Optimization and Computational Fluid Dynamics
Preface

The idea of this book was born during the “Conference on Modelling Fluid Flow” held in Budapest at the beginning of September 2006. During this occasion, we had decided to propose and thus hold a workshop entitled “Coupling CFD with Optimisation”, based on our rapidly increasing experience with this highly interesting topic. We were nevertheless surprised to see the resonating enthusiasm displayed throughout the workshop by the conference participants.

From the discussions with all the speakers present at this workshop as well as the survey of the scope of the available books and review articles on this subject, it became easier to understand this great interest. While there is a wealth of new research projects that deal with the coupling of Computational Fluid Dynamics (CFD) and modern Optimization techniques, it is however difficult to find reference publications on this topic. There are indeed a few, excellent books available (see also the Introduction), but they are mostly restricted to aerodynamics, since this has been the first field of CFD for which optimization has become a tool of major importance. Moreover, the connection between CFD and Evolutionary Algorithms, often required when considering more complex systems of equations and physical models, has not been documented extensively.

Therefore we decided, together with the support of almost all workshop participants and a few internationally renowned newcomers, to gather and recount our experience concerning Optimization based on evaluations obtained through Computational Fluid Dynamics (a procedure abbreviated in this book as CFD-O), in order to prepare a book covering most of the relevant aspects and issues. Thanks to the hard work and constant support of all contributors, it has been finally possible to release this publication almost exactly one year after the workshop in Budapest. We hope that the interested readers will find here appropriate answers to the main questions: “What is indeed CFD-O? What simulation is today possible using CFD-O? How can I rely on CFD-O for my own applications and which approach should I choose?”
Our first research project on CFD-O was connected with the Ph.D. supervision of Mr. R. Baron at the École Centrale in Paris. He is the creator of our Optimization library (Opal) and must be thanked here for the quality of his work and for his unsurpassed motivation. The authors would furthermore like to thank Ms. Imelda Pasley for her thorough corrections of the manuscript. The quality of many graphical illustrations has been greatly enhanced by Mr. Imre Ferencsin.

Magdeburg, August 2007

Dominique Thévenin
Gábor Janiga
Contents

Part I Generalities and methods

1 Introduction ... 3
 Dominique Thévenin
 References .. 16

2 A Few Illustrative Examples of CFD-based Optimization .. 17
 Gábor Janiga
 2.1 Introduction ... 18
 2.1.1 Purpose ... 18
 2.1.2 Heat Exchanger Optimization (Case A) 19
 2.1.3 Optimization Coupled with Chemical Reactions
 (Case B) ... 21
 2.1.4 Determination of Turbulence Model Parameters
 Based on Optimization (Case C) 22
 2.2 Evolutionary Algorithms for Multi-objective
 Optimization .. 23
 2.2.1 Multi-objective Optimization 23
 2.2.2 The Concept of Pareto Dominance 25
 2.2.3 Evolutionary Algorithm for Multi-objective
 Problems .. 26
 2.3 The Optimal Position of the Tubes in a Heat Exchanger
 (Case A) .. 28
 2.3.1 Tube Bank Heat Exchanger 28
 2.3.2 Problem Parameters 29
 2.3.3 Opal (OPtimization ALgorithms) Package........... 29
 2.3.4 Evaluation of the Objectives for Case A 30
 2.3.5 Parallelization 33
 2.3.6 Computational Results 34
 2.4 Multi-objective Optimization of a Laminar Burner
 (Case B) .. 38
2.4 Governing Equations
- Governing Equations: 38
- Numerical Solution: 40
- Optimization of the Laminar Burner: 42

2.4.1 Governing Equations
- Numerical Solution
- Optimization of the Laminar Burner

2.4.2 Numerical Solution

2.4.3 Optimization of the Laminar Burner

2.5 Optimization of the Standard k-ω Turbulence Model
- Parameters (Case C): 46
- Governing Equations: 48
- Numerical Results: 50

2.6 Conclusions

References

3 Mathematical Aspects of CFD-based Optimization
Hans Georg Bock and Volker Schulz

3.1 Introduction

3.2 Simultaneous Model-based Optimization
- Sequential Quadratic Programming (SQP): 63
- Modular SQP Methods: 65
- Multiple Set-point Optimization: 69
- Multigrid Optimization: 70

