Advances in Rehabilitation Robotics

Human-friendly Technologies on Movement Assistance and Restoration for People with Disabilities

With 249 Figures
Series Advisory Board
A. Bensoussan · P. Fleming · M.J. Grimble · P. Kokotovic · A.B. Kurzhanski · H. Kwakernaak · J.N. Tsitsiklis

Editors
Prof. Z. Zenn Bien
Human-Friendly Welfare Robot System Research Center
Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology
373-1 Guseong-dong, Yuseong-gu
Daejeon, 305-701
Korea

PhD Dimitar Stefanov, SRCS
Cardiff & Vale NHS Trust
Rehabilitation Engineering Unit
Cardiff, CF5 2 YN
UK
and
Institute of Mechanics
Bulgarian Academy of Sciences
Acad. G. Bonchev Street
Block 4, 1113 Sofia
Bulgaria

ISSN 0170-8643

Library of Congress Control Number: 2004106092
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under German Copyright Law.
Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Data conversion by the author.
Final processing by PTP-Berlin Protago-TeX-Production GmbH, Berlin
Cover-Design: design & production GmbH, Heidelberg
Printed on acid-free paper 62/3020Yu - 5 4 3 2 1 0
Preface

It is now evident that one of the major application targets of the service robots is to use them as assistive devices for rehabilitation of the physically disabled and for the elderly people. Rehabilitation robotics (RR) is a relatively young but dynamically developing area of research. Some rehabilitation robots have already got out of the research laboratories and have become important members in everyday lives of growing users from many developed countries. It is expected that, in the near future, the rehabilitation robots (RR) will become a significant component of the futuristic welfare service systems in the world. Primarily limited to a small number of relatively simple movement tasks such as object replacement and eating, the application areas of the rehabilitation robotics, along with various intelligent technologies for movement assistance of people with disabilities, are continuously expanding to new dimensions that aim at improved assistance in different kinds of activities and entertainment of people with disabilities and aged people as well. We are witnessing that such intensive development of novel human-machine interfaces, intelligent control algorithms, new materials and efficient actuators have made it possible to invent and test various advanced design ideas. Common understanding and main tendency in the rehabilitation robotics design is that the robots should be human-friendly in the sense that the robotic machine and peripheral devices must be designed for the user to feel more comfortable, safer, and more convenient. Recent intelligent robotic devices for movement assistance are often designed to be equipped with the control strategies that do not cause high cognitive load to the users with various severe movement disorders.

The idea for organizing this volume was inspired from the 8th International Conference on Rehabilitation Robotics (ICORR'2003) that was held during April 22-25, 2003 at Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea. The papers presented at the conference represent of course most recent tendencies of R&D in the rehabilitation robotics and intelligent assistive technology. With confidence, however, we like to declare that the current book is not just a variant of the conference proceedings! Different from the papers reported at the ICORR 2003 where specific problems and solutions of various subjects were discussed, the chapters of this book include original, reworked, and generalized materials that match
to the style and objectives of the book. The book contains not only review articles on some advanced theoretical ideas in the rehabilitation robotics and results from some of the latest projects under development but also details on new advanced rehabilitation devices which have been recently transferred to the industry. A significant part of the book is devoted to the assessment of new rehabilitation technologies and evaluation of prototype devices with end-users. Safety of rehabilitation robots, historical remarks and perspective of rehabilitation robotics are also commented in the book. Also, different from many other books on rehabilitation engineering, the present volume includes a long chapter on robot-assisted neuro-rehabilitation that is considered as one of the latest trends in that area.

One of the principal aims of this book is to promote dissemination of the information on the recent status of the rehabilitation robotics (RR). Our intention was to arrange the book in such a way that it is not just a simple collection of papers that would be of some interest to the specialists in a particular area, but rather, a book that contains some basics on the rehabilitation research and can help beginners to start their work in the same area, such as students and young researchers, or can help lecturers who want to introduce their students basics of the modern rehabilitation technology. In order to achieve this objective, most of the articles contain a detailed introduction to the problem to be discussed and an extended overview on the particular subject matter.

