To Carla Hehner-Rivard
on whom great personal stress was imposed in this endeavour.
Her selfless devotion, her arduous coordinating effort in dealing with the often re-ordered digital data base of the atlas’ illustrations and text,
her protracted correspondence in obtaining permissions for close to 1000 illustrations,
and her endless patience with her husband’s importunities,
contributed immeasurably to the book’s realization.
Preface

The media now broadcast loss of life and property damage caused by a variety of geologic hazards and geologic terrains worldwide on a near-daily frequency and in near-real-time.

Themes

This Atlas and Glossary is the result of the author’s lifetime vocation, practice and research worldwide on the application of vertical air photography and Earth Observation satellite images to geomorphology. His teaching experience and consulting for civil engineers led him to increasingly emphasize the links between specific geounits and their inherent geologic hazards. The idea of producing an atlas documenting these links was inspired by the activities of the International Decade for Natural Disaster Reduction, and he began work on the book in 1998.

The integrity of any structure has to rely on the ground on which it stands. There is a general awareness that such common hazards as rock falls, rock slides, and floods are associated with certain geologic formations, structures, and topographic situations. However, this knowledge is not as widespread as a dozen other destructive hazards that threaten human life and property, and are functionally associated with particular geologic processes and formations. These relationships have been established by distilling a selection of geounits as agents of, or susceptible to, specific geohazards, from a comprehensive photogeologic classification and photographic archive that was developed during the author’s training and consultancy work.

Objectives

The Atlas and Glossary is a portfolio approach that aims to provide an accessible source of concise information for earth science professionals and students who need to understand the hazards that are associated with specific geological units and geostructures that are mappable using airphotos and satellite images.

All the material is presented as integrated data sets whose texts and figures of worldwide coverage characterizing a geounit and its geohazards, are a convenient synthesis of information providing a rapid insight for the user from frequently widely scattered sources.

The Illustrations

The Atlas and Glossary includes 995 satellite images, vertical airphotos, air perspective views, ground photos and line-art figures that depict and document the classified geounits in their varied photogeologic appearances in diverse biophysical environments on a planet that is too easily thought of as small. Eighty-nine countries are represented.
Characterization of Geounits

The descriptions of geounit data sets are concise syntheses of current geoscience knowledge.

A geounit, as an agent of a geohazard or its susceptibility to other geohazards is discussed in relation to a set of fifteen hazard types detectable on air photos and images under the heading geohazard relations.

Photogeologic Interpretation

The Classification provides a set of descriptor codes for the identification of photogeologic units. Interpretations delineate and annotate geounits on the majority of the satellite images and airphotos.

Stereo Viewing

The Presentation section of the Introduction explains the inclusion of a CD-ROM to provide stereo viewing of airphoto figures in the Atlas.

Copyright

Every effort was made to obtain permission to reproduce copyright material throughout this book. The illustrations are all drawn from an archive of over 400 files. Because some date back more than four decades, the provenance of some has been lost and their source is listed as unattributed. If any proper acknowledgment has not been made, this oversight will be corrected in subsequent editions of the Atlas and Glossary.
Acknowledgments

Preparation of a book, especially a first edition, needs the help and expertise of many people.

First among those to whom we are most greatly indebted is Nicholas W. E. Lee. This civil engineer and life-long friend who long presided a photographic survey company, actively promoted the application airphoto interpretation to site selection in civil engineering projects. Nicholas strongly encouraged and supported the author at critical moments in his career. He saw to it that his early experience was developed within international projects.

We are particularly grateful to the staff of the Earth Science Information Centre of Natural Resources Canada in Ottawa, especially Penny Minter and Irène Kumar of the Map Library, for their unstinting and prompt response to endless requests.

The National Air Photo Library generously permitted the reproduction of numerous stereo and other airphotos, and its staff constantly responded to urgent requests for information.

Dr. Stéphane Péloquin, consultant in remote sensing for mineral exploration and a specialist in the development of computer programs for applied earth science made contributions in the methodical formulations that were used for some of the processing of digital data.

