The global trend towards more flexible and dynamic business process integration and automation has led to a convergence of interests between service-oriented computing, semantic technology, and intelligent multiagent systems. In particular the areas of service-oriented computing and semantic technology offer much interest to the multiagent system community, including similarities in system architectures and provision processes, powerful tools, and the focus on issues such as quality of service, security, and reliability. Similarly, techniques developed in the multiagent systems and semantic technology promise to have a strong impact on the fast-growing service-oriented computing technology.

Service-oriented computing has emerged as an established paradigm for distributed computing and e-business processing. It utilizes services as fundamental building blocks to enable the development of agile networks of collaborating business applications distributed within and across organizational boundaries. Services are self-contained, platform-independent software components that can be described, published, discovered, orchestrated, and deployed for the purpose of developing distributed applications across large heterogeneous networks such as the Internet.

Multiagent systems are also aimed at the development of distributed applications, however, from a different but complementary perspective. Service-oriented paradigms are mainly focused on syntactical and declarative definitions of software components, their interfaces, communication channels, and capabilities with the aim of creating interoperable and reliable infrastructures. In contrast, multiagent systems center on the development of reasoning and planning capabilities of autonomous problem solvers that apply behavioral concepts such as interaction, collaboration, or negotiation in order to create flexible and fault-tolerant distributed systems for dynamic and uncertain environments.

Semantic technology offers a semantic foundation for interactions among agents and services, forming the basis upon which machine-understandable service descriptions can be obtained, and, as a result, autonomic coordination among agents is made possible. On the other hand, ontology-related technologies, ontology matching, learning, and automatic generation, etc., not only gain in potential power when used by agents, but also are meaningful only when adopted in real applications in areas such as service-oriented computing.

This volume consists of the proceedings of the Service-Oriented Computing: Agents, Semantics, and Engineering (SOCASE 2008) workshop held at the International Joint Conferences on Autonomous Agents and Multiagent Systems (AAMAS 2008). The papers in this volume cover a range of topics at the intersection of service-oriented computing, semantic technology, and intelligent multiagent systems, such as: service description and discovery; planning, composition and negotiation; semantic processes and service agents; and applications.
The workshop organizers would like to thank all members of the Program Committee for their excellent work, effort, and support in ensuring the high-quality program and successful outcome of the SOCASE 2008 workshop. We would also like to thank Springer for their cooperation and help in putting this volume together.

May 2008

Ryszard Kowalczyk
Michael Huhns
Matthias Klusch
Zakaria Maamar
Quoc Bao Vo
Organization

SOCASE 2008 was held in conjunction with the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008) on May 12, 2008 in Estoril, Portugal.

Organizing Committee

Ryszard Kowalczyk, Swinburne University of Technology, Australia
Michael Huhns, University of South Carolina, USA
Matthias Klusch, German Research Center for Artificial Intelligence, Germany
Zakaria Maamar, Zayed University Dubai, United Arab Emirates
Quoc Bao Vo, Swinburne University of Technology, Australia

Program Committee

Stanislaw Ambroszkiewicz, Polish Academy of Sciences, Poland
Youcef Baghdadi, Sultan Qaboos University, Oman
Djamal Benslimane, Lyon 1 University, France
Jamal Bentahar, Concordia University, Canada
Brian M. Blake, Georgetown University, USA
Peter Braun, The Agent Factory GmbH, Germany
Paul A. Buhler, College of Charleston, USA
Bernard Burg, Panasonic Research, USA
Jiangbo Dang, Siemens Corporate Research, USA
Ian Dickinson, HP Laboratories Bristol, UK
Manuel Nuñez García, Universidad Complutense de Madrid, Spain
Mauro Gaspari, University of Bologna, Italy
Karthik Gomadam, University of Georgia, USA
Dominic Greenwood, Whitestein Technologies, Switzerland
Jingshan Huang, University of South Carolina, USA
Margaret Lyell, Intelligent Automation, USA
Michael Mrissa, Namur University, Belgium
Ingo Mueller, Swinburne University, Australia
N.C. Narendra, IBM India Research Lab, India
Xuan Thang Nguyen, Swinburne University, Australia
Leo Obrst, The MITRE Corporation, USA
Julian A. Padget, University of Bath, UK
Maurice Pagnucco, University of New South Wales, Australia
Pavel Shvaiko, University of Trento, Italy
Giovanna Petrone, University of Turin, Italy
Debbie Richards, Macquarie University, Australia
Marwan Sabbouh, The MITRE Corporation, USA
Francisco García Sánchez, University of Murcia, Spain
Quan Z. Sheng, University of Adelaide, Australia
Hiroki Suguri, Communication Technologies (Comtec), Japan
Jie Tang, Tsinghua University, China
Rainer Unland, University of Duisburg-Essen, Germany
Steve Wilmott, Universitat Politecnica de Catalunya, Spain
Hamdi Yahyaoui, Sharjah University, UAE
Table of Contents

A Middleware Architecture for Building Contract-Aware Agent-Based Services .. 1
Roberto Confalonieri, Sergio Álvarez-Napagao, Sofia Panagiotidi, Javier Vázquez-Salceda, and Steven Willmott

A Knowledge Technologies-Based Multi-agent System for eGovernment Environments ... 15
Francisco García-Sánchez, Luis Álvarez Sabucedo, Rodrigo Martínez-Béjar, Luis Anido Rifón, Rafael Valencia-García, and Juan M. Gómez

Towards a Broker Agent in the Semantic Services Environment 31
Özgür Gümüs, Önder Gürcan, and Oguz Dikenelli

Pattern-Based Semantic Tagging for Ontology Population 45
Masumi Inaba, Takayuki Iida, Tomohiro Yamasaki, Kosei Fume, Yumiko Mizoguchi, Shinichi Nagano, and Takahiro Kawamura

Service-Based Integration of Grid and Multi-Agent Systems Models 56
Clement Jonquet, Pascal Dugenie, and Stefano A. Cerri

Discovering Homogenous Service Communities through Web Service Clustering .. 69
Wei Liu and Wilson Wong

Collaborative Learning Agents Supporting Service Network Management .. 83
Wico Mulder, Geleyn R. Meijer, and P.W. Adriaans

A Multi-Agent Architecture for NATO Network Enabled Capabilities: Enabling Semantic Interoperability in Dynamic Environments (NC3A RD-2376) ... 93
Brenda J. Powers

An Agent for Asymmetric Process Mediation in Open Environments ... 104
Roman Vaculín, Roman Neruda, and Katia Sycara

Towards an Emergent Taxonomy Approach for Adaptive Profiling 118
Sylvain Videau, Sylvain Lemouzy, Valérie Camps, and Pierre Glize

Commitment-Based Service Coordination 134
Stefan J. Witwicki and Edmund H. Durfee

Author Index .. 149