Volcanic soils of Europe

Soils of volcanic regions are unique natural resources. When volcanic materials are exposed to weathering, short-range order minerals, such as allophane, imogolite and ferrihydrite are formed, as well as specific types of humic substances. These colloidal materials give the soils distinctive properties, collectively termed andic properties, which separate volcanic soils from other types of soils. These properties include high organic carbon content, variable charge characteristics, high phosphorus retention, low bulk density and great water retention capacity. These kind of soils are named Andosols (FAO-WRB) or Andisols (Soil Taxonomy), a term derived from Japanese, where “an” means black and “do” is soil. Andosols are typically relatively young soils, but when left to prolonged weathering, other soil types can develop, but the evidence of their volcanic origin can be preserved for a long time.

Volcanic soils cover only 1–2% of the world’s land surface. They are often among the most fertile soils and therefore are the foundations for some of the most densely populated areas of the world. They often occur in scenic areas and are commonly subjected to extreme pressures from tourism. The unique physical and chemical properties of Andosols make these ecosystems susceptible to disturbance. They have effective pollutant binding properties resulting in possible accumulation of toxic substances. Degradation of volcanic soils also includes salinization by irrigation, reduced ground-water quality and loss of fertility, particularly under humid climates and intense leaching. The low bulk density of Andosols, often low amount of lattice clay minerals, and sometimes the presence of light tephra grains make them both prone to wind erosion and sometimes erosion by water. Their peculiar thixotropic behavior, with unstable solid state which can become liquefied upon disturbance, explains the relatively common occurrence of catastrophic landslides in volcanic areas. Understanding the fundamental properties of soils in volcanic areas is therefore important for
developing policies for the use and protection of these important soil resources.

Volcanic areas occur in many parts of the world, but most studies on soils of volcanic areas have been conducted in Japan, New Zealand and the Americas. Such soils have received less attention in Europe. This book is dedicated to soils of volcanic regions of Europe with a comprehensive coverage of most aspects of such soils in Europe. It is the largest such publication on soils of volcanic regions to date and presents results of research that has international implications.

Geographic differences

The range of environmental conditions shaping the soils discussed in this publication is noteworthy as is evident from the first part of the book. The climate ranges from Mediterranean Italy to the southern Massif Central in France and the continental climate of the Carpathian basin and mountains of Germany, to the warm Atlantic of the Azores, Madeira and Canary Island and sub-arctic Iceland. Rarely has such a wide variety of environmental conditions for soil development been summarized in one publication. The diversity in geology, including the chemistry and morphology of the parent materials is substantial.

The largest European volcanic area is in Iceland, under wet and cold climate. It is characterized by a variety vitric, allophanic and peaty Andosols together with of vitric volcanic soils on barren surfaces or deserts. The Andosols exhibit well expressed andic features often with a peaty texture in wetland soils. Cryoturbation and hydromorphic features are common.

In the Mediterranean countries such as Greece, continental Italy, Sicily and southern France there is a large variety of young volcanic soils, such as vitric and typical Andosols on young pyroclatic materials. More evolved soils, such as Brown soils Alfisols and Vertisols occur on older volcanic materials. Millennia of cultivation and fertilization have deeply modified many of the volcanic ash soils, and caused erosion.

Typical allophanic Andosols are found on young pyroclastic materials in Continental Europe, such as in the Chaine des Puys and the Cantal in France, Eifel and Vogelsberg in Regions in Germany and Carpathian countries (Hungary, Slovakia, Romania). Andosols rich in organo-aluminium complexes appear on older volcanic formations together with other soil types. Under cold and wet climate of some European mountains, soils with
andic properties and rich in organo-aluminium complexes are also observed on old basic, non-volcanic plutonic rocks.