The initial scanning and processing of the mass of illustrations was performed by Sophie Gaudreau, Micheline Léger and Carl Garneau under the supervision of Martin Trépanier who organized this phase of the book production at Groupe BGJLR Inc. in Québec City.

At Springer-Verlag, Dr. Christian Witschel, Executive-Editor Geosciences recognized the merit of our concept of an airphoto and satellite image based atlas relating specific geounits to specific geohazards and made the commitment to see it published. Agata Oelschläger efficiently and with indulgence coordinated the production process. Armin Stasch of Stasch Verlagsservice reconciled our layout and presentation ideals with publishing realities.

Lastly, the true source of this atlas are the students of Civil Engineering Courses 303 and 439 in the Civil Engineering Department, McGill University. Their successive classes over the years constituted a persistent challenge to the author to continually refine the content of the sets of pedagogic data, collected, organized and re-organized, for a more effective characterization and presentation of the environmentally varied appearance of given photogeologic units. These cumulative data sets became the basis of the Atlas.
Author and Contributors

Mr. Rivard takes responsibility for the full content of the book, any mistakes, omissions or errors are his. He performed the photogeological interpretations and wrote the comments of the figures of the Part IV atlas.

Dr. Q. Hugh J. Gwyn did the initial copy-editing and vetting of the texts of Part I, Part II, Part III and the 160 geounit characterizations of the Glossary sections of the data sets of Part IV. His continued support and technical expertise contributed greatly to the final publication.

Major contributions were made by Carla Hehner-Rivard in the overall production control and coordination, figure/text matching and editing, adaptation of line art, image enhancement and picture quality control.
Contents

Part I
Introduction ... 1

- Background ... 1
- Definition of a Geohazard .. 1
- Geohazard Types .. 1
- Definition of a Geounit ... 2
- Selection of Geounits .. 2
- Airphotos and Satellite Images as Sources of Geohazard Information ... 2
- Presentation ... 3
- References .. 4

Part II
User’s Guide to the Atlas and Glossary 5

II-1 Classification Basis of the Photogeologic Geounits 5
II-2 Selection Criteria of the Geounits 5
II-3 Characterization of the Classification 5
 - II-3.1 Purpose .. 5
 - II-3.2 Mappability of Photogeologic Geounits 6
 - II-3.3 Relationship to Other Image-Based Geo-Science Terrain Classifications 6
 - II-3.4 Present Professional Context of the Classification ... 6
II-4 Organization of the Classification 6
 - II-4.1 Division 1: Magmatic Rocks and Structures 6
 - II-4.2 Division 2: Sedimentary Rocks and Duricrusts 6
 - II-4.3 Division 3: Geostructures 7
 - II-4.4 Division 4: Surficial Deposits 7
II-5 Geounit Terminology ... 7
 - II-5.1 Geosstructure ... 7
 - II-5.2 Geounit ... 7
 - II-5.3 Variant .. 8
 - II-5.4 Component .. 8
 - II-5.5 Relative Chronology ... 8
II-6 Mode of Designation of Mapped Units 9
- References .. 9
- General Bibliography .. 9
- Select Bibliography of Remote Sensing Technology for Geologic Interpretation 9
Part III
Classification of Geohazard-Related Geounits ... 11

Division 1 Magmatic Rocks and Structures .. 12
Division 2 Sedimentary Rocks and Duricrusts .. 14
Division 3 Geostructures .. 15
Division 4 Surficial Deposits · Group – Aeolian Deposits 16
Division 4 Surficial Deposits · Group – Basinal Sediments 17
Division 4 Surficial Deposits · Group – Fluvial System Sediments 18
Division 4 Surficial Deposits · Group – Marine Littoral Systems 19
Division 4 Surficial Deposits · Group – Paraglacial Geosystems 20
Division 4 Surficial Deposits · Group – Periglacial-Related Forms 20
Division 4 Surficial Deposits · Group – Mass Movement Materials 21

