Springer Series in
OPTICAL SCIENCES

founded by H.K.V. Lotsch

Editor-in-Chief: W. T. Rhodes, Atlanta

Editorial Board: A. Adibi, Atlanta
T. Asakura, Sapporo
T. W. Hänsch, Garching
T. Kamiya, Tokyo
F. Krausz, Garching
B. Monemar, Linköping
H. Venhaus, Berlin
H. Weber, Berlin
H. Weinfurter, München
The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, provides an expanding selection of research monographs in all major areas of optics: lasers and quantum optics, ultrafast phenomena, optical spectroscopy techniques, optoelectronics, quantum information, information optics, applied laser technology, industrial applications, and other topics of contemporary interest.

With this broad coverage of topics, the series is of use to all research scientists and engineers who need up-to-date reference books.

The editors encourage prospective authors to correspond with them in advance of submitting a manuscript. Submission of manuscripts should be made to the Editor-in-Chief or one of the Editors. See also www.springer.com/series/624

Editor-in-Chief

William T. Rhodes
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail: bill.rhodes@ece.gatech.edu

Editorial Board

Ali Adibi
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332-0250, USA
E-mail: adibi@ee.gatech.edu

Toshimitsu Asakura
Hokkai-Gakuen University
Faculty of Engineering
1-1, Minami-26, Nishi 11, Chuou-ku
Sapporo, Hokkaido 064-0926, Japan
E-mail: asakura@eli.hokkai-s-u.ac.jp

Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching, Germany
E-mail: t.w.haensch@physik.uni-muenchen.de

Takeshi Kamiya
Ministry of Education, Culture, Sports
Science and Technology
National Institution for Academic Degrees
3-29-1 Otsuka, Bunkyo-ku
Tokyo 112-0012, Japan
E-mail: kamiyatk@niad.ac.jp

Ferenc Krausz
Ludwig-Maximilians-Universität München
Lehrstuhl für Experimentelle Physik
Am Coulombwall 1
85748 Garching, Germany
and
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching, Germany
E-mail: ferenc.krausz@mpq.mpg.de

Bo Monemar
Department of Physics
and Measurement Technology
Materials Science Division
Linköping University
S-58183 Linköping, Sweden
E-mail: bom@ifm.liu.se

Herbert Venghaus
Fraunhofer Institut für Nachrichtentechnik
Heinrich-Hertz-Institut
Einsteinufer 37
10587 Berlin, Germany
E-mail: venghaus@hhi.de

Horst Weber
Technische Universität Berlin
Optisches Institut
Straße des 17. Juni 135
10623 Berlin, Germany
E-mail: weber@physik.tu-berlin.de

Harald Weinfurter
Ludwig-Maximilians-Universität München
Sektion Physik
Schellingstraße 4/III
80799 München, Germany
E-mail: harald.weinfurter@physik.uni-muenchen.de
Kai-Erik Peiponen
Risto Myllylä
Alexander V. Priezzhev

Optical Measurement Techniques
Innovations for Industry and the Life Sciences

With 79 Figures
Optical measurement technique is a wide field because various optical phenomena and properties of light can be used to get information from an object that one wants to get information about. Optical phenomena usually involve light interaction with a medium. The interaction may be linear and involve absorption, dispersion, fluorescence or scattering of light. Properties of light such as amplitude, phase, polarization, wavelength and velocity in a medium provide a rich world to get information from an object. In the case of nonlinear optical phenomena the strong amplitude of the light is the key factor.

In this book we give a view of optical measurement techniques, from the perspective of the authors of this book, especially on applications in industry and life sciences. We are aware about the vast field of the topic. Therefore, we have not intended to cover all possible topics but focus on the following themes, which are applied optical spectroscopy, machine vision, laser velocimetry and measurement of surface quality, position, distance, and displacement.

As concerns industrial optical measurements the newest scientific inventions usually come rather late to practical use. Traditional methods for measurement are favored. Nevertheless, the traditional optical measurement techniques for industry have experienced a renaissance due to strong development of light sources, light detectors, novel type optical elements and CCD cameras.

The field of life sciences is rather wide. Especially the progress of nanotechnology has opened new fields such as nanomedicine and optical tomography. There will be an ever increasing demand to develop optical measurement and imaging technology for life science. In this book we report on some optical measurement techniques that are popular in life sciences.