In the Atlantic Canary, Madeira and Azores Islands, there is a large variety of climates, from sub-tropical to temperate temperatures, and from very wet to semi-arid moisture regimes. The volcanic deposits are mostly basaltic of variable age. The results in diversity of volcanic soils depending on the age and climatic conditions: vitric and typical Andosols on young pyroclastic materials, Andosols rich in organo-aluminium complexes or more evolved soils on old volcanic formations. A peculiar type of Andosol, characterized by a extreme water retention capacity is found on the Azores Islands. Paleosols are often well preserved on these Atlantic Islands.

Physical and chemical degradation of volcanic soils is also common in Europe, depending on climate and land use. Landslides regularly occur in European volcanic areas, some catastrophic and causing losses of human lives and property damage. An example is the slide near Napoli, Italy in 1998, which left 161 people dead, and causing huge property damage.

The COST-622 Action joint research approach

This comprehensive publication is the result of European funded scientific collaboration program entitled “COST-622; Soil Resources of European Volcanic Systems”. The program was initiated in 1998, leading to a fruitful co-operation among scientists from Belgium, France, Germany, Greece, Hungary, Iceland, Italy, the Netherlands, Portugal, Slovakia, Spain, and the United Kingdom. It included a number of scientific workshops and conferences hosted by the participating countries, often within volcanic areas. The program has already resulted in two special issues of scientific journals (Bartoli et al. 2003, Arnalds and Stahr 2004). This program was completed in 2004.

The objectives of the COST-622 program were to assess the impact of age and nature of volcanic parent materials, climatic parameters and anthropic effects on the formation and properties of the European volcanic soils. This task was undertaken by (i) joint sampling and analysis of number of reference pedons in the countries (2–4 in each country); and (ii) by collaborative research efforts between European institutes working on Andosols.

Descriptions of the selected European volcanic soils were made and both undisturbed and bulk soil samples were obtained. The undisturbed soil samples were used for micromorphological and physical studies. The
bulk soil samples were distributed to the various laboratories of the participating countries for research on mineralogy and weathering, organic and mineral chemistry, physical chemistry and biological studies. We conclude that this multi-disciplinary and multinational approach is quite unique for soil sciences.

The aim of the research included:

- obtaining more detailed information about the nature and distribution of volcanic soils in Europe, which included collaboration with and reference soil collection by ISRIC, the Netherlands
- a genetic study of the reference pedons and the development of soil classification considerations for volcanic soils (WRB)
- to investigate the mineral and organic soil constituents in volcanic soils, weathering, bio-geochemical processes, physical-chemical properties and physical properties of European volcanic soils
- and to adapt methods for three-dimentional studies of macrostructure, particle size, chemical dissolution techniques, and pyrolysis of soil organic materials

Data handling and integration includes multivariate statistical analysis. The results generated in these studies have international relevance for volcanic soils and soil science in general.

Organization of this book

This book is divided into five sections. Section I describes the diversity of European volcanic soil resources and their environments and provides background information for the reference pedons. Section II provides discussion on parent materials and it provides results on mineral composition and genesis of the soils. Results on chemical, biological and physical characteristics are presented in Sections III and IV. The scale of observation ranges from the meter and centimeter scale, for soil descriptions and down to the micrometer scale for characterization of soil constituents, interrelationships and reactivity, soil structure, and soil properties. In Section V, examples of the soil behavior is given with respect to soil properties and land use considerations, together with a synthesis of geographical data. Finally, the content of the accompanying CD is presented.

English is the language of this book. However, the authors come from a variety of language areas, and allowance is be made for letting the original or native tongue and the style of each author to show through as much as possible, as long as the contents are clear and of high quality, and the English is reasonably correct.
Acknowledgements