Part IV
Data Sets of the Atlas and Glossary of the Geounits and Variants 23

Division 1 Magmatic Rocks and Structures .. 25

Group X
Extrusive Magmas .. 26
X1 Basaltic Flows, Flow Fields, or Plateaus (Trapps) .. 26
 X1.1 Local Slope Flows .. 33
 X1.2 Local Valley Flows ... 38
 X1.3 Disturbed-Dissected Basalts .. 43
 X1.4 Dissected Alkaline Basalts .. 45
X2 Interbedded Lavas and Pyroclastics .. 55
 X2.1 Interbedded Lavas and Pyroclastics, Disturbed Facies 58
 X2.2 Interbedded Lavas and Pyroclastics, Dissected Facies 60

Group P
Tephra Deposits ... 64

 Sub-group Pf · Falls .. 64
 Pf1 Pyroclastic Falls .. 64
 Pf1.1 Ash-Tuff Hills ... 72
 Pf1.3 Ash-Tuff Plains .. 76

 Sub-group Ps · Pyroclastic Density Current Deposits .. 80
 Ps1 Pyroclastic Flows and Surges, Undifferentiated 80
 Ps1.1 Macroscopic Ignimbrite Outflow .. 86

Group V
Cenozoic Volcanic Structures .. 94

 Sub-group Vs · Viscous Lava Structures .. 94
 Vs1 Autonomous Domes .. 94
 Vs1.1 Domes in Cones ... 99
 Vs1.2 Flow-Dome Complexes ... 107
 Vs2 Coulées ... 112

 Sub-group Vc · Major Conical Structures .. 119
 Vc1 Stratovolcanoes ... 119
 Vc1.1 Dissected Cones .. 128
Vc2 Shield Volcanoes .. 141
Vc3 Calderas and Tectonic Depressions 146
Vc3.1 Calderas on Stratovolcanoes 146
Vc3.2 Calderas with Post-Caldera Cones and Domes 156
Vc3.3 Large Silicic Calderas with Resurgent Domes 166
Vc3.4 Calderas on Shield Volcanoes 170
Vc4 Volcanic Fields .. 174

Group A
Modern Volcanic-Epilastic Deposits 183
A1 Lahars ... 183
A2 Volcanic Debris Avalanches .. 188
A3 Hydrocinerite Plain Deposits .. 196

Division 2
Sedimentary Rocks and Duricrusts 203

Group K
Carbonates ... 204
K3 Karst Plains .. 205

Sub-group Kp · Holokarst Residual Terrains 211
Kp1 Karst Plateaus .. 211
Kp1.1 Corridored Plateaus .. 222
Kp2 Pyramid-Labyrinth Karst Terrains 228

Sub-group Kn · Holokarst Erosional Terrains 237
Kn1 Poljes ... 237
Kn2 Fluviokarst Terrains ... 242

Sub-group Kc · Amorphous Carbonates 246
Kc2 Chalk and Marl .. 246
Kc4 Interbedded Carbonates .. 257

Group H
Saline and Phosphatic Rocks ... 262
H1 Cemented Evaporites .. 262

Group S
Detrital Rocks .. 266
S1.2 Weak Rudites-Arenites, Upland Facies 266
S1.5 Weak Rudites-Arenites, Lowland Facies 276
S2 Siltstones and Lutites ... 284
S2.1 Siltstones and Lutites, Dissected Facies 290

Group W
Interbedded Sequences ... 302
W1 Interbedded Sedimentary Rocks, Undivided 302
W1.1 Coal Seams .. 310
W4 Interbedded Weak Rock Sequences 315

Group D
Duricrusts .. 327
D1 Ferricretes ... 327
Division 3
Geostructures .. 333

Group
Gravity Structures .. 334
11 Stock Salt-Evaporite Diapirs 334
 11.1 Pillow Domes .. 340
11.2 Duplex Stocks ... 346
11.3 Extrusive Salt Diapirs 348
11.4 Elongate Diapirs .. 351