3.3 Unsteady Problems
- Time-domain Decomposition by Multiple Shooting: 73
- Parallel Multiple Shooting: 75
- Real-time Optimization and Nonlinear Model Predictive Control: 75
- Sensitivity Driven Multiple Shooting: 76

References

4 Adjoint Methods for Shape Optimization
Kyriakos C. Giannakoglou and Dimitrios I. Papadimitriou

4.1 Introduction

4.2 Principles of the Adjoint Approach
- The Discrete Adjoint Approach: 83
- The Continuous Adjoint Approach: 84

4.2.1 Discrete Adjoint Approach

4.2.2 Continuous Adjoint Approach

4.3 Inverse Design Using the Euler Equations

4.4 Inverse Design Using the Navier-Stokes Equations

4.5 Viscous Losses Minimization in Internal Flows
- Minimization of Total Pressure Losses: 92
- Minimization of Entropy Generation: 93

4.6 Computation of the Hessian Matrix
- Discrete Direct-adjoint Approach for the Hessian: 94
- Continuous Direct-adjoint Approach for the Hessian (Inverse Design): 96

4.7 Applications

Part II Specific Applications of CFD-based Optimization to Engineering Problems

5 Efficient Deterministic Approaches for Aerodynamic Shape Optimization .. 111
Nicolas R. Gauger
5.1 Introduction ... 112
5.2 Parameterization by Deformation 113
 5.2.1 Surface Deformation 114
 5.2.2 Grid Deformation 115
5.3 Sensitivity-based Aerodynamic Shape Optimization 117
5.4 Sensitivity Computations 119
 5.4.1 Finite Difference Method 119
 5.4.2 Continuous Adjoint Formulation 120
 5.4.3 Algorithmic Differentiation (AD) 122
5.5 Adjoint Flow Solvers 124
 5.5.1 Continuous Adjoint Flow Solvers 124
 5.5.2 Discrete Adjoint Flow Solvers 125
5.6 Automatic Differentiation Applied to an Entire Design Chain .. 126
 5.6.1 Test Case Definition 127
 5.6.2 Finite Differences 127
 5.6.3 Automatic Differentiation 132
5.7 Adjoint Approach for Aero-Structure Coupling 133
 5.7.1 Adjoint Formulation for Aero-Structure Coupling .. 133
 5.7.2 Implementation 140
 5.7.3 Validation and Application 141
5.8 One-shot Methods 142
References ... 144

6 Numerical Optimization for Advanced Turbomachinery Design .. 147
René A. Van den Braembussche
6.1 Introduction .. 147
6.2 Optimization Methods 150
 6.2.1 Search Mechanisms 150
 6.2.2 Objective Function 156
<table>
<thead>
<tr>
<th>6.2.3 Parameterization</th>
<th>159</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Two-level Optimization</td>
<td>160</td>
</tr>
<tr>
<td>6.3.1 Artificial Neural Networks</td>
<td>162</td>
</tr>
<tr>
<td>6.3.2 Database</td>
<td>164</td>
</tr>
<tr>
<td>6.4 Single Point Optimization of Turbine Blade</td>
<td>166</td>
</tr>
<tr>
<td>6.4.1 2D Blade Geometry Definition</td>
<td>166</td>
</tr>
<tr>
<td>6.4.2 Penalty for Non-optimum Mach Number Distribution (\dot{P}_{\text{Mach}})</td>
<td>168</td>
</tr>
<tr>
<td>6.4.3 Design of a Transonic Turbine Blade</td>
<td>170</td>
</tr>
<tr>
<td>6.5 Multipoint Optimization of a Low Solidity Diffuser</td>
<td>172</td>
</tr>
<tr>
<td>6.6 Multidisciplinary Optimization</td>
<td>175</td>
</tr>
<tr>
<td>6.6.1 3D Geometry Definition</td>
<td>176</td>
</tr>
<tr>
<td>6.6.2 Multidisciplinary Objective Function</td>
<td>178</td>
</tr>
<tr>
<td>6.6.3 Design Conditions and Results</td>
<td>180</td>
</tr>
<tr>
<td>6.7 Conclusions</td>
<td>187</td>
</tr>
</tbody>
</table>