J. Pinheiro and M. Madeira (Azores, Portugal), J. Dejou and F. van Oort (France), M. Kleber and R. Jahn (Germany), A. Economou and D. Pateras (Greece), G. Füleky and A. Kertesz (Hungary), O. Arnalds and H. Oskarsson (Iceland), L. Lulli and F. Terrible (Italy), J. Balkovic and B. Jurani (Slovakia), M. Tejedor and J. Hernandez-Moreno (Tenerife, Spain) selected the COST 622 reference profiles; T. Jongmans (The Netherlands) and F. van Oort (France) made the soil and site descriptions; O. Spaargaren (The Netherlands) sampled soil monoliths and made classifications. P. Buurman (The Netherlands) oversaw coordination of the data base, staffs of Lisbon (Portugal), Santiago de Compostella (Spain) and Wageningen (The Netherlands) Universities made valuable technical assistance as well as staffs from CNRS Nancy and IRD Bondy (France), CNR Naples (Italy), Halle (Germany), La Laguna (Tenerife, Spain) and Godello (Hungary) Universities. Support and funding from EU COST Actions (1998–2004) are greatly appreciated. Our final thanks and appreciation are due to L. Szendrodi and E. Fulajtar, Scientific Secretaries of COST Actions on Environmental Research, and their staff, for their help and support, to the authors for their cooperation and contribution, to the editors for their scientific editing, to the reviewers for their valuable help and comments, to Margret Jónsdóttir and Tryggvi Gunnarsson (Agricultural University of Iceland) for careful management and final editing, and to Springer Verlag for valuable support, from the beginning of this book project to its end.

References

Contents

I. European Volcanic Soil Resources

Ed.: O. Arnalds

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Arnalds</td>
<td>Introduction to Section I. European Volcanic Soil Resources</td>
<td>1</td>
</tr>
<tr>
<td>P. Quantin</td>
<td>Volcanic Soil Resources in France</td>
<td>5</td>
</tr>
<tr>
<td>M. Kleber and R. Jahn</td>
<td>Soils of volcanic regions of Germany</td>
<td>13</td>
</tr>
<tr>
<td>A. Economou, D. Pateras and Ev. Vavoulidou</td>
<td>Volcanic soil resources of Greece</td>
<td>25</td>
</tr>
<tr>
<td>G. Füleký, S. Jakab, O. Fehér, B. Madarász and Á. Kertész</td>
<td>Hungary and the Carpathian Basin</td>
<td>29</td>
</tr>
<tr>
<td>O. Arnalds and H. Oskarsson</td>
<td>Icelandic volcanic soil resources</td>
<td>43</td>
</tr>
<tr>
<td>L. Lulli</td>
<td>Italian volcanic soils</td>
<td>51</td>
</tr>
<tr>
<td>M. Madeira, J. Pinheiro, J. Madruga and F. Monteiro</td>
<td>Soils of volcanic systems in Portugal</td>
<td>69</td>
</tr>
<tr>
<td>B. Juráni and J. Balkovič</td>
<td>Soil of volcanic regions in Slovakia</td>
<td>83</td>
</tr>
</tbody>
</table>

II. Reference Pedons: morphology, mineralogy and classification

Ed.: G. Stoops

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Stoops</td>
<td>Integration and overview</td>
<td>113</td>
</tr>
</tbody>
</table>
P. DE PAEPE and G. STOOPS
A classification of tephra in volcanic soils. A tool for soil scientists 119

M. GERARD and O. SPAARGAREN
Soil descriptions 127

G. STOOPS and M. GÉRARD
Micromorphology 129

G. STOOPS and A. VAN DRIESSCHE
Mineralogy of the sand fraction – results and problems 141

E.L. MEIJER, P. BUURMAN, A. FRASER and E. GARCÍA RODEJA
Extractability and FTIR-characteristics of poorly-ordered minerals in a collection of volcanic ash soils 155

F. MONTEIRO, M. KLEBER, M. FONSECA, M. MADEIRA and R. JAHN
Crystalline clay constituents of soils from European volcanic systems 181

C. COLOMBO, M.V. SELITTO, G. PALUMBO, F. TERRIBILE and G. STOOPS
Characteristics and genesis of volcanic soils from South Central Italy: Mt. Gauro (Phlegraean Fields, Campania) and Vico lake (Latium) 197

P. QUANTIN and O. SPAARGAREN
Classification of the Reference Pedons: World Reference Base for Soil Resources and Soil Taxonomy 231