The chapters that are contained in this book are authored by leading researchers in the field of rehabilitation robotics and represent a large part of the international research community. The book contains 27 chapters, which are grouped into 7 parts. The book begins with an introductory Part 1 devoted to description of the role of the rehabilitation robotics and some important issues of its development. The same part represents also some important milestones of the development of rehabilitation robotics. The chapters included in Part 2 cover three important issues on rehabilitation robotics for assistance of human movements: conceptions and experimental design, safety issues of the rehabilitation robots, and rehabilitation-robot evaluation. Some recent issues of the prosthetics and orthotics design are discussed in Part 3. Part 4 is concerned with the intelligent wheelchairs that can be considered as special mobile robots, designed to accomplish indoor user transportation. A recent trend in the design of assistive devices for mobility is the mechatronic devices for assistance in walking that sense the user’s movement intentions and provide gentle gait support, giving independency and safety to the user. Some examples of such devices are given in Part 5. Part 6 is dedicated to robot-assisted neurorehabilitation. Examples of both upper limb robot mediated therapy and lower limb robot mediated therapy are commented in that part of the book. The final part of the book (Part7) talks about the perspectives and trends of the rehabilitation robotics.
We are assured that the book would provide with a comprehensive overview of the field of rehabilitation robotics, and would satisfy a large group of readers, including researchers in the field, graduate and postgraduate students, and designers that use the RR technology. We believe that the book will become a representative selection of the latest trends and achievements on the rehabilitation robotics area. We would be extremely happy if such an important goal would be achieved.

Finally, as the Editors of present volume, we like to take this opportunity to express our heartiest appreciation for all the authors who have worked their chapters with dedication and integrity, and contributed to the highest standard of this volume. We would like to thank also to Dr. Thomas Ditzinger and Ms. Heather King from Springer-Verlag for encouraging us in editing the present book and for their help in arranging this volume.

Daejeon
March 2004

Z. Zenn Bien
Dimitar Stefanov
Contents

List of Contributors .. XIX
List of Abbreviations ... XXVII

Part I Introduction

1 Advances in Human-Friendly Robotic Technologies for Movement Assistance/Movement Restoration for People with Disabilities
 Dimitar Stefanov, Z. Zenn Bien .. 3
 1.1 Introduction ... 3
 1.2 Areas of the RR Application 5
 1.2.1 Robotic Systems for Movement Assistance 5
 1.2.2 Robots for Physical Support and Indoor Navigation ... 7
 1.2.3 Robots for Physical Rehabilitation 7
 1.2.4 Vocational RR ... 8
 1.2.5 Emotional Interactive Entertainment Robots 9
 1.3 Specialized Human-Machine Interface 10
 1.4 Rehabilitation Robots in the Smart House Design 10
 1.5 Functional Integration of the Robotic Environment 12
 1.6 Commercialization of RR ... 13
 1.7 Some Issues for Futuristic Intelligent Robotic House Model 16
 1.8 Concluding Remarks .. 18

2 Rehabilitation Robotics from Past to Present – A Historical Perspective
 Michael Hillman .. 25
 2.1 Introduction ... 25
 2.2 Earliest Work ... 26
 2.3 Assistive Robotics ... 27
 2.3.1 Fixed Site .. 28
 2.3.2 Mobile Robots .. 31
 2.3.3 Wheelchair Mounted Manipulators 33
 2.3.4 Human Machine Interface 35
Part II Rehabilitation Robots for Assistance of Human Movements
II.1 Conceptions and Experimental Design

3 Toward a Human-Friendly User Interface to Control an Assistive Robot in the Context of Smart Homes
Mounir Mokhtari, Mohamed Ali Feki, Bessam Abdulrazak, Bernard Grandjean
3.1 Introduction
3.2 MANUS Assistive Robot
3.3 Networking Technologies and Developments
3.4 General Software Architecture
3.5 User Interface Adaptation
3.6 Implementation of a Path Planner
3.6.1 Gesture Library
3.6.2 Obstacles Avoidance
3.7 Towards the Co-autonomy Concept
3.8 Conclusion