References | 188 |

7 CFD-based Optimization for Automotive Aerodynamics | 191 |

Laurent Dumas

7.1 Introducing Automotive Aerodynamics	192
7.1.1 A Major Concern for Car Manufacturers	192
7.1.2 Experiments on Bluff Bodies	192
7.1.3 Wake Flow Behind a Bluff Body	193
7.1.4 Drag Variation with the Slant Angle	194

7.2 The Drag Reduction Problem | 195 |
| 7.2.1 Drag Reduction in the Automotive Industry | 196 |
| 7.2.2 Numerical Modelization | 197 |

7.3 Fast and Global Optimization Methods | 199 |
7.3.1 Evolutionary Algorithms	199
7.3.2 Adaptive Hybrid Methods (AHM)	201
7.3.3 Genetic Algorithms with Approximated Evaluations (AGA)	203
7.3.4 Validation on Analytic Test Functions	205

7.4 Car Drag Reduction with Numerical Optimization | 207 |
7.4.1 Description of the Test Case	207
7.4.2 Details of the Numerical Simulation	207
7.4.3 Numerical Results	209

7.5 Another Possible Application of CFD-O: Airplane Engines | 212 |
7.5.1 General Description of the Optimization Case	212
7.5.2 Details of the Computation	213
7.5.3 Obtained Results	213

7.6 Conclusion | 214 |

References | 214 |
8 Multi-objective Optimization for Problems Involving Convective Heat Transfer ... 217
Marco Manzan, Enrico Nobile, Stefano Pieri and Francesco Pinto
8.1 Introduction .. 218
8.2 Literature Review ... 219
8.3 Problem Statement .. 222
 8.3.1 Governing Equations 223
 8.3.2 Fluid Dynamic Boundary Conditions 224
 8.3.3 Temperature Boundary Conditions 225
8.4 Numerical Methods .. 228
 8.4.1 Fluid Dynamic Iterative Solution 228
 8.4.2 Thermal Field Iterative Solution 229
8.5 Geometry Parametrization 231
 8.5.1 Wavy Channels 231
 8.5.2 CC Module ... 234
8.6 Optimization Methods 235
 8.6.1 Design of Experiment 238
8.7 Optimization Algorithms 239
 8.7.1 Genetic Algorithm 242
 8.7.2 Multi-objective Approaches 243
 8.7.3 Multi-Criteria Decision Making (MCDM) 246
 8.7.4 Optimization Process 247
8.8 Results and Discussion 249
 8.8.1 Linear Piecewise Optimization 249
 8.8.2 NURBS Optimization 250
 8.8.3 Linear Piecewise versus NURBS 255
 8.8.4 Three-dimensional Analysis 256
 8.8.5 CC Module ... 258
8.9 Concluding Remarks ... 262
References .. 263

9 CFD-based Optimization for a Complete Industrial Process: Papermaking ... 267
Jari Hämäläinen, Taija Hämäläinen, Elina Madetoja and Henri Ruotsalainen
9.1 Introduction .. 267
9.2 Optimal Shape Design of the Tapered Header 269
9.3 Optimal Control of the Fiber Orientation in the Slice Channel ... 272
 9.3.1 On Modeling Fiber Orientation 272
 9.3.2 HOCS Fiber – A Trouble Shooting Tool 273
 9.3.3 Depth-averaged Navier-Stokes Equations 274
 9.3.4 Validation of the Depth-averaged Navier-Stokes Equations ... 276
9.4 Multi-objective Optimization of Papermaking 278
9.4.1 Multi-objective Optimization 279
9.4.2 Modeling and Optimizing the Complete Papermaking Process 281
9.4.3 Numerical Examples 284
9.5 Towards Decision Support Systems 286
9.6 Conclusions ... 287
References .. 288

Index .. 291
List of Contributors

Hans Georg BOCK
Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Im Neuenheimer Feld 368, D - 69120 Heidelberg, Germany, e-mail: scicom@iwr.uni-heidelberg.de