E.A. FITZPATRICK
Classification of the soils according to ‘Horizon Identification – the Reference Point System’ 251

III. Reference Pedons: chemical and biological characteristics
Ed.: P. Buurman

P. BUURMAN
Introduction: Chemistry of European volcanic soils 265

P. BUURMAN, F. BARTOLI, A. BASILE, G. FÜLEKY, E. GARCIA RODEJA, J. HERNANDEZ MORENO and M. MADEIRA
The physico-chemical data base 271
Elemental composition of Reference European Volcanic Soils 289

T. Taboada, C. García, A. Martínez-Cortizas, J.C. Nóvoa, X. Pontevedra and E. García-Rodeja
Chemical weathering of Reference European Volcanic Soils 307

E. García-Rodeja, J.C. Nóvoa, X. Pontevedra, A. Martínez-Cortizas and P. Buurman
Aluminium and iron fractionation of European volcanic soils by selective dissolution techniques 325

M. Madeira, Gy. Füleky and E. Auxtero
Phosphate sorption of European volcanic soils 353

M. Madeira, E. Auxtero, F. Monteiro, E. García-Rodeja and J.C. Nóvoa-Muñoz
Exchange complex properties of soils from a range of European volcanic areas 369

Multivariate statistical analysis of chemical properties of European volcanic soils 387

P. Buurman and K.G.J. Nierop
NaOH and Na-Na4P2O7-extractable organic matter in two allophanic volcanic ash soils of the Azores Islands – quantified pyrolysis-GC/MS data and factor analysis 401

K.G.J. Nierop and P. Buurman
Thermally assisted hydrolysis and methylation of organic matter in two allophanic volcanic ash soils from the Azores Islands 411

H. Tanneberg and R. Jahn
Heavy metal sorption by andic and non-andic horizons from volcanic parent materials 423
IV. Reference Pedons: physical characteristics

Ed.: F. Bartoli

V.M. Sellitto, V. Barrón, G. Palumbo and C. Colombo
Application of Diffuse Reflectance Spectroscopy (DRS) to study European Volcanic Soils: a preliminary examination 437

P. Buurman and J.D.J. van Doesburg
Laser-diffraction grain-size analyses of reference profiles 453

F. Bartoli and G. Burtin
Organo-mineral clay and physical properties in COST 622 European volcanic soils 469

A. Basile, A. Coppola, R. De Mascellis, G. Mele and F. Terribile
A comparative analysis of the pore system in volcanic soils by means of water-retention measurements and image analysis 493

F. Bartoli, C.M. Regalado, A. Basile, P. Buurman and A. Coppola
Physical properties in European volcanic soils: a synthesis and recent developments 515

V. Volcanic Soils and Land Use

Ed.: H. Oskarsson

H. Oskarsson
Introduction to Section V. European Volcanic Soils and Land Use 539

F. Terribile, A. Basile, R. De Mascellis, M. Iammarino, P. Magliulo, S. Pepe and S. Vingiani
Landslide processes and Andosols: the case study of the Campania region, Italy 545

J.M. Hernández-Moreno, M. Tejedor and C.C. Jiménez
Effects of land use on soil degradation and restoration in the Canary Islands 565

P. Adamo and M. Zampeleta
Trace elements in polluted Italian volcanic soils 581
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GY. FÜLEKY and L.N. KONDA</td>
<td>601</td>
</tr>
<tr>
<td>Pesticide sorption of European volcanic soils</td>
<td></td>
</tr>
<tr>
<td>J. PINHEIRO, L. MATOS, V. SIMÕES and J. MADRUGA</td>
<td>611</td>
</tr>
<tr>
<td>Eutrophication in the Azores Islands</td>
<td></td>
</tr>
<tr>
<td>A. ECONOMOU, A. SKOUTERI and P. MICHOPoulos</td>
<td>623</td>
</tr>
<tr>
<td>Soils and Land Use of Santorini, Greece</td>
<td></td>
</tr>
<tr>
<td>C. DAZZI</td>
<td>629</td>
</tr>
<tr>
<td>Environmental features and land use of Etna (Sicily – Italy)</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