4 Welfare-Oriented Service Robotic Systems: Intelligent Sweet Home & KARES II
Z. Zenn Bien, Kwang-Hyun Park, Dae-Jin Kim, Jin-Woo Jung
4.1 Introduction
4.2 Intelligent Sweet Home
4.2.1 Questionnaire Survey
4.2.2 Assistive Systems
4.2.3 Intelligent Man-Machine Interfaces
4.3 KARES II System
4.3.1 Questionnaire Survey
4.3.2 Overall Structure
4.3.3 Soft Robotic Arm with Visual Servoing
4.3.4 Intelligent Human-Robot Interfaces
4.3.5 User Trials
4.4 Concluding Remarks

42
5 “FRIEND” – An Intelligent Assistant in Daily Life
O. Kouzmitcheva, C. Martens, A. Pape, H. She, I. Volosyak, A. Gräser .. 95
5.1 Basic Concepts and Hardware .. 95
5.1.1 The FRIEND Project ... 95
5.1.2 Hardware Structure of FRIEND 96
5.1.3 Multi-layered Control Architecture of FRIEND 97
5.2 Application and Control ... 100
5.2.1 The “Beverage Serving” Task 101
5.2.2 Obstacle Avoidance .. 109
5.2.3 Task Planning .. 111
5.2.4 Demonstration-Based Programming 119
5.3 Summary .. 124

6 GIVING-A-HAND System:
The Development of a Task-Specific Robot Appliance
M.J. Johnson, E. Guglielmelli, G.A. Di Lauro, C. Laschi,
M.C. Carrozza, P. Dario ... 127
6.1 Introduction .. 127
6.2 Background ... 128
6.2.1 Domotic-Robotic Integrated System 129
6.2.2 Localized System of Appliances 130
6.3 Design Concept for the Giving-A-Hand System 132
6.4 Domotic/Telematic and Robotic Assistance 133
6.5 The Fetch and Carry Robot Appliance Development 133
6.6 User-Centered Development 135
6.7 Prototype of a Local Network with the Robot Appliance . 138
6.8 Summary and Conclusions 140

7 Cooperative Welfare Robot System
Using Hand Gesture Instructions
Noriyuki Kawarazaki, Ichiro Hoya, Kazue Nishihara,
Tadashi Yoshidome .. 143
7.1 Introduction .. 143
7.2 Cooperative Robot System .. 144
7.3 Measurement of Distance Using Stereo Images 145
7.4 Detection of the Hand and the Target Object 146
7.4.1 Detection of the Hand Area Using Color Image 146
7.4.2 Tracking of the Hand Using CP 147
7.4.3 Detection of the Object Using Gesture Instruction ... 148
7.5 Recognition of the Hand Gesture 149
7.6 Experimental Results .. 150
7.7 Conclusions ... 152
8 Selectable Operating Interfaces
of the Meal-Assistance Device “My Spoon”
Ryoji Soyama, Sumio Ishii, Azuma Fukase 155
8.1 Introduction ... 155
8.2 Meal-Assistance Device “My Spoon” 155
8.3 Operating Interface ... 156
8.4 Basic Operation .. 156
 8.4.1 Setup .. 157
 8.4.2 Compartment Selection Command Set 158
 8.4.3 Position Adjustment Command Set 158
8.5 Control Modes ... 159
 8.5.1 Manual Mode .. 159
 8.5.2 Semi-automatic Mode .. 159
 8.5.3 Automatic Mode ... 160
8.6 Future Tasks .. 161
 8.6.1 Food Recognition by Using Color Image Processing 161
 8.6.2 Improvements in Operation 162
8.7 Conclusion ... 163

9 Enhancing the Usability of the MANUS Manipulator
by Using Visual Servoing
A.H.G. Versluis, B.J.F. Driessen, J.A. van Woerden 165
9.1 Introduction .. 165
9.2 Visual Servoing ... 167
 9.2.1 Vision Aspects of the Visual Servoing 168
9.3 Control Architecture ... 168
9.4 Vision System .. 169
 9.4.1 Theory .. 169
 9.4.2 Implementation ... 170
9.5 Stability ... 171
9.6 Experiments ... 171
9.7 Conclusions and Future Work .. 174

