></td>
</tr>
<tr>
<td>Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and</td>
<td></td>
</tr>
<tr>
<td>Stefan Woltran</td>
<td></td>
</tr>
</tbody>
</table>

Author Index

<table>
<thead>
<tr>
<th>Author Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>253</td>
</tr>
</tbody>
</table>