P. ADAMO
Department of Soil, Plant and Environmental Science, University of Naples Federico II, Via Università, 100 – 80055 Portici (NA) – Italy
adamo@unina.it

O. ARNALDS
Agricultural University of Iceland, Department of Natural Resources and Environmental Sciences, Keldnaholt, IS-112 Reykjavík, Iceland
ao@lbhi.is

E. AUXTERO
Instituto Superior de Agronomia, Departamento de Ciências do Ambiente, Tapada da Ajuda, 1349-017, Lisboa, Portugal
eauxtero@iol.pt

J. BALKOVIČ
Department of Soil Science, Faculty of Natural Sciences CU, Mlynská dolina, 842 15 Bratislava 4, Slovak Republic
balkovic@vupu.sk

V. BARRÓN
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo 3048 Córdoba, Spain
vidal@uco.es

F. BARTOLI
Laboratoire Sols et Environnement UMR 1120 ENSAIA - INPL/INRA, BP 172, 54505 Vandoeuvre les Nancy Cedex, France
Francois.Bartoli@ensaia.inpl-nancy.fr

A. BASILE
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo – Consiglio Nazionale delle Ricerche (ISAFOM-CNR), Via Patacca 85, 80056 Ercolano, NA, Italy
a.basile@ispaim.na.cnr.it
G. Burtin
Passed away January 2004

P. Buurman
Department of Environmental Sciences, Laboratory of Soil Science and Geology, Wageningen University, P.O. Box 37, 6700 AA Wageningen, the Netherlands
peter.buurman@wur.nl

W. Chesworth
Land Resource Science Department, Ontario Agricultural College, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
wcheswor@lrs.uoguelph.ca

C. Colombo
Dipartimento di Scienze Animali Vegetali e dell’Ambiente, Università del Molise, Campobasso, 86100 Italy
colombo@unimol.it

A. Coppola
Dipartimento per la gestione del territorio agricolo-forestale (DITEC) – Via dell’Ateneo Lucano, 85100 Potenza, Italy
acoppola@unibas.it

C. Dazzi
Dipartimento di Agronomia Ambientale e Territoriale – Università di Palermo, Italy
dazzi@unipa.it

R. De Mascellis
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo – Consiglio Nazionale delle Ricerche (ISAFOM-CNR), Via Patacca 85, 80056 Ercolano, NA, Italy

P. De Paepe
Laboratorium voor Mineralogie, Petrologie en Micropedologie, Universiteit Gent, Belgium
paul.depaep@ugent.be
A. ECONOMOU
National Agricultural Research Foundation / Forest Research Institute of Athens, Terma Alkmanos, 115 28, Ilissia, Athens, Greece
oika@fria.gr

O. FEHÉR
Szent István University, Department of Soil Science and Agrochemistry
Gödöllő, Hungary
olenyka@spike.fa.gau.hu

E.A. FITZPATRICK
Department of Plant and Soil Science, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, UK
e.a.fitzpatrick@btinternet.com

M. FONSECA
Instituto de Investigação Científica Tropical, Lisboa, Portugal
madfons@isa.utl.pt

A. FRASER
Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK

GY. FÜLEKY
Szent István University, Department of Soil Science and Agricultural Chemistry, Gödöllő Pater K u 1., H-2103 Hungary
fuleky.gyorgy@mkk.szie.hu

C. GARCÍA
Departamento de Edafología e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
edcmgp@usc.es

E. GARCÍA-RODEJA
Departamento de Edafología e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Lope Gómez de Marzoa s/n, Campus Sur, E-15782 Santiago de Compostela, Spain
edcone@usc.es
M. GÉRARD
Institut de Recherches pour le Développement (IRD), 32. avenue Henri Varagnat, Bondy cedex, France
martine.gerard@bondy.ird.fr

