Advances in Digital Terrain Analysis
Preface

The chapters in this book mostly started as presentations at the Terrain Analysis and Digital Terrain Modelling conference hosted by Nanjing Normal University in November 2006. As far as I am aware this was the first international conference devoted specifically to this area of research, and since it was also my first visit to China it was an exciting and unique experience for me. The participants ranged from leaders in the field discussing visions and challenges for the future to students grappling with the possibilities and exploring new directions. These papers are a selection of the many presentations at the conference and give some indication of the breadth of research on show at the meeting.

Digital terrain analysis has moved beyond a research tool into routine application, such as determination of catchment areas and flow pathways in hydrological analysis, supporting soil mapping through spatial prediction and the definition of landform elements, and the use of slope and other attributes for land capability analysis. But there are still many areas of active research refining these methods or exploring new approaches, as this book shows.

One recent development explored in several of the papers in this book is the availability of global or near-global terrain data in several forms, GTOPO-30 and SRTM 3 second data being the most significant. Reliable global topographic data opens the doors for truly global analysis, consistent analysis on different continents and the generation of collective experience that is transforming the field of geomorphometry into a robust science.

Another theme reflected in these papers is the increasing sophistication in our understanding of issues related to scale, accuracy, uncertainty and error propagation in digital terrain analysis. As these methods are increasingly used to support important decisions, information on uncertainty becomes vital for the rational use of predictions. There is still some way to go before we have tools for estimating and representing uncertainties that meet the needs of our user community.

Other papers demonstrate the continued demand for improved methods to classify and segment the land surface into useful units for land management or mapping; showcase innovations in representing and characterising the land surface; highlight a growing focus on processes rather than statistical correlations for understanding the earth’s surface; and exemplify the ongoing development and testing of new algorithms addressing deficiencies in quality and efficiency of existing methods.
At the Nanjing conference, I was astonished by the number of students from China and elsewhere training in this research area and by the variety and innovation of their work. I was also impressed by their probing questions and contributions to the discussions. The conference provided an opportunity to renew some old friendships, make new friends and meet for the first time some of the people whose names I knew from their published papers. I greatly enjoyed the interaction with so many disciples in the field of terrain analysis and consider myself fortunate to have had the opportunity to participate in this meeting. I am hopeful of many more stimulating and rewarding meetings and discussions as part of the TADTM initiative in the coming years.

Dr John Gallant
CSIRO Land and Water, November 2007
Contents

List of Contributors xi

Introduction 1

ZHOU Qiming, Brian G. LEES and TANG Guo-an 3
Advances in Digital Terrain Analysis: The TADTM Initiative

Section 1: Digital Representation for Terrain Analysis 11

George Ch. MILIARESIS 13
Quantification of Terrain Processes

Peter A. SHARY 29
Models of Topography

LI Zhilin 59
Multi-Scale Digital Terrain Modelling and Analysis

ZHAO Xuesheng, BAI Jianjun and CHEN Jun 85
A Seamless and Adaptive LOD Model of the Global Terrain Based on the QTM

Section 2: Morphological Terrain Analysis 105

TANG Guo-an and LI Fayuan 107
Landform Classification of the Loess Plateau Based on Slope Spectrum from Grid DEMs

Josef STROBL 125
Segmentation-based Terrain Classification

Lucian D. DRĂGUȚ and Thomas BLASCHKE 141
Terrain Segmentation and Classification using SRTM Data
LU Huaxing

*Modelling Terrain Complexity*

LIU Aili

*DEM-based Analysis of Local Relief*

YANG Qinke, David JUPP, LI Rui and LIANG Wei

*Re-Scaling Lower Resolution Slope by Histogram Matching*

Section 3: Hydrological Terrain Analysis

John P. WILSON, Graeme AGGETT, DENG Yongxin and Christine S. LAM

*Water in the Landscape: A Review of Contemporary Flow Routing Algorithms*

Petter PILESJÖ

*An Integrated Raster-TIN Surface Flow Algorithm*

TIAN Yuan, WU Lun, GAO Yong, WANG Daming and ZHANG Yi

*DEM-based Modelling and Simulation of Modern Landform Evolution of Loess*

Section 4: Uncertainty in Terrain Analysis

ZHOU Qiming and LIU Xuejun

*Assessing Uncertainties in Derived Slope and Aspect from a Grid DEM*

LIU Xuejun and BIAN Lu

*Accuracy Assessment of DEM Slope Algorithms Related to Spatial Autocorrelation of DEM Errors*

