Editorial Advisory Board

Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, Georgia Institute of Technology, USA
Peter Corke, CSIRO, Australia
Paolo Dario, Scuola Superiore Sant’Anna Pisa, Italy
Rüdiger Dillmann, Universität Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, University of Utah, USA
Makoto Kaneko, Osaka University, Japan
Lydia Kavraki, Rice University, USA
Sukhan Lee, Sungkyunkwan University, Korea
Tim Salcudean, University of British Columbia, Canada
Sebastian Thrun, Stanford University, USA
Yangsheng Xu, Chinese University of Hong Kong, PRC
Shin’ichi Yuta, Tsukuba University, Japan

STAR (Springer Tracts in Advanced Robotics) has been promoted under the auspices of EURON (European Robotics Research Network)
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neurosciences, virtual prototyping, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen.

The goal of the series of *Springer Tracts in Advanced Robotics (STAR)* is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.

The edited volume by Antonio Bicchi, Martin Buss, Marc Ernst and Angelika Peer is the outcome of the TOUCH-HapSys European research project. Two bodies of research are synergically covered in the two parts of the book; namely, neuropsychology and technology. The eleven chapters discuss the recent advances in the study of human haptic (kinaesthetic, tactile, temperature) and multimodal (visual, auditory, haptic) perception mechanisms. Besides the theoretical advancement, most contributions survey the state-of-the-art in the field, report a number of practical applications to real systems, and discuss possible future developments.
As the second focused STAR volume in the popular area of haptics, this title constitutes a very fine addition to the series!

Naples, Italy Bruno Siciliano
February 2008 STAR editor
Preface

It is no coincidence that in many languages, deeply involving emotions and feelings are described as "touching". Touch appears indeed to be the most direct, less intellectually mediated sense. As such, it should be a fundamental ingredient of any system aimed at providing compelling sensations of remote presence. Generation of high-definition haptic feedback will be crucially important for driving a sense of Presence in next generation immersive VR and teleoperation systems. The perspective in which this book is conceived is that of understanding and enabling an experience of presence not limited to "being there", but extended to "being in touch" with the virtual or remote surroundings.

Despite of numerous technological advances in this field it appears that the development of fully immersive haptic displays cannot proceed by technological innovations alone but requires a deep understanding and utilization of the psychophysical mechanisms of human haptic perception. On one hand, technological innovations are needed to increase the richness and accuracy of physically generated haptic stimuli. The generation of a one-to-one copy of the real world seems, however, to be unfeasible due to the inherent complexity of the necessary devices and stringent physiological and mechanical constraints. On the other hand, advances in the understanding of the information processing of the multidimensional sense of touch contribute to overcome these fundamental technological constraints. Limitations of the human perceptual system can be exploited to provide a realistic haptic sensation without getting all the physical parameters completely right. Perceptual limitations already helped in the design of advanced visual and auditory displays.

This book summarizes main results of the TOUCH-HapSys research project financially supported by the 5th Framework IST Programme of the European Union. It provides an important contribution towards a new generation of high-fidelity haptic display technologies. The uniqueness of this book is its interdisciplinary approach highlighting the field of haptic research from a neuropsychological as well as a technological point of view. It provides readers with recent advances in the study of human haptic (kinesthetic, tactile, temperature) and multimodal (visual, auditory, haptic) perception mechanisms and with innovations in the field
of haptic display technology. It shows that both lines of research are intimately connected, not only because biological sciences inspire and enable technology improvement, but also because novel devices offer new facilities for the experimental testing of psychophysical hypotheses.

This book is structured in two parts: A. Fundamental Psychophysical and Neuropsychological Research and B. Technology and Applications. Chapters in part A. concentrate on the study of the basic mechanisms of touch, involving neurophysiology, psychophysics, and functional mappings in the brain. In-depth study of the psychophysiology of the sense of touch establishes connections between haptic fundamental perception and virtual-reality oriented technology. Part B. addresses new technologies to significantly improve haptic and multimodal feedback systems. These include novel actuator designs, software solutions for haptic rendering, and applications. The two parts are not however separated, and the many connections and synergies between the two complementary domains of research are highlighted in the text.

Finally the editors would like to thank all the authors for their valuable contributions to this book. The quality and freshness found in each chapter are due to the excellent work carried out by the authors.

Italy, Germany, January 2008

Antonio Bicchi
Martin Buss
Marc O. Ernst
Angelika Peer
Contents

Introduction
Antonio Bicchi, Martin Buss, Marc O. Ernst, Angelika Peer 1

Part I: Psychophysical and Neuropsychological Research

1 Functional Exploration Studies of Supramodal Organization in the Human Extrastriate Cortex
Emiliano Ricciardi, Daniela Bonino, Lorenzo Sani, Pietro Pietrini 7

2 Brain Mechanisms of Haptic Perception
R. Martyn Bracewell, Andrew S. Wimperis, Alan M. Wing 25

3 The Role of Tactile Flow in Processing Dynamic Haptic Stimuli
Enzo Pasquale Scilingo, Nicola Sgambelluri, Antonio Bicchi 39

4 Human Haptic Perception and the Design of Haptic-Enhanced Virtual Environments
Jean-Pierre Bresciani, Knut Drewing, Marc O. Ernst 61

Part II: Technology and Applications

5 2-DOF fMRI-Compatible Haptic Interface for Bimanual Motor Tasks with Grip/Load Force Measurement
Roger Gassert, Dominique Chapuis, Nick Roach, Alan Wing,
Hannes Bleuler ... 109

6 Electro-Active Polymer Actuators for Tactile Displays
Johann Citérin, Abderrahmane Kheddar 131
7 A Free-Hand Haptic Interface Based on Magnetorheological Fluids
Nicola Sgambelluri, Enzo P. Scilingo, Rocco Rizzo, Antonio Bicchi
155