Part II Rehabilitation Robots for Assistance of Human Movements
II.2 Safety Issues of the Rehabilitation Robots

10 A Safety Strategy for Rehabilitation Robots
Makoto Nakata, Noriyuki Tejima ... 177
10.1 Introduction .. 177
10.2 Principles of Safety Standards for Robots 177
 10.2.1 Framework of New Safety Standards for Robots 177
 10.2.2 Safety Standard for Machinery 178
 10.2.3 Risk Assessment Process and Risk Reduction 179
 10.2.4 Tolerable Risks for Robots 180
10.3 Case Study on Safety of Rehabilitation Robots
10.3.1 Risk Estimation ... 182
10.3.2 Safety Measures of Risk Reduction 183
10.3.3 Benefit Estimation .. 183
10.4 Proposal of Risk Assessment Guideline for Rehabilitation Robots 184
10.5 Conclusion .. 185

11 Safety Evaluation Method of Rehabilitation Robots
Makoto Nokata, Koji Ikata, Hideki Ishii 187
11.1 Introduction .. 187
11.2 Safety Strategy for Human-Care Robots 187
11.2.1 Injury to Humans from Human-Care Robots 187
11.2.2 Classification of Safety Strategies 188
11.3 Proposing Evaluation Measures of Safety 189
11.3.1 Necessity of Safe Quantitative Evaluation 189
11.3.2 Selection of Evaluation Measures 189
11.4 General Evaluation Method Using Evaluation Measures 190
11.5 Deriving Danger-Indexes of Safety Strategy 192
11.5.1 Safety Design Strategy 192
11.5.2 Safety Control Strategy 193
11.6 Proposal of Design Optimization and Practical Examples . . 194
11.6.1 Formulating the Design Optimization Method 194
11.6.2 Maximizing Safety Under Fixed Cost 195
11.6.3 A New Method of Calculate a Safe Approach Motion . . . 196
11.7 Conclusions ... 197

12 Risk Reduction Mechanisms
for Safe Rehabilitation Robots
Noriyuki Tejima .. 199
12.1 Introduction .. 199
12.2 Tolerable Risk and Surface Injury 199
12.3 Force Limitation Methods 201
12.4 A Straight Movement-Type Force Limitation Mechanism .. 202
12.5 A Three-Dimensional Force Limitation Mechanism 204
12.6 Reflex Mechanism .. 206
12.7 Conclusions ... 207

Part II Rehabilitation Robots for Assistance of Human Movements

II.3 Rehabilitation-Robot Evaluation

13 Usability of an Assistive Robot Manipulator:
Toward a Quantitative User Evaluation
Bessam Abdurazak, Mounir Mokhtari, Bernard Grandjean 211
13.1 Introduction ... 211
13.2 Users Needs Analysis 212
14 Processes for Obtaining a “Manus” (ARM) Robot within The Netherlands

Part III Prostheses and Orthoses

15 Experimental Analysis of the Proprioceptive and Exteroceptive Sensors of an Underactuated Prosthetic Hand

13.3 Hardware and Software Organization .. 212
 13.3.1 Hardware Architecture .. 213
 13.3.2 Software Command Architecture 214
13.4 Quantitative Evaluation Method .. 215
13.5 Preliminary Results .. 215
 13.5.1 Modes and Time of Use ... 216
 13.5.2 Actions Number .. 217
13.6 Discussion ... 219
13.7 Conclusion ... 219

14.1 Introduction ... 221
14.2 Wheelchair Mounted Service Manipulator ARM 221
14.3 The Current Process of Providing an ARM to a User 223
 14.3.1 Informing Users about the Benefits of the ARM 224
 14.3.2 Indication Criteria ... 224
 14.3.3 Stand-Alone Test .. 224
 14.3.4 Formal Application and Funding of an ARM 226
 14.3.5 Mounting the ARM on the Wheelchair 226
 14.3.6 Training ... 226
 14.3.7 Service and Maintenance ... 227
14.4 The Future Process of Prescribing the ARM 227
14.5 Summary of Two Recent Dutch ARM-User Evaluations 228
 14.5.1 User Study Conducted by iRV 228
 14.5.2 User Study Conducted by hetDorp 229

