Computational Fluid Dynamics

A von Karman Institute Book
Preface

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title first presented in 1985 and repeated with modifications every year since that time.

The objective, then and now, was to present the subject of computational fluid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone.

A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm.

The third edition has the goal of presenting additional updates and clarifications while preserving the introductory nature of the material.

The book is divided into three parts. John Anderson lays out the subject in Part I by first describing the governing equations of fluid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method.

Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution. Gerard Degrez treats implicit time-marching methods for inviscid and viscous compressible flows; relative to the second edition, figures in the section on stability properties have been added and the section on numerical dissipation has been expanded with examples. Eric Dick, in two separate articles, treats both finite volume and finite element methods; the sections on current developments have been updated and references to a number of essential recent publications have been added.

Part III brings a new contribution by Jan Vierendeels and Joris Degroote which provides insight into the steps that are needed to obtain a CFD solution of a flow field using commercial CFD software packages. The wide availability of such codes
provides advantages for the non-specialist in numerical techniques, but requires an appreciation of their limitations and knowledge of an application methodology.

The editor and authors will consider this book to have been successful if the readers conclude they have been well prepared to examine the literature in the field and to begin the application of CFD methods to the resolution of problems in their area of interest.

The editor takes this opportunity to thank the authors for their contributions to this book and for their enthusiasm to continue the tradition of continually improving the VKI Lecture Series on which it is based.

Eagle River, WI, USA

John F. Wendt
Biographical Sketches of the Authors

Professor John D. Anderson, Jr.
National Air and Space Museum, Smithsonian Institution, Washington, DC.

John D. Anderson, Jr. is the Curator for Aerodynamics at the National Air and Space Museum, Smithsonian Institution. He graduated from the University of Florida with a B. Eng. degree, and from The Ohio State University with a PhD in Aeronautical and Astronautical Engineering. He served as a Lieutenant and Task Scientist at Wright Field in Dayton, as Chief of the Hypersonics Group at the Naval Ordnance Laboratory in White Oak, Maryland and became Chairman of the Department of Aerospace Engineering at the University of Maryland in 1973. He was designated a Distinguished Scholar/Teacher in 1982. In 1993 he was made a full faculty member of the Committee for the History and Philosophy of Science, and in 1996 an affiliate member of the History Department at the University of Maryland. In 1996 he became the Glenn L. Martin Distinguished Professor in Aerospace Engineering, retired from the University in 1999, and is now Professor Emeritus. Dr. Anderson has published ten books and over 120 professional papers in the areas of high temperature gas dynamics, computational fluid dynamics, applied aerodynamics, and the history of aeronautics. He is an Honorary Fellow of the American Institute of Aeronautics and Astronautics and a Fellow of the Royal Aeronautical Society. His e-mail ID is AndersonJA@si.edu

Professor Gérard Degrez
Université Libre de Bruxelles, Brussels, Belgium

Gérard Degrez, Full Professor at the Faculty of Engineering at Université Libre de Bruxelles (ULB), received his initial engineering degree (Ingénieur civil mécanicien & électrique) from ULB, a Master of Science degree in engineering from Princeton University and a PhD degree from ULB. He held academic positions successively at the University of Sherbrooke (Canada), at the von Karman Institute for Fluid Dynamics (Belgium) and at Université Libre de Bruxelles (Belgium) where he is now Head of the Aero-Thermo-Mechanics Laboratory, while having a part-time appointment as Adjunct Professor at the von Karman Institute. Author of more
than 25 archival journal publications on shock wave/boundary layer interactions, computational methods for incompressible and compressible flows and numerical simulation of high enthalpy flows, his current research interests concern numerical methods and physical models for the simulation of high enthalpy reacting flows and of turbulent flows, including magnetofluidodynamics. His e-mail ID is gdegrez@ulb.ac.be

Mr. Joris Degroote
Ghent University, Ghent, Belgium

Joris Degroote received the M.Sc. degree in electromechanical engineering from Ghent University, Ghent, Belgium, in 2006. Currently, he is a PhD Fellow of the Research Foundation of Flanders (FWO) in the Department of Flow, Heat, and Combustion Mechanics at Ghent University, working in the field of reduced-order models in computational fluid dynamics and fluid–structure interaction. His e-mail ID is joris.degroote@ugent.be