Group
Fault Line Traces .. 357
12 Dip-Slip Normal Faults .. 357
 12.1 Multidirectional Faults 367
13 Strike-slip Faults ... 370
14 Thrust Faults .. 378
15 Composite Lineaments .. 387
16 Horst Dip-Slip Fault Set 390
17 Graben Dip-Slip Faults .. 398
 17.1 Graben Conjugate Fault Pairs 398
 17.2 Single Fault Asymmetric Grabens 407

Group
General Lineaments .. 410
18 Mesoscale Fracture Traces 410
19 Macroscale Discontinuities 419
 19.1 Geomorphologic Discontinuities 419
 19.2 Radiometric Discontinuities 427
20 Synergic Lineaments .. 431

Division 4
Surficial Deposits · Group E – Aeolian Deposits 433

Sub-group Et · Inland Aeolian Deposits 434
 Et1.1 Blanket Loess ... 434

Sub-group Ef · Duneless Deposits 440
Ef1 Sand Sheets .. 440
Ef2 Sand Streaks ... 447

Sub-group Ed · Sand Dunes .. 452
Ed1 Free Inland Dunes .. 452
 Ed1.1 Linear Dunes ... 453
 Ed1.2 Transverse Dunes 462
 Ed1.3 Barchanoid Ridges 465
 Ed1.4 Barkhan Dunes 471
 Ed1.5 Star Dunes ... 475
 Ed1.6 Dome Dunes .. 479
 Ed1.7 Parabolic Dunes 481
 Ed1.8 Dune Fields .. 485
Ed2 Dune Complexes .. 486
<table>
<thead>
<tr>
<th>Sub-group Eo · Obstacle Dunes</th>
<th>.. 491</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eo1 Shadow Dunes</td>
<td>.. 491</td>
</tr>
<tr>
<td>Eo3 Climbing Dunes</td>
<td>.. 496</td>
</tr>
<tr>
<td>Eo4 Falling Dunes</td>
<td>.. 500</td>
</tr>
<tr>
<td>Sub-group Ec · Coastal Beach Backshore Dunes</td>
<td>.. 504</td>
</tr>
<tr>
<td>Ec1 Parallel Dunes</td>
<td>.. 504</td>
</tr>
<tr>
<td>Ec2 Transgressive Dunes</td>
<td>.. 509</td>
</tr>
<tr>
<td>Ec3 Free Dunes</td>
<td>.. 518</td>
</tr>
<tr>
<td>Division 4</td>
<td>..</td>
</tr>
<tr>
<td>Surficial Deposits · Group L – Basinal Sediments</td>
<td>.. 525</td>
</tr>
<tr>
<td>L1 Pleistocene Glaciolacustrine Sediments</td>
<td>.. 526</td>
</tr>
<tr>
<td>L2 Holocene Playa Basins and Pleistocene Pluvial Lacustrine Sediments</td>
<td>.. 540</td>
</tr>
<tr>
<td>L3 Quaternary Drained Lakebeds</td>
<td>.. 549</td>
</tr>
<tr>
<td>Division 4</td>
<td>..</td>
</tr>
<tr>
<td>Surficial Deposits · Group F – Fluvial System Sediments</td>
<td>.. 555</td>
</tr>
<tr>
<td>Sub-group Fu · Upland Margin Units</td>
<td>.. 556</td>
</tr>
<tr>
<td>Fu1 Alluvial Fans</td>
<td>.. 556</td>
</tr>
<tr>
<td>Fu1/Mv1.2 Alluvial Fan and Talus Cone Complexes</td>
<td>.. 572</td>
</tr>
<tr>
<td>Sub-group Fv · Valley Fill Units</td>
<td>.. 580</td>
</tr>
<tr>
<td>Fv1 Braided Alluvial Deposits</td>
<td>.. 581</td>
</tr>
<tr>
<td>Fv1.1 High Gradient Setting</td>
<td>.. 582</td>
</tr>
<tr>
<td>Fv1.2 Low Gradient Setting</td>
<td>.. 587</td>
</tr>
<tr>
<td>Fv2 Meandering Alluvial Deposits</td>
<td>.. 599</td>
</tr>
<tr>
<td>Sub-group Fv · Valley Fill Composite Units</td>
<td>.. 637</td>
</tr>
<tr>
<td>Fv1.1/Fv2 Meandering-Braided Complexes</td>
<td>.. 637</td>
</tr>
<tr>
<td>Sub-group Fw · Holocene Deltas</td>
<td>.. 644</td>
</tr>
<tr>
<td>Fw1 Arcuate Deltas</td>
<td>.. 645</td>
</tr>
<tr>
<td>Fw2 Elongate Deltas</td>
<td>.. 651</td>
</tr>
<tr>
<td>Fw3 Estuarine Deltas</td>
<td>.. 657</td>
</tr>
<tr>
<td>Fw3.1 Macrotidal Estuaries</td>
<td>.. 661</td>
</tr>
<tr>
<td>Fw4 Cuspate Deltas</td>
<td>.. 668</td>
</tr>
<tr>
<td>Sub-group Fr · Climatic Deltas</td>
<td>.. 675</td>
</tr>
<tr>
<td>Fr2 Inland Deltas</td>
<td>.. 675</td>
</tr>
<tr>
<td>Division 4</td>
<td>..</td>
</tr>
<tr>
<td>Surficial Deposits · Group B – Marine Littoral Systems</td>
<td>.. 681</td>
</tr>
<tr>
<td>Sub-group Br · Bedrock Littorals</td>
<td>.. 682</td>
</tr>
<tr>
<td>Br2.1 High Rock Cliffs Unstable</td>
<td>.. 683</td>
</tr>
<tr>
<td>Br3.1 Low Rock Cliffs Weak</td>
<td>.. 686</td>
</tr>
<tr>
<td>Br4.1 Bedrock Hills Weak</td>
<td>.. 689</td>
</tr>
<tr>
<td>Br6 Tectonic Eustatic Marine Terraces</td>
<td>.. 691</td>
</tr>
<tr>
<td>Br7 Bedrock Plains</td>
<td>.. 695</td>
</tr>
</tbody>
</table>
Contents