Part III Prostheses and Orthoses

15 Experimental Analysis of the Proprioceptive and Exteroceptive Sensors of an Underactuated Prosthetic Hand

15.4 Materials and Methods ... 236
 15.4.1 Slider Position Sensor .. 236
 15.4.2 Tendon Tensiometer ... 237
 15.4.3 Thumb Position Sensor .. 239
 15.4.4 Force Sensor ... 240
15.5 Conclusions .. 241
16 Design and Testing of WREX
Turig Rahman, Whitney Sample, Rahamim Seliktar 243
16.1 Introduction ... 243
16.2 Design of WREX ... 244
16.3 Gravity Balancing With $x \neq 0$ 245
16.4 Clinical Testing ... 248
16.5 Results ... 248

Part IV Intelligent Wheelchairs

17 A Concept for Control of Indoor-Operated Autonomous Wheelchair
Dimitar Stefanov, Alexander Aetanski, Z. Zenn Bien 253
17.1 Introduction and Related Works 253
17.1.1 Methods for Navigation ... 254
17.1.2 Path Planning and Navigation to the Goal 256
17.2 Conception of Wheelchair Navigation 258
17.2.1 Problem Statement .. 258
17.2.2 Initial Assumptions .. 258
17.3 Localization of the Wheelchair Position 260
17.4 Scenario of the Wheelchair Control 262
17.5 Navigation System ... 264
17.6 Computer Simulation of the Control Algorithm 267
17.6.1 Wheelchair Kinematics ... 267
17.6.2 Modeling of the Sensors and Their Arrangement on the Wheelchair Platform .. 269
17.6.3 Navigation Algorithm of the Simulator 272
17.7 Evaluation of the Control Algorithm 283
17.7.1 Navigation to Multiple Goals 283
17.7.2 Obstacle Avoidance ... 284
17.7.3 Avoiding a “Trap” .. 286
17.7.4 Navigation in a Complex Environment 288
17.7.5 Route Generation in Partially Known Environment 292
17.8 Future Plans and Concluding Remark 294

18 Design of an Intelligent Wheelchair for the Motor Disabled
Chong Hui Kim, Jik Han Jung, Byung Kook Kim 299
18.1 Introduction ... 299
18.2 Related Works ... 300
18.3 Requirements ... 301
18.4 System Architecture .. 302
18.4.1 Hardware Configuration ... 302
18.4.2 Software Design for Real-Time System 303
Part V Mechatronics Devices for Assistance in Walking

19 Electrically Assisted Walker
with Supporter-Embedded Force-Sensing Device
Saku Egawa, Ikuo Takeuchi, Atsushi Koseki, Takeshi Ishii
19.1 Introduction ... 313
19.2 Electrically Assisted Walker 314
19.3 Supporter-Embedded Force Sensor
19.3.1 Requirements for the Force Sensor 315
19.3.2 Sensor Structure 316
19.3.3 Sensing Method 317
19.3.4 Advantages ... 318
19.4 Experiments ... 319
19.5 Discussion ... 321
19.6 Summary .. 321

20 Human-Friendly Care Robot System
for the Elderly
Dong Hyun Yoo, Hyun Seok Hong, Han Jo Kwon, Myung Jin Chung
20.1 Introduction ... 323
20.2 Overall System of Do-u-mi Robot
20.3 Sound Localization 326
20.4 Face Tracking ... 327
20.5 Autonomous Navigation 330
20.6 Conclusion ... 331

21 Newly Designed Rehabilitation Robot System for
Walking-Aid
Choon-Young Lee, Kap-Ho Seo, Changmok Oh, Ju-Jang Lee
21.1 Introduction ... 333
21.2 Electric Motor Based Gait Rehabilitation System
21.2.1 System Description 334
21.2.2 Experiments ... 336
21.3 Newly Developed Gait Rehabilitation System
21.3.1 System Description 338
21.3.2 Control Method 340
21.4 Conclusion ... 342
Part VI Robot-Assisted Neurorehabilitation