DENG Fengdong, WANG Lili, ZHUO Jing and LIU Anlin

*Modelling Slope Field Uncertainty Derived From DEM in the Loess Plateau*
Contents ix

ZHU A-Xing, James E. BURT, Michael SMITH, WANG Rongxun and GAO Jing 333
The Impact of Neighbourhood Size on Terrain Derivatives and Digital Soil Mapping

Brian G. LEES, HUANG Zhi, Kimberley VAN NIEL and Shawn W. LAFFAN 349
The Impact of DEM Error on Predictive Vegetation Mapping

Section 5: Applications of Terrain Analysis 363

Igor V. FLORINSKY 365
Global Lineaments: Application of Digital Terrain Modelling

John B. LINDSAY and James J. ROTHWELL 383
Modelling Channelling and Deflection of Wind by Topography

ZHANG Ting, LI Jun, WANG Chun and ZHAN Lei 407
Spatial Correlation of Topographic Attributes in Loess Plateau

YANG Xin and XIAO Chenchao 425
Terrain-based Revision of an Air Temperature Model in Mountain Areas

James R.F. BARRINGER, Allan E. HEWITT, Ian H. LYNN and Jochen SCHMIDT 443
National Mapping of Landform Elements in Support of S-Map. A New Zealand Soils Database

Concluding Remarks 459

Brian G. LEES 461
Progress in Digital Terrain Analysis
List of Contributors

Graeme AGGETT, Riverside Technology Inc., 2290 East Prospect Road, Suite 1, Fort Collins, Colorado CO 80525
E-mail: gra@riverside.com

BAI Jianjun, Department of Surveying, China University of Mining and Technology (Beijing), D11, Xueyuan Road, Beijing 100083, P.R. China

James R. F. BARRINGER, Landcare Research, PO Box 40, Lincoln 7640, New Zealand, Email: barringerj@landcareresearch.co.nz

BIAN Lu, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, Jiangsu 210046, P.R. China

Thomas BLASCHKE, Researchstudio iSPACE, ARC Austrian Research Centers, Leopoldskronstr. 30, 5020 Salzburg, Austria

James E. BURT, Department of Geography, University of Wisconsin-Madison, 550 N. Park St, Madison WI 53706, USA

CHEN Jun, National Geometric Centre of China, No.1 Baishengcun, Zizhuyuan, Beijing 10004, P.R. China
Email: chenjun@nsdi.gov.cn,

DENG Fengdong, Shaanxi Remote Sensing Information Centre for Agriculture, Email: phoenixlet@yahoo.com.cn

DENG Yongxin, Department of Geography, Western Illinois University, Macomb, IL 61455, E-mail: y-deng2@wiu.edu

Lucian D. DRĂGUȚ, GIS-Centre for Geoinformatics, Salzburg University, Schillerstr. 30, 5020 Salzburg, Austria
Email: lucian.dragut@sbg.ac.at

Igor V. FLORINSKY, Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia, Email: iflorinsky@yahoo.ca

GAO Jing, Department of Geography, University of Wisconsin-Madison, 550 N. Park St. Madison WI 53706, USA
Email: jgao3@wisc.edu

GAO Yong, Institute of RS and GIS, Peking University, Beijing, 100871, P.R. China

Allan E. HEWITT, Landcare Research, PO Box 40, Lincoln 7640, New Zealand

HUANG Zhi, The Australian Government Department of Environment and Water Resources, Email: zhi.huang@environment.gov.au
List of Contributors

David JUPP, CSIRO Marine and Atmospheric Research, CS Christian Building, CSIRO Labs, Clunies Ross St., Black Mountain ACT, 2601, Australia

Shawn W. LAFFAN, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
Email: shawn.laffan@unsw.edu.au

Christine S. LAM, GIS Research Laboratory, Department of Geography, University of Southern California, Los Angeles, CA 90089-0255, Email: csl@usc.edu

Brian G. LEES, The University of New South Wales at ADFA, Canberra, ACT 2600, Australia, E-mail: b.lees@adfa.edu.au

LI Fayuan, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, Jiangsu, 210046, P.R. China

LI Jun, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, 210046, P.R. China

LI Rui, Northwest University, No 229, Northern Taibai Road, Xi’an 710069, P.R. China