J.M. HERNÁNDEZ-MORENO
Dept. Edafología y Geología, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain
jhmoreno@ull.es

M. IAMARINO
Dipartimento di Scienze del Suolo, della Pianta e dell’Ambiente, Università degli Studi di Napoli “Federico II” – Via Università, 100 – 80055 Portici NA, Italy

R. JAHN
Institut für Bodenkunde und Pflanzenernährung, Martin Luther Universität Halle-Wittenberg, Weidenplan 14, 06108 Halle, Germany
reinhold.jahn@landw.uni-halle.de

S. JAKAB
Sapientia University, Targu Mures, Romania
jakab.bocskai@fx.ro

C.C. JIMÉNEZ
Dept. Edafología y Geología, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain
cacojime@ull.es

B. JURÁNI
Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 842 15 Bratislava 4, Slovakia
jurani@nic.fns.uniba.sk

Á. KERTÉSZ
Hungarian Academy of Sciences, Geographical Research Institute, Budai-örsi út. 45, 1112 Budapest, Hungary
kertesza@helka.iif.hu
M. KLEBER
Earth Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, 97420 Berkeley, CA, USA
MKleber@lbl.gov

L.N. KONDA
Institute for Veterinary Medicinal Products, 8 Szallas Street, H-1107 Budapest, Hungary
livia@oai.hu

L. LULLI
Instituto Sperimentale per lo studio e la Difesa del Suolo, Piazza Massimo D’azeglio 30, 50 121 Firenze, Italy
l.lulli@aliceposta.it

B. MADARÁSZ
Hungarian Academy of Sciences, Geographical Research Institute, Budapest-örsi út. 45, 1112 Budapest, Hungary
madaraszb@sparc.core.hu

M. MADEIRA
Instituto Superior de Agronomia, Departamento de Ciências do Ambiente, Tapada da Ajuda, 1349-017 Lisboa, Portugal
mavmadeira@isa.utl.pt

J. MADRUGA
Universidade dos Açores, Departamento de Ciências Agrárias, Terra Chã, 9700 Angra do Heroísmo, Portugal
madruga@notes.angra.uac.pt

P. MAGLIULO
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo, Consiglio Nazionale delle Ricerche, (CNR-ISAFoM) – Via Patacca, 85 – 80056 Ercolano NA, Italy

A. MARTÍNEZ-CORTIZAS
Departamento de Edafología e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Facultad de Biología, Campus Sur, E-15782 Santiago de Compostela, Spain
edantxon@usc.es
L. MATOS
Universidade dos Açores, Departamento de Ciências Agrárias, Terra Chã, 9700 Angra do Heroísmo, Portugal

E.L. MEIJER
Laboratory of Soil Science and Geology, Wageningen University, P.O. Box 37, 6700 AA Wageningen, the Netherlands
ed.meijer@bodeco.beng.wau.nl

G. MELE
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo – Consiglio Nazionale delle Ricerche (ISAFOM-CNR), Via Patacca 85, 80056 Ercolano, NA, Italy
g.mele@isafom.cnr.it

P. MICHOPOULOS
N.AG.RE.F. / Forest Research Institute, Terma Alkmanos, Ilissia, 115 28 Athens, Greece
mipa@fria.gr

F. MONTEIRO
Instituto Superior de Agronomia, Departamento de Ciências do Ambiente, Tapada da Ajuda, 1349-017 Lisboa, Portugal
fgmonteiro@isa.utl.pt

K.G.J. NIEROP
IBED-Physical Geography, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
k.g.j.nierop@science.uva.nl

J.C. NÓVOA
Área de Edafoloxía, Depto. Bioloxía Vexetal e Ciencias do Solo, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain

J.C. NÓVOA-MUÑOZ
Dept. de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Campus Sur s/n 15706, Santiago de Compostela, Galicia, Spain
edjuanca@usc.es
H. OSKARSSON
Agricultural University of Iceland, Department of Natural Resources and Environmental Sciences, Keldnaholt, IS-112 Reykjavík, Iceland
hlynur@lbhi.is