22 A Gentle/S Approach to Robot Assisted Neuro-Rehabilitation
Rui Loureiro, Farshid Amirabdollahian, William Harwin 347
22.1 Abstract 347
22.2 Background to Stroke 348
22.3 Gentle/S 349
 22.3.1 Assumptions 350
22.4 Clinical Prototype for Machine Mediated Neurorehabilitation ... 351
 22.4.1 Antigravity Mechanism for the Shoulder and Elbow 353
 22.4.2 Exercises & Movement Guidance 354
 22.4.3 Different Therapy Modes 357
22.5 Clinical Trials 357
 22.5.1 Outcome Measures 358
 22.5.2 Data Analysis and Statistical Methodology 359
 22.5.3 Results 360
22.6 Conclusions 361

23 Wire Driven Robots for Rehabilitation
Paolo Gallina 365
23.1 Introduction 365
 23.1.1 Advantages of Wire Driven Robots 366
 23.1.2 Problems Related to Wire Driven Robots 367
23.2 Manipulability and Wire Tension Computation 367
23.3 NeRebot: An Example of Wire Driven Robot for Rehabilitation .. 369
 23.3.1 Software and Control 372
 23.3.2 Treatment Protocol 373
23.4 Conclusions and Future Research 374

24 A Wrist Extension for MIT-MANUS
Hernando Igo Krebs, James Celestino, Dustin Williams, Mark Ferraro,
Bruce Volpe, Neville Hogan 377
24.1 Introduction 377
24.2 Specification for a New Wrist Device 380
 24.2.1 Kinematic Selection 381
 24.2.2 Actuator Placement and Transmission Selection 382
 24.2.3 Actuator Selection 382
 24.2.4 Sensor Selection 383
24.3 Alpha-Prototype Overview 383
24.4 Robotic Prototype Overview 386
24.5 Conclusions 388
25 Post Stroke Shoulder–Elbow Physiotherapy with Industrial Robots
András Tóth, Gusztiás Arz, Gábor Fazekas, Daniel Bratanov;
Nikolay Zlatov .. 391
25.1 Introduction .. 391
25.2 Analysis of Spastic Upper Limb Physiotherapy 392
25.3 System Design and Development 394
 25.3.1 Mechanical Design ... 394
 25.3.2 The Instrumented Orthoses 399
 25.3.3 Control Design ... 399
 25.3.4 User Interface and Programming 401
 25.3.5 Safety Measures and Devices 402
25.4 Testing and Calibration .. 403
25.5 Clinical Results .. 405
 25.5.1 Subjects of the Clinical Trial 405
 25.5.2 Assessment Results 406
 25.5.3 Analysis of Assessment Results 408
25.6 Conclusions ... 409

26 STRING-MAN:
A Novel Wire-Robot for Gait Rehabilitation
Dragoljub Srdilovic, Rolf Bernhardt, Tobias Schmidt and Jinyu Zhang 413
26.1 Introduction ... 413
26.2 Development Goals ... 414
26.3 Robotic Mechanisms Design 414
26.4 Human/Robot Interface .. 419
26.5 Sensory Systems .. 420
26.6 Control Algorithms ... 421
26.7 Conclusion .. 424

Part VII Perspectives and Trends of the Rehabilitation Robotics

27 Great Expectations for Rehabilitation Mechatronics in the Coming Decade
H.F. Machiel Van der Loos, Richard Mahoney, Chantal Ammi 427
27.1 Introduction .. 427
27.2 Emerging Demographics and Healthcare Trends 428
27.3 Emerging Technologies Relevant to Robotics 429
27.4 Roadblocks and Enablers of Robotic Applications in Rehabilitation 431
27.5 Mechatronic/Robotic Applications to Rehabilitation 432
27.6 Conclusions ... 432

Subject Index ... 435
Author Index ... 439
About the Editors ... 441
List of Contributors