LI Wei, Northwest University, No 229, Northern Taibai Road, Xi’an 710069, P.R. China

LI Zhilin, Dept. of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, Email: lszlli@polyu.edu.hk

LIANG Wei, Northwest University, No 229, Northern Taibai Road, Xi’an 710069, P.R. China

John B. LINDSAY, Uplands Environments Research Unit (UpERU), School of Environment and Development, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK, Email: john.lindsay@manchester.ac.uk

LIU Aili, School of Remote Sensing, Nanjing University of Information Science & Technology, Street No.114 Pancheng New, Nanjing, Jiangsu 210044, P. R. China. Email: aillii66@126.com

LIU Anlin, Shaanxi Remote Sensing Information Centre for Agriculture, Email: phoenixlet@yahoo.com.cn

LIU Xuejun, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, 210046, P.R. China

LU Huaxing, Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, No.1 WenYuan Road , Nanjing, Jiangsu, 210046, P.R. China
Email: huaxinglu@163.com
Ian H. LYNN, Landcare Research, PO Box 40, Lincoln 7640, New Zealand

George Ch. MILIARESIS, Department of Geology, University of Patras, Rion 26504, Greece, Email: gmiliar@upatras.gr

Petter PILESJÖ, Lund University GIS Centre, Lund University, Solvegatan 12, SE-223 62 Lund, Sweden Email: Petter.Pilesjo@giscentrum.lu.se

James J. ROTHWELL, Department of Environmental & Geographical Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK

Jochen SCHMIDT, National Institute of Water and Atmosphere (NIWA), PO Box 8602, Christchurch, New Zealand

Peter A. SHARY, Institute of Physical, Chemical and Biological Problems of Soil Science, RAS, 142290 Institutskaya Street Bldg. 2, Poushchino, Moscow Region, Russia Email: peter_shary@hotmail.com

Michael SMITH, Department of Geography, University of Wisconsin-Madison, 550 N. Park St., Madison WI, 53706, USA

Josef STROBL, Centre for Geoinformatics, Salzburg University, Hellbrunnerstrasse 34, 5020 Salzburg, Austria Email: josef.strobl@sbg.ac.at

TANG Guo-an, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, 210046, P.R. China

TIAN Yuan, Institute of RS and GIS, Peking University, Beijing, 100871, P.R. China, Email: wulun@pku.edu.cn

Kimberley VAN NIEL, School of Earth and Geographical Sciences, University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia, Email: knv@segs.uwa.edu.au

WANG Chun, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, 210046, P.R. China

WANG Daming, Institute of RS and GIS, Peking University, Beijing, 100871, P.R. China

WANG Lili, Shaanxi City and Country Planning & Design Research Institute

WANG Rongxun, Department of Geography, University of Wisconsin-Madison, 550 N. Park St, Madison WI, 53706, USA

John P. WILSON, GIS Research Laboratory, Department of Geography, University of Southern California, Los Angeles, CA 90089-0255, Email: jpwilson@usc.edu
List of Contributors

WU Lun, Institute of RS and GIS, Peking University, Beijing, 100871, P.R. China

XIAO Chenchao, Institute of Remote Sensing and GIS, Peking University, Beijing 100871, P.R. China, Email: chenchaox@gmail.com

YANG Qinke, Northwest University, No 229, Northern Taibai Road, Xi’an 710069, P.R. China, Email: qkyang@nwu.edu.cn

YANG Xin, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Street No.1 Wen Yuan, Nanjing, Jiangsu 210046, P. R. China, Email: xxinyang@163.com

ZHAN Lei, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing, 210046, P.R. China

ZHANG Ting, Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, 210046, Nanjing, P.R. China, Email: tting.zhang@gmail.com

ZHANG Yi, Institute of RS and GIS, Peking University, Beijing, 100871, P.R. China

ZHAO Xuesheng, Department of Surveying, China University of Mining and Technology (Beijing), D11, Xueyuan Road, Beijing 100083, P.R. China, Email: zxs@cumtb.edu.cn

ZHOU Qiming, Department of Geography, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Email: qiming@hkbu.edu.hk

ZHU A-Xing, State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P.R. China

ZHUO Jing, Shaanxi Remote Sensing Information Centre for Agriculture, Email: phoenixlet@yahoo.com.cn