G. PALUMBO
Dipartimento di Scienze Animali Vegetali e dell’Ambiente, Università del Molise, Campobasso, Italy

D. PATERAS
National Agricultural Research Foundation / Forest Research Institute of Athens, Terma Alkmanos, 115 28, Ilissia, Athens, Greece
pateras@nagref.gr

S. PEPE
Dipartimento di Scienze del Suolo, della Pianta e dell’Ambiente, Università degli Studi di Napoli “Federico II” – Via Università, 100 – 80055 Portici NA, Italy

J. PINHEIRO
Universidade dos Açores, Departamento de Ciências Agrárias, Terra Chã, 9700 Angra do Heroísmo, Portugal
jpinheiro@angra.uac.pt

X. PONTEVEDRA
Dept. de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Campus Sur s/n 15706, Santiago de Compostela, Galicia, Spain
edpombal@usc.es

P. QUANTIN
5, rue Boileau, F21000 Dijon, France
quantin.paul@wanadoo.fr

C. REGALADO
Instituto Canario de Investigaciones Agrarias (ICIA), Dep. Suelos y Riegos, Apdo 60 La Laguna, 38200 Tenerife, Spain
cregalad@icia.es
M.V. Sellitto
Dipartimento di Scienze Animali Vegetali e dell’Ambiente, Università del Molise, Campobasso, 86100 Italy

V. Simoes
Universidade dos Açores, Departamento de Ciências Agrárias, Terra Chã, 9700 Angra do Heroísmo, Portugal

A. Skouteri
N.A.G.RE.F. / Forest Research Institute, Terna Alkmanos, Ilissia, 115 28 Athens, Greece
skmi@fria.gr

O. Spaargaren
ISRIC – World Soil Information, World Data Centre for Soils, P.O. Box 353, 6700 AJ Wageningen, the Netherlands
otto.spaargaren@wur.nl

G. Stoops
Laboratorium voor Mineralogie, Petrologie en Micropedologie, Universiteit Gent, Krijgslaan 281, S8, Belgium
stoops.georges@skynet.be

T. Taboada
Dept. Edafología e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
edteresa@usc.es

H. Tanneberg
Institute of Soil Science and Plant Nutrition, University of Halle-Wittenberg, Weidenplan 14, D-06108 Halle (Saale), Germany
Tannebg@mluagis1.landw.uni-halle.de

M. Tejedor,
Dept. Edafología y Geología, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain
martesa@ull.es
F. TERRIBILE
Dipartimento di Scienze del Suolo della Pianta e dell’Ambiente, Università di Napoli Federico II, Via Universitá 100, 80055 Portici NA, Italy
terribil@unina.it

J.D.J. VAN DOESBURG
Laboratory of Soil Science and Geology, Department of Environmental Sciences, Wageningen University, P.O. Box 37, 6700 AA Wageningen, the Netherlands
jan.vandoesburg@hetnet.nl

A. VAN DRIESSCHE
Laboratorium voor Mineralogie, Petrologie en Micropedologie, Universiteit Gent, Krijgslaan 281, S8, B-9000 Gent, Belgium

F. VAN OORT
INRA, Unité de Science du Sol, RD-10, 78026 Versailles, France

EVA VOUULIDOU
National Agricultural Research Foundation / Forest Research Institute of Athens, Terma Alkmanos, 115 28, Illissia, Athens, Greece
ssia@otenet.gr

S. VINGIANI
Dipartimento di Scienze del Suolo, della Pianta e dell’Ambiente, Università degli Studi di Napoli “Federico II” – Via Università, 100 – 80055 Portici NA, Italy

M. ZAMPELLA
Department of Soil, Plant and Environmental Science, University of Naples Federico II, Via Università, 100 – 80055 Portici (NA) – Italy
mvzampel@unina.it