Sub-group Bb · Residual Shorelines .. 698
Bb1 Bluffs in Unconsolidated Sediments ... 698
 Bb1.1 Bluffs in Frozen Sediments .. 704

Sub-group Bw · Wave and Current-formed Littoral Sediments 709
Bw2 Offshore Bars ... 709
Bw3 Near-Shore Barrier Beaches ... 712
 Bw3.1 Bay Barrier Beaches ... 720
Bw4 Attached Beaches ... 729
Bw5 Spits ... 732
Bw6 Tombolos .. 736

Sub-group Bi · Sea Ice and Sea Ice Related Forms 741
Bi1 Sea Ice Forms ... 741

Sub-group Bt · Tidal Regime Deposits and Forms 745
Bt1 Lagoons .. 745

Sub-group Bc · Coastal Plains .. 778
Bc1 Plains of Marine Sediments ... 778
Bc2 Passive Margin Sediments ... 792
Bc3 Glaciomarine Plains .. 795
Bc4 Fluvimarine Plains ... 806

Sub-group Bp · Low Latitude Offshore Carbonate Platforms 815
Bp1 Subtidal Banks .. 815

Division 4

Surficial Deposits · Group G – Paraglacial Geosystems 819

Sub-group Gl · Ice Bodies ... 820
Gl4 Outlet Tidewater Glaciers .. 820
Gl5 Valley Glaciers ... 830

Sub-group Gf · Glaciofluvial Deposits .. 845
Gf4 Eroded Till Plains ... 845
Gf5 Boulder Fields ... 851

