Scientific Publication Committee

Chair: Jacques Octave Dubois (France)
Past Chair: Heinrich Behrens (Germany)
Members: Jean Garnier (France)
 Krishan Lal (India)
 Paul Mezey (Canada)
 Vladimir Yungman (Russia)

CODATA Secretariat

Executive Director: K. Cass
51, Boulevard de Montmorency
75016 Paris, France

E-mail: codata@dial.oleane.com
http://www.codata.org
M. Desaintfuscien

Data Processing in Precise Time and Frequency Applications

With 66 Figures and 15 Tables

Springer
The image on the front cover comes from an animation which shows worldwide Internet traffic. The color and height of the arcs between the countries encode the data-packet counts and destinations, while the “skyscraper” glyphs (or icons) encode total traffic volume at any site. This image was generated by Stephen G. Eick at the AT&T Bell Laboratories.
to my mother
CODATA is an interdisciplinary Scientific Committee of the International Council for Science (ICSU). The mission of CODATA is to strengthen international science for the benefit of society by promoting improved scientific and technical data management and use. It works to improve the quality, reliability, management and accessibility of data of importance to all fields of science and technology. CODATA is a resource that provides scientists and engineers with access to international data activities for increased awareness, direct cooperation and new knowledge. CODATA, established over 40 years ago by ICSU, promotes and encourages on a world-wide basis the compilation, evaluation and dissemination of reliable numerical data of importance to science and technology. This includes data initiatives and modeling of an interdisciplinary nature such as that encountered in far-reaching projects e.g. Global Change, various Genome projects, environmental and biodiversity issues, etc. Today 23 countries are members, 15 International Scientific Unions have assigned liaison delegates, there are 4 co-opted delegates and 20 supporting organizations from industry, government and academia.

CODATA is concerned with all types of data resulting from experimental measurements, observations and calculations in every field of science and technology, including the physical sciences, biology, geology, astronomy, engineering, environmental science, ecology and others. Particular emphasis is given to data management problems common to different disciplines and to data used outside the field in which they were generated.

CODATA’s primary purpose in launching the series “Data and Knowledge in a changing World” is to collect data and the wealth of information pertaining to the intelligent exploitation of data in the conduct of science and technology and to make these data and information available to a multidisciplinary community. This series in support of that goal provides a forum made up of many contributions which can be theoretical treatments, compilations or applied outlines. This includes computer related handling and visualization of data to the major scientific and technical fields.

To this end, the series on Data and Knowledge is open to contributions of various kinds, in particular:

- Fostering the improvement of the accessibility and quality of quantitative and qualitative data;
VIII Introduction to the Series

- Treating classical and ground breaking methods by which numeric and symbolic data are acquired, analyzed and managed;
- Presenting new data and knowledge interfaces designed to optimize interoperability and thereby increase the potential for sharing data among databases and networks;
- Promoting international cooperation in communication and data sharing. This includes works dealing with standardization, data quality agreements and conceptual data descriptions (metadata, syntactic and semantic approaches) along with papers dealing with the evolution of internet based facilities, other forms of worldwide communications and electronic publishing;
- Providing new insights into, or interpretations of, processes leading to creative design in the field of concurrent and/or cooperative engineering, including cognitive aspects critical to data based decision making.

In the evolving information world we live in, where the traditional ways of transferring information as an essential resource are rapidly changing, this Series aims to identify emerging and innovative concepts for data compilation, handling, management, and evaluation. Its ambition is to be a catalyst for change while simultaneously nurturing a thought-provoking forum.
The main originality of this book lies in its presentation of an in-depth description of the metrological characterization of very stable frequency sources, such as atomic clocks, as well as the analysis of the principle of their most demanding applications, such as navigation, positioning and very long baseline interferometry.

All these cited fields of interest rely on the measurement of time intervals that necessarily give numerical data: one counts the number of time units occurring between the beginning and the end of an event. Consequently, the analysis of the metrological characterization of stable frequency sources and of the operation of the related scientific and technical applications rely on the treatment of numerical data that can be affected by random and systematic perturbations.