Professor Erik Dick
Ghent University, Ghent, Belgium

Erik Dick obtained the M.Sc. Degree in Mechanical Engineering from Ghent University in 1973 and the Ph.D. in Computational Fluid Dynamics from the same university in 1980. From 1974 to 1991, he worked at the Department of Mechanical Engineering, Division of Turbomachinery, of Ghent University as researcher, senior researcher, and head of research. He was associate professor at the University of Liège, from July 1991 to September 1992. He returned to Ghent University as associate professor and became full professor in 1995. Professor Dick teaches turbomachines and computational fluid mechanics. His area of research is computational methods and models for turbulence and transition for flow problems in mechanical engineering. He is author or co-author of about 80 articles in international scientific journals and about 160 papers in international scientific conferences and was the recipient of the 1990 Iwan Akerman prize for fluid machinery awarded by the Belgian national science foundation. His e-mail ID is Erik.Dick@ugent.be

Professor Roger Grundmann
Technische Universität Dresden, Dresden, Germany

Roger Grundmann received the Dipl.-Ing. and Dr.-Ing. degrees from the Technische Universität of Berlin. Since 1972 he has been a member of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) at the Institute for Theoretical Fluid Dynamics. From 1985 to 1987 he was Associate Professor at the von Karman Institute for Fluid Dynamics (VKI) in Rhode-Saint-Genèse, Belgium and later spent another three years at the VKI as a Visiting Professor. In 1993 he received the Chair in Thermofluid Dynamics at the Institute for Fluid Dynamics of the Technische Universität Dresden and in 1994 became the Institute’s director. In 1996 he founded the Institute for Aerospace Engineering at the T.U. Dresden and was its director for
10 years. From 1996 until 2007, Professor Grundmann was the head of an Innovation College and its successor, the Collaborative Research Centre “Electromagnetic Flow Control in Metallurgy, Crystal-Growth and Electro-Chemistry” of the German Research Foundation (DFG). He is a member of the Board of Directors and General Assembly of the VKI, the Scientific Advisory Board of the Forschungszentrum Dresden-Rossendorf (FZD), and a Review Board of the DFG. His fields of research are viscous hypersonic flows by means of numerical methods, the modelling and prediction of transition, and volume-force driven flows such as magnetofluid dynamics and acoustical fluid dynamics. His e-mail ID is grundman@tfd.mw.tu-dresden.de

Associate Professor Jan Vierendeels
Ghent University, Ghent, Belgium

Jan Vierendeels obtained the degree of MSc in electromechanical engineering in 1991 at Ghent University, Belgium. In 1993, he obtained the degree of MSc in aeronautical and astronautical engineering and in 1996, he obtained the degree of MSc in biomedical engineering, both at Ghent University. In 1998, he obtained his PhD in electromechanical engineering at Ghent University. Currently, he is an associate professor at the Department of Flow, Heat and Combustion Mechanics at Ghent University, working in the field of computational fluid dynamics and fluid-structure interaction. His e-mail ID is jan.vierendeels@ugent.be
Contents

Part I

1 Basic Philosophy of CFD 3
 J.D. Anderson, Jr.

2 Governing Equations of Fluid Dynamics 15
 J.D. Anderson, Jr.

3 Incompressible Inviscid Flows: Source and Vortex Panel Methods . . . 53
 J.D. Anderson, Jr.

4 Mathematical Properties of the Fluid Dynamic Equations 77
 J.D. Anderson, Jr.

5 Discretization of Partial Differential Equations 87
 J.D. Anderson, Jr.

6 Transformations and Grids 105
 J.D. Anderson, Jr.

7 Explicit Finite Difference Methods: Some Selected Applications to Inviscid and Viscous Flows ... 127
 J.D. Anderson, Jr.

Part II

8 Boundary Layer Equations and Methods of Solution 153
 R. Grundmann

9 Implicit Time-Dependent Methods for Inviscid and Viscous Compressible Flows, with a Discussion of the Concept of Numerical Dissipation ... 183
 G. Degrez
10 Introduction to Finite Element Methods in Computational Fluid Dynamics ... 235
 E. Dick

11 Introduction to Finite Volume Methods in Computational Fluid Dynamics ... 275
 E. Dick

Part III

12 Aspects of CFD Computations with Commercial Packages 305
 J. Vierendeels and J. Degroote

Index ... 329