Abdulrazak, Bessam
GET/Institut National des Télécommunications–INSERM U.483, Handicom Lab. Evry, France
Bessam.Abdulrazak@int-evry.fr

Amirabdollahian, Farshid
The University of Newcastle, C.R.E.S.T., Stephenson Building, Claremont Road, Newcastle Upon Tyne, NE1 7RU, UK.
Farshid.Amirabdollahian@mcl.ac.uk

Ammi, Chantal
Dept. of Business Administration, National Telecommunications Institute, 9, rue Charles Fournier, 91011 Evry, France,
ammi@email.int-evry.fr

Arz, Gusztáv
Budapest University of Technology and Economics,
Department of Manufacturing Engineering, Egry J. u. 1.
Budapest 1111, Hungary
arz@manuf.bme.hu

Avtanski, Alexander
Savvion Inc., 5104 Old Ironsides Dr, Santa Clara, CA 95054, USA
aavtanski@savvion.com

Bernhardt, Rolf
Fraunhofer Institute IPK-Berlin,
Department Robotics and Automation, Pascalstraße 8-9, 10587 Berlin, Germany

Bien, Z. Zenn
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
zbien@ee.kaist.ac.kr

Bratanov, Daniel
University of Rousse,
Department of Manufacturing Engineering,
Automation & Robotics Laboratory, 8 Studentska str. 7017, Rousse, Bulgaria
dany@manuf.ru.acad.bg

Cappiello, Giovanni
Centro INAIL RTR, Via Vetreria 7, 55049 Viareggio (LU), Italy
g.cappiello@mail-arts.sssup.it

Carrozza, Maria Chiara
ARTS Lab, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, viale Rinaldo Piaggio, 34-56025 Pontedera (PI), Italy;
Research Centre on Rehabilitation Bioengineering of the Centro Protesi INAIL, Vigorso di Budrio (Bologna), via della Vetreria 7, 55049 Viareggio (Lucca), Italy
carrozza@sssup.it
XX List of Contributors

Celestino, James
Department of Mechanical Engineering, Massachusetts Institute of Technology, Room 3-173, 77 Massachusetts Ave, Cambridge, MA 02139, USA
jamesrc@mit.edu

Chung, Myung Jin
Dept. of Electrical Engineering and Computer Science, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
mjchung@ee.kaist.ac.kr

Dario, Paolo
ARTS Lab, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, viale Rinaldo Piaggio, 34-56025 Pontedera (PI), Italy; Research Centre on Rehabilitation Bioengineering of the Centro Protesi INAIL, Vigorso di Budrio (Bologna), via della Vetreria 7, 55049 Viareggio (Lucca), Italy
dario@mail-arts.sssup.it

Di Lauro, G.A.
Scuola Superiore Sant’Anna, ARTS (Advanced Robotics Technology Systems) Lab, c/o Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy; Research Centre on Rehabilitation Bioengineering of the Centro Protesi INAIL, Vigorso di Budrio (Bologna), via della Vetreria 7, 55049 Viareggio (Lucca), Italy
diuseppeina@mail-arts.sssup.it

Driessen, B.J.F.
TNO TPD, PO-BOX 155, 2600 AD Delft, The Netherlands, driessen@tpd.tno.nl

Egawa, Saku
Mechanical Engineering Research Laboratory, Hitachi, Ltd., 502 Kendatsu, Tsuchiura, Ibaraki 300-0013, Japan
egawa@gm.merl.hitachi.co.jp

Fazekas, Gábor
National Institute for Medical Rehabilitation, Szanatorium u. 19 Budapest 1528 Hungary
kassai@alarmix.net

Ferraro, Mark
Burke Rehabilitation Hospital, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
mferraro@burke.org

Feki, M.A.
GET/Institut National des Télécommunications–INSERM U.483, Handicam Lab. Evry, France
mohamedali.fki@int-evry.fr

Fukase, Azuma
Intelligent Systems Laboratory, SECOM Co., Ltd., R&D Center, 8-10-16, Shimorenjaku, Mitaka, Tokyo 181–8528, Japan
a-fukase@secom.co.jp