The author presents a rigorous, detailed and unified analysis of the specific signal processing of numerical data arising in that field. Although the subject might seem to be difficult at first sight, the pedagogical talents of Professor Desaintfuscin help one to easily follow the mathematical derivations and the discussion of their results.

Therefore, this book appears as a reference document for all the scientists and engineers involved in the design or daily use of the related equipment.

Claude Audoin
Directeur de recherche émérite,
Silver Medal (French National Research Center),
Rabi Award (Scientific Committee Annual Frequency Control Symposium)

Paris, January 2007
1 Introduction .. 1

Part I Very High Performances Oscillators

2 The Two Parts of an Oscillator 13
 2.1 Electrical Resonances 14
 2.2 Mechanical Resonances 14
 2.3 Atomic Frequency Standards 15
 2.3.1 Active Atomic Frequency Standards 16
 2.3.2 Passive Atomic Frequency Standard 16
 2.3.3 Optically Pumped Cesium Beam 18
 2.3.4 Active Hydrogen Maser 27
 2.3.5 The Atomic Fountain 30

3 Control of the Local Oscillator Frequency 33
 3.1 Active Frequency Standard 33
 3.1.1 The Phase Control Loop 34
 3.1.2 Gain for the Frequency Noise of the Local Oscillator . 36
 3.1.3 Gain for the Frequency Noise of the Atomic Signal ... 37
 3.1.4 Phase Noise of the Output 38
 3.1.5 Frequency Error 38
 3.1.6 The Best Choices 39
 3.2 Passive Frequency Standard 41
 3.2.1 Frequency Response for the Frequency Noise of the Local Oscillator 43
 3.2.2 Frequency Response for the Frequency Noise of the Atomic Resonance 43
 3.2.3 Frequency Response for the Amplitude Noise of the Atomic Resonance 44
 3.2.4 Limitation to the Stability Due to the Amplitude Noise of the Atomic Response .. 44
 3.2.5 Frequency Error 46
 3.2.6 The Best Choices 47
3.3 The Sampled Servo-loop .. 48
 3.3.1 Model of the Servo-loop in the Case of an Atomic Fountain 48
 3.3.2 Frequency Responses for the Frequency Noise of the Local Oscillator 49
 3.3.3 Frequency Response for the Amplitude Noise of the Atomic Transition 51

Part II Characterization of Very High Performances Oscillators

4 Accuracy .. 57
 4.1 Definition .. 57
 4.2 Estimation of the Uncertainty of a Frequency Source 57
 4.3 Typical Values .. 60
 4.3.1 Primary Frequency Standards 60
 4.3.2 Commercial Devices .. 61

5 Reproducibility ... 63

6 Stability ... 65
 6.1 Definition ... 65
 6.2 Measurements in the Time Domain 67
 6.2.1 The Measurement Process 67
 6.2.2 Power and Spectral Density 75
 6.2.3 Variance of the Frequency Fluctuations 85
 6.2.4 Allan Variance .. 93
 6.2.5 Hadamard Variance .. 99
 6.2.6 Getting Rid of a Constant Frequency Drift 107
 6.2.7 The Best Variance for a Given Application 112
 6.2.8 Practical Time Domain Measurements of Frequency Stability 121
 6.2.9 Typical Values ... 122

Part III Applications

7 Time and Frequency Metrology 129
 7.1 Time Scales ... 130
 7.1.1 The Main Time Scales in Use 131
 7.1.2 Algorithms for the Generation of Time Scales 137
 7.2 Comparison of Clocks .. 142
 7.2.1 Clock Synchronization in a Rotating Frame 142
 7.2.2 One-way GPS Measurements 143
7.2.3 GPS Common-view .. 145
7.2.4 GPS Carrier-phase Time Transfer 146
7.2.5 Two-way Satellite Time and Frequency Transfer
(TWSTFT) ... 147