René A. Van den BRAEMBUSSCHE
von Kármán Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Waterloose steenweg, 72, B - 1640 Sint-Genesius-Rode, Belgium, e-mail: vdb@vki.ac.be

Laurent DUMAS
Paris 6 University, Laboratory Jacques-Louis Lions, Boîte 187, 4, place Jussieu, F - 75252 Paris Cedex 05 - France, e-mail: dumas@ccr.jussieu.fr

Nicolas R. GAUGER
German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7, D - 38108 Braunschweig, Germany, e-mail: Nicolas.Gauger@dlr.de

Kyriakos C. GIANNAKOGLOU
National Technical University of Athens, Lab. of Thermal Turbomachines, P.O. Box 64069, GR - Athens 15710, Greece, e-mail: kgianna@central.ntua.gr

Jari HÄMÄLÄINEN
Department of Physics, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland, e-mail: jari.hamalainen@uku.fi

Taija HÄMÄLÄINEN
Department of Physics, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland, e-mail: taija.hamalainen@uku.fi
Gábor JANIGA
University of Magdeburg “Otto von Guericke”, Lab. of Fluid Dynamics and Technical Flows, Universitätsplatz 2, D - 39106 Magdeburg, Germany, e-mail: janiga@ovgu.de

Elina MADETOJA
Department of Physics, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland, e-mail: elina.madetoja@uku.fi

Marco MANZAN
Università di Trieste, Dipartimento di Ingegneria Navale, del Mare e per l’Ambiente, Via A. Valerio 10, I - 34127 Trieste, Italy, e-mail: manzan@units.it

Enrico NOBILE
Università degli Studi di Trieste, Dipartimento di Ingegneria Navale, del Mare e per l’Ambiente, Via A. Valerio 10, I - 34127 Trieste, Italy, e-mail: nobile@units.it

Dimitrios PAPADIMITRIOU
National Technical University of Athens, Lab. of Thermal Turbomachines, P.O. Box 64069, GR - Athens 15710, Greece, e-mail: dpapadim@mail.ntua.gr

Stefano PIERI
Danieli & C. Officine Meccaniche Spa, Buttrio (UD), Italy, e-mail: stpieri@danieli.it

Francesco PINTO
Università di Trieste, Dipartimento di Ingegneria Navale, del Mare e per l’Ambiente, Via A. Valerio 10, I - 34127 Trieste, Italy, e-mail: fpinto@units.it

Henri RUOTSALAINEN
Department of Physics, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland, e-mail: henri.ruotsalainen@uku.fi

Volker SCHULZ
University of Trier, Department of Mathematics, Building E, D - 54286 Trier, Germany, e-mail: Volker.Schulz@uni-trier.de

Dominique THÉVENIN
University of Magdeburg “Otto von Guericke”, Lab. of Fluid Dynamics and Technical Flows, Universitätsplatz 2, D - 39106 Magdeburg, Germany, e-mail: thevenin@ovgu.de
Acronyms

AGA Approximated Genetic Algorithms
AHM Adaptive Hybrid Method
ANN Artificial Neural Network
BFGS Broyden, Fletcher, Goldfarb and Shanno
CC Cross-Corrugated
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
DOE Design of Experiment
DOF Degrees Of Freedom
EA Evolutionary Algorithm
ES Evolution Strategies
FEA Finite Element Analysis
FOPD Fiber Orientation Probability Distribution
GA Genetic Algorithm
HOCS Headbox Optimization Control Simulator
LES Large-Eddy Simulation
LSD Low Solidity Diffuser
MD Machine Direction
MDO Multi-disciplinary Design Optimization
MG Multigrid
MOEA Multi-objective Evolutionary Algorithm
MOGA Multi-objective Genetic Algorithm
NSGA Nondominated Sorting Genetic Algorithm
NURBS Non-Uniform Rational Basic Splines
OF Objective Function
PDE Partial Differential Equation
POF Pareto Optimal Frontier
RANS Reynolds-Averaged Navier Stokes
RBF Radial Basis Function
RSM Reynolds-Stress Model
SA Simulated Annealing
VEGA Vector Evaluation Genetic Algorithm