Gallina, Paolo
Department of Energetics, University of Trieste, Trieste, via A. Valerio 10, 34127 Trieste (Italy)
pgallina@units.it

Gräser, Axel
Institute of Automation, University of Bremen, Otto Hahn Allee NW1, 28359 Bremen, Germany, ag@iat.uni-bremen.de

Grandjean, Bernard
GET/Institut National des Télécommunications–INSERM U.483, Handicam Lab. Evry, France
Bernard.Grandjean@snv.jussieu.fr
Guglielmelli, E.
Scuola Superiore Sant’Anna, ARTS (Advanced Robotics Technology Systems) Lab,
c/o Polo Sant’Anna Valdera,
Viale Rinaldo Piaggio 34,
56025 Pontedera (Pisa), Italy;
Research Centre on Rehabilitation Bioengineering of the Centro Protesi INAIL,
Vigorso di Budrio (Bologna),
via della Vetreria 7, 55049 Viareggio (Lucca), Italy
eugenio@arts.sssup.it

Harwin, William
The University of Reading,
School of Systems, Engineering,
Department of Cybernetics,
Whiteknights, Reading, RG6 6AY, UK
W.S.Harwin@reading.ac.uk

Hillman, Michael
Bath Institute of Medical Engineering,
Wolfson Centre, Royal United Hospital,
Bath BA1 3NG, UK
M.R.Hillman@bath.ac.uk

Hogan, Neville
Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Room 3-173, 77 Massachusetts Ave,
Cambridge, MA 02139, USA;
Brain and Cognitive Sciences Dept.,
Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge,
MA 02139, USA
neville@mit.edu

Hong, Hyun Seok
Dept. of Electrical Engineering and
Computer Science, KAIST, 373-1,
Guseong-dong, Yuseong-gu, Daejeon,
305-701, Korea
wisern@cheonji.kaist.ac.kr

Hoya, Ichiro
Department of Welfare Systems
Engineering, Kanagawa Institute
of Technology, 1030 Shimo-ogino,
Atsugi-shi, Kanagawa, 243-0292, Japan

Ikuta, Koji
Department of Micro System
Engineering, Graduate School of
Engineering, Nagoya University
ikuta@mech.nagoya-u.ac.jp

Ishii, Hideki
Department of Micro System
Engineering, Graduate School of
Engineering, Nagoya University
ishii.hideki@k5.dion.ne.jp

Ishii, Sumio
Intelligent Systems Laboratory,
SECOM Co., Ltd., R&D Center,
8-10-16, Shimorenjaku, Mitaka, Tokyo
181-8528, Japan
s-ishi@secom.co.jp

Ishii, Takeshi
Mechanical Engineering Research Laboratory, Hitachi, Ltd.,
502 Kandatsu, Tsuchiura,
Ibaraki 300-0013, Japan
take4@gm.merl.hitachi.co.jp

Johnson, M.J.
Scuola Superiore Sant’Anna, ARTS (Advanced Robotics Technology Systems) Lab,
c/o Polo Sant’Anna Valdera,
Viale Rinaldo Piaggio 34,
56025 Pontedera (Pisa), Italy;
Research Centre on Rehabilitation Bioengineering of the INAIL Centro Protesi,
Vigorso di Budrio (Bologna),
via della Vetreria 7, 55049 Viareggio (Lucca), Italy
mjohnso@mail.mcw.edu

Jung, Jik Hang
Department of Electrical Engineering
& Computer Science, KAIST, 373-1
Guseong-dong, Yuseong-gu, Daejeon,
305-701, Korea
jhjung@rtcl.kaist.ac.kr
XXII List of Contributors

Jung, Jin-Woo
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
jinwoo@ctrsys.kaist.ac.kr

Kawarazaki, Noriyuki
Department of Welfare Systems Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi-shi, Kanagawa, 243-0292, Japan
kawara@eng.kanagawa-it.ac.jp

Kim, Byung Kook
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
bkkim@ee.kaist.ac.kr

Kim, Chong Hui
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
hkim@rtcl.kaist.ac.kr

Kim, Dae-Jin
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
djkim@ctrsys.kaist.ac.