8 Global Positioning System 151
 8.1 The GPS Infrastructure 152
 8.1.1 The Space Segment 152
 8.1.2 The Control Segment 153
 8.1.3 The User Segment 154
 8.2 GPS Data Processing 154
 8.2.1 Data Transmitted by the Satellites 154
 8.2.2 Data Processing by the Receiver 161
 8.2.3 Other Algorithms 167
 8.2.4 GPS Augmentation: WAAS and LAAS 171
 8.3 Other Global Systems 172
 8.3.1 GLONASS –
GLObal’naya NAvigatsionnaya Sputnikovaya Sistema 172
 8.3.2 Galileo .. 173

9 Very Long Base Interferometry 175
 9.1 Principle of VLBI .. 176
 9.1.1 Interferometry 177
 9.1.2 Processing of the Signals 185
 9.2 Applications of VLBI 187
 9.2.1 Astronomy 187
 9.2.2 Geodesy .. 187

Part IV Appendix

A Useful Integrals .. 191
 A.1 Calculation of Variances 191
 A.2 Calculation of Allan Variances 192
 A.3 Calculation of Hadamard Variances 192
 A.4 Calculation of the Three-samples Variance 194

B Some Calculational Details 195
 B.1 The Allan Filter 195
 B.2 The Hadamard Filter 195
 B.3 Three-samples Filter 197
 B.4 Phase Noise Versus Frequency Noise Spectral Density 197
 B.5 Phase Noise .. 198
 B.6 Sampling and Hold 199
 B.7 Algorithm for a GPS Receiver 200
List of Figures

2.1 Block-diagram of an oscillator 13
2.2 Robinson oscillator .. 14
2.3 Pierce oscillator .. 15
2.4 Block diagram of an active hydrogen maser 17
2.5 The two parts of a cesium beam frequency standard .. 17
2.6 Block diagram of a cesium beam frequency standard .. 19
2.7 Transition probability of an atom across a Ramsay cavity . 22
2.8 Central part of the pattern of Fig. 2.7 22
2.9 Mean transition probability of a beam with a velocity distribution .. 23
2.10 Central part of the curve of Fig. 2.9 24
2.11 Generation of the frequency f_1 25
2.12 Another electronic device generating the frequency f_1 25
2.13 The excitation of the Ramsay cavity as the output of a DRO [90] 26
2.14 Some frequencies generated by intermediate oscillators [112] . 26
2.15 Production of the maser effect 29
2.16 Phase locking of the local oscillator on the atomic emission... 30
2.17 Schematic diagram of an atomic fountain 30
2.18 Calculated Ramsay fringes in an atomic fountain 32

3.1 Phase lock loop for the different components of the signals 35
3.2 The phase lock loop with the phase as the quantity of interest 35
3.3 Equivalent set-up for the local oscillator noise 36
3.4 Equivalent set-up for the noise of the atomic signal 37
3.5 The loop for the nominal frequency of the local oscillator and of the atomic oscillator 39
3.6 Control of the frequency of the local oscillator in a passive atomic frequency standard 42
3.7 Model for the noise in the frequency control loop 42
3.8 The loop for the nominal frequency of the local oscillator and of the atomic transition 46
3.9 Sampling in the loop of Fig. 3.7 49
3.10 The sampled loop for the local oscillator frequency noise 50
3.11 The sampled loop for the amplitude noise 51
3.12 The sampled loop for the frequency noise of the atomic transition .. 52