8 Multi-modal VR Systems
Michael Fritschi, Hasan Esen, Martin Buss, Marc O. Ernst
179

9 Design of a Multilevel Haptic Display
Abdelhamid Drif, Benjamin Le Mercier, Abderrahmane Kheddar
207

10 Design and Evaluation of Haptic Soft Tissue Interaction
Matthias Harders, Peter Leskovsky, Theresa Cooke, Marc Ernst,
Gabor Szekely
225

11 Bone Drilling Medical Training System
Hasan Esen, Ken‘ichi Yano, Martin Buss
245

Index
279

Author Index
281
List of Contributors

Antonio Bicchi
University of Pisa
Interdepartmental Research Center
"E. Piaggio"
via Diotisalvi, 2 56126 Pisa, Italy
bicchi@ing.unipi.it

Hannes Bleuler
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Laboratoire de Systèmes Robotiques
Lausanne, Switzerland
hannes.bleuler@epfl.ch

Daniela Bonino
University of Pisa
Laboratory of Clinical Biochemistry and Molecular Biology
Via S. Zeno, 61 56127 Pisa - Italy
daniela.bonino@bioclinica.unipi.it

R. Martyn Bracewell
University of Birmingham
Behavioural Brain Sciences Centre, School of Psychology
Birmingham, UK
and
University of Wales
Wolfson Centre for Clinical and Cognitive Neuroscience
Bangor, UK
rm.bracewell@bham.ac.uk

Jean-Pierre Bresciani
Max Planck Institute for Biological Cybernetics
Spemannstrasse 38, D-72076 Tübingen, Germany
bresciani@tuebingen.mpg.de

Martin Buss
Technische Universität München
Institute of Automatic Control Engineering (LSR)
D-80290 Munich, Germany
mb@tum.de

Dominique Chapuis
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Laboratoire de Systèmes Robotiques
Lausanne, Switzerland
dominique.chapuis@epfl.ch

Johann Citérin
Centre National de la Recherche Scientifique (CNRS)
Paris, France
citerin@iup.univ-evry.fr

Theresa Cooke
Max Planck Institute for Biological Cybernetics
Spemannstrasse 38, D-72076 Tübingen, Germany
Knut Drewing
University of Giessen
Institute for Psychology
Otto-Behaghel-Strasse 10F, D - 35394
Giessen, Germany
Knut.Drewing@psychol.uni-giessen.de

Abderrahmane Kheddar
Centre National de la Recherche Scientifique (CNRS)
Paris, France
kheddar@ieee.org

Abdelhamid Drif
Centre National de la Recherche Scientifique (CNRS)
Paris, France
Abdelhamid.Drif@ibisc.univ-evry.fr

Benjamin Le Mercier
Centre National de la Recherche Scientifique (CNRS)
Paris, France
lemercier@iup.univ-evry.fr

Marc O. Ernst
Max Planck Institute for Biological Cybernetics
Spemannstrasse 38, D-72076
Tuebingen, Germany
marc.ernst@tuebingen.mpg.de

Peter Leskovsky
ETH Zurich
Computer Vision Lab
Zurich, Switzerland

Hasan Esen
Technische Universitat Munchen
Institute of Automatic Control Engineering (LSR)
D-80290 Munich, Germany
esen@mytum.de

Angelika Peer
Technische Universitat Munchen
Institute of Automatic Control Engineering (LSR)
D-80290 Munich, Germany
angelika.peer@tum.de

Michael Fritschi
Technische Universitat Munchen
Institute of Automatic Control Engineering (LSR)
D-80290 Munich, Germany
michael.fritschi@tum.de

Pietro Pietrini
University of Pisa,
Laboratory of Clinical Biochemistry and Molecular Biology
Via S. Zeno, 61 56127 Pisa - Italy
pietro.pietrini@bioclinica.unipi.it

Emiliano Ricciardi
University of Pisa
Laboratory of Clinical Biochemistry and Molecular Biology
Via S. Zeno, 61 56127 Pisa - Italy
emiliano.ricciardi@bioclinica.unipi.it

Roger Gassert
Ecole Polytechnique Federale de Lausanne (EPFL)
Laboratoire de Systemes Robotiques
Lausanne, Switzerland
r.gassert@ieee.org

Rocco Rizzo
University of Pisa
Interdepartmental Research Center “E. Piaggio”
via Diotisalvi, 2 56126 Pisa, Italy
r.rizzo@ing.unipi.it

Matthias Harders
ETH Zurich
Computer Vision Lab
Zurich, Switzerland
mharders@vision.ee.ethz.ch
Nick Roach
University of Birmingham
Behavioural Brain Sciences Centre, School of Psychology
Birmingham, UK
n.roach@bham.ac.uk

Lorenzo Sani
University of Pisa
Laboratory of Clinical Biochemistry and Molecular Biology
Via S. Zeno, 61 56127 Pisa - Italy
lorenzo.sani@bioclinica.unipi.it

Enzo Pasquale Scilingo
University of Pisa
Interdepartmental Research Center “E. Piaggio”
via Diotisalvi, 2 56126 Pisa, Italy
e.scilingo@ing.unipi.it

Nicola Sgambelluri
University of Pisa

Gabor Szekely
ETH Zurich
Computer Vision Lab
Zurich, Switzerland

Andrew S. Wimperis
University of Birmingham
Behavioural Brain Sciences Centre, School of Psychology
Birmingham, UK
asw349@bham.ac.uk

Alan Wing
University of Birmingham
Behavioural Brain Sciences Centre, School of Psychology
Birmingham, UK
a.m.wing@bham.ac.uk