R M wishes to thank Academy of Finland for financial support during the course of writing this book. K-E P is grateful to PhD Mikko Juuti for technical
assistance and data he provided for this book. A V P acknowledges fruitful discussions with colleagues in the International Laser Center of Lomonosov Moscow State University.

Joensuu, Oulu and Moscow
October 2008

Kai-Erik Peiponen
Risto Myllylä
Alexander V. Priezzhev
Contents

Preface ........................................................ V

1 Introduction ............................................... 1

2 Applied Optical Spectroscopy .............................. 3
  2.1 Transmission Spectroscopy ................................... 4
  2.2 Measurement of Turbidity of Liquids ......................... 9
  2.3 Reflection Spectroscopy .................................. 11
    2.3.1 Refractometer .................................... 11
    2.3.2 Reflectometer with Wavelength Scanning Mode .......... 12
  2.4 Measurement of Diffuse Reflection
    from Porous Media ........................................ 22
  2.5 On Estimation of Optical Constants of Porous Media ....... 24
  2.6 Nonlinear Optical Spectroscopy .......................... 26
  2.7 Conclusions ............................................. 28

3 Machine Vision Systems .................................. 31
  3.1 Inspection of Plastic Cover of Mobile Telephone ............ 31
  3.2 Diffractive Optical Element Based Machine Vision Gauge
    for Float Glass Thickness Measurement ........................ 32
    3.2.1 Diffractive Optical Element .......................... 32
    3.2.2 Float Glass ....................................... 33
    3.2.3 DOE as an On-Line Thickness Gauge of Float Glass ... 33
  3.3 Machine Vision System for Monitoring
    Compressed Paper ......................................... 36
  3.4 Imaging Spectrometer .................................... 37
  3.5 Conclusions ............................................. 39

4 Optical Inspection of Surface Roughness and Gloss ......... 41
  4.1 Definition of Surface Roughness Parameters .................. 42
  4.2 Optical Inspection of Finishing Marks ....................... 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Measurement of Surface Roughness Using Laser Beam as a Probe of Specular Reflection</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Measurement of Surface Roughness Using Focused Laser Beam</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Low Coherent Proximity Sensor for Surface Roughness Monitoring</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Low Coherence Interferometer as a Surface Profilometer of Porous Media</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Specular Gloss</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Diffractive Optical Element Based Glossmeter</td>
<td>60</td>
</tr>
<tr>
<td>4.9</td>
<td>Statistical Parameters for Gloss Assessment</td>
<td>64</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusions</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>Measurement of Positions, Distances, and Displacement</td>
<td>67</td>
</tr>
<tr>
<td>5.1</td>
<td>Distance Measurement</td>
<td>68</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Laser Pulse Time-of-Flight Distance Measurement</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Laser Radar</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Gated Imaging</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Light Beam Position Measurement Using Position Sensitive Detector (PSD)</td>
<td>82</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Resolution and Turbulence</td>
<td>86</td>
</tr>
<tr>
<td>5.5</td>
<td>Applications</td>
<td>88</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Traffic Control Applications</td>
<td>88</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Medical Applications</td>
<td>90</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Industrial Applications</td>
<td>92</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Monitoring of Bridges</td>
<td>95</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Railway Track Measuring and Guidance of the Tamping Machine</td>
<td>97</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Marksmanship Training</td>
<td>99</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Laser Velocimetry</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Laser Doppler Velocimetry</td>
<td>104</td>
</tr>
<tr>
<td>6.2</td>
<td>Long-Range Velocity Measurements and Wind Lidars</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Laser Doppler Microscopes</td>
<td>111</td>
</tr>
<tr>
<td>6.4</td>
<td>Doppler Optical Coherent Tomographs</td>
<td>116</td>
</tr>
<tr>
<td>6.5</td>
<td>Laser Doppler Flowmeters and Perfusion Imagers</td>
<td>124</td>
</tr>
<tr>
<td>6.6</td>
<td>Particle Image Velocimeters (Including Capillaroscopes and Angiographers)</td>
<td>127</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions</td>
<td>136</td>
</tr>
</tbody>
</table>

References                                                                                   137

Index                                                                                         151