6.1 Squared amplitude response of the filter versus the reduced frequency ... 68
6.2 Squared amplitude response of the filter associated to the frequency measurement with no dead time 70
6.3 Frequency measurement with dead time .. 70
6.4 Squared amplitude response of the filter associated to the frequency measurement with a dead time 71
6.5 Squared amplitude response of the filter associated to the frequency measurement with no dead time and association of three successive results ... 72
6.6 Spectrum of the discrete-time process compared to that of the continuous-time process .. 73
6.7 Aliasing when frequency is measured without a dead time 74
6.8 Squared amplitude response of the Allan filter 95
6.9 Squared amplitude response of the Hadamard filter for $M = 4$ 102
6.10 Squared amplitude response of the modified Hadamard filter for $M = 8$... 102
6.11 Squared amplitude response of the balanced Hadamard filter with $(M = 4)$... 109
6.12 Squared amplitude response of the three-samples filter 110
6.13 Model of frequency noise showing the five power laws 114
6.14 Comparison of Allan (lower curve), Hadamard and three-samples (upper curve) variances ... 115
6.15 Allan variance with $h_1 |\nu|$ noise (lower curve) and with $h_2 \nu^2$ noise (upper curve) .. 116
6.16 Allan variance and the two asymptotes corresponding to h_1 and h_2 ... 117
6.17 Ratio of the coefficients of the three branches for three variances118
6.18 Three-samples variance. The width of the frequency domain where the component $h_{-1} \times |\nu|^{-1}$ of the frequency noise is dominant is three decades ... 118
6.19 Allan variance. The width of the frequency domain where the component $h_{-1} \times |\nu|^{-1}$ of the frequency noise is dominant is three decades ... 119
6.20 Allan variance with a constant frequency drift 120
6.21 Hadamard variance with a constant frequency drift 121
6.22 Frequency measurement in the case where a reference oscillator can be used .. 122
6.23 Stability measurement with two identical oscillators 122
6.24 Frequency noise spectral density of the oscillator of [72] .. 124
7.1 A GPS satellite and two receivers on the Earth. The distance
Earth–satellite is about four times the Earth’s radius 145
7.2 The principle of the two-way technique 147
7.3 Paths of TWSTFT ... 148

8.1 Orbits of the GPS satellites .. 152
8.2 L1 and L2 signals emitted by the GPS satellites 155
8.3 Modulo 2 (XOR) addition of the navigation message and the
C/A-code and the P-code ... 156
8.4 Easy retrieval of the navigation message 157
8.5 Measurement of the raw pseudo-range (modulo 299 792.458 m) 162
8.6 Good GDOP .. 165
8.7 Poor GDOP .. 166

9.1 The principle of VLBI .. 175
9.2 The principle of interferometric measurements 177
9.3 Schematic block diagram of a cross-correlator 187
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Phase noise of a commercial quartz oscillator</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Guaranteed values of the Allan deviation of a commercially available cesium frequency standard</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Some values of accuracy obtained by cesium fountains</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Uncertainty of a few other primary frequency standards</td>
<td>61</td>
</tr>
<tr>
<td>6.1</td>
<td>Noise processes involved in the frequency fluctuations of ultra-stable oscillators</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>Bandwidth of Allan, Hadamard and three-samples variances</td>
<td>112</td>
</tr>
<tr>
<td>6.3</td>
<td>Response to some noise spectral density laws</td>
<td>113</td>
</tr>
<tr>
<td>6.4</td>
<td>Sensitivity to a constant frequency drift</td>
<td>119</td>
</tr>
<tr>
<td>6.5</td>
<td>Cut-off sampling time</td>
<td>120</td>
</tr>
<tr>
<td>6.6</td>
<td>Typical values of the Allan standard deviation of the CHI-75 active hydrogen maser</td>
<td>124</td>
</tr>
<tr>
<td>6.7</td>
<td>Specification values of the Allan deviation for the 5071A primary frequency standard (high performance)</td>
<td>125</td>
</tr>
<tr>
<td>7.1</td>
<td>The uncertainties of the best realizations of the seven SI base units</td>
<td>129</td>
</tr>
<tr>
<td>7.2</td>
<td>Primary frequency standards involved in the accuracy of TAI</td>
<td>133</td>
</tr>
<tr>
<td>7.3</td>
<td>Dates of the leap seconds since 1972</td>
<td>136</td>
</tr>
<tr>
<td>7.4</td>
<td>Countries maintaining a local approximation of UTC and/or an independent local time scale</td>
<td>138</td>
</tr>
</tbody>
</table>