Division 4

Surficial Deposits · Group Z – Periglacial-Related Forms 855

Sub-group Zi · Ground Ice Units .. 857
Zi4 Ice Wedge Polygons ... 857

Sub-group Zm · Cryoturbated Materials .. 869
Zm1 Gelification Slopes .. 869
 Zm1.1 Gelification Sheets and Lobes .. 869
 Zm1.2 Gelification Stripes .. 879
Zm2 Rock Glaciers ... 885
Zm5 Detachment Failures .. 893

Sub-group Zk · Thermokarst Terrain .. 895
Zk1 Subsidence Terrains .. 895
Zk2 Retrogressive Thaw-Flow Slides ... 904
Division 4

Surficial Deposits · Group M – Mass Movement Materials

<table>
<thead>
<tr>
<th>Sub-group Mv · Falls and Subsides</th>
<th>908</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mv1 Talus-Rockfalls Undifferentiated</td>
<td>908</td>
</tr>
<tr>
<td>Mv1.1 Talus Sheets</td>
<td>912</td>
</tr>
<tr>
<td>Mv1.2 Talus Cones</td>
<td>922</td>
</tr>
<tr>
<td>Mv2 Rock Avalanches (Sturzströmen)</td>
<td>926</td>
</tr>
<tr>
<td>Mv2.1 Rock Avalanches, Inactive</td>
<td>930</td>
</tr>
<tr>
<td>Mv3 Toppled Rock Slabs</td>
<td>936</td>
</tr>
<tr>
<td>Mv4 Subsidence, Sudden</td>
<td>938</td>
</tr>
<tr>
<td>Mv5 Subsidence Zones, Gradual</td>
<td>944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-group Ml · Lateral Spreads</th>
<th>953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ml1 Rock Block Glides</td>
<td>953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-group Mc · Diagonal Creeps</th>
<th>956</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mc1 Colluvial Mantle Movement Zones</td>
<td>956</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-group Ms · Slides</th>
<th>959</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms1 Planar Rock Slides</td>
<td>959</td>
</tr>
<tr>
<td>Ms1.1 Planar Rock Slides, Inactive</td>
<td>964</td>
</tr>
<tr>
<td>Ms2 Debris Slides</td>
<td>969</td>
</tr>
<tr>
<td>Ms2.1 Debris Avalanches</td>
<td>972</td>
</tr>
<tr>
<td>Ms3 Rotational Rock Slumps, Undifferentiated</td>
<td>977</td>
</tr>
<tr>
<td>Ms3.1 Rotational Rock Slumps, Inactive</td>
<td>984</td>
</tr>
<tr>
<td>Ms4 Snow Avalanches</td>
<td>986</td>
</tr>
<tr>
<td>Ms5 Ice Avalanches</td>
<td>992</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-group Mf · Flows</th>
<th>998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mf1 Retrogressive Flows in Unconsolidated Sediments and Detrital Rocks Substrate</td>
<td>998</td>
</tr>
<tr>
<td>Mf1.1 Retrogressive Slides in Unconsolidated Sediments and Detrital Rocks Substrate</td>
<td>1007</td>
</tr>
<tr>
<td>Mf2 Earth Flows</td>
<td>1010</td>
</tr>
<tr>
<td>Mf2.1 Slow Earth Flows</td>
<td>1017</td>
</tr>
<tr>
<td>Mf3 Debris-Mud Flows</td>
<td>1021</td>
</tr>
<tr>
<td>Mf4 Mountain Valley Natural Dams</td>
<td>1036</td>
</tr>
<tr>
<td>Mf4.1 Landslide Dams</td>
<td>1036</td>
</tr>
<tr>
<td>Mf4.2 Moraine Dams</td>
<td>1043</td>
</tr>
<tr>
<td>Mf4.3 Glacier Dams</td>
<td>1048</td>
</tr>
</tbody>
</table>

Appendix

Abbreviations and Acronyms

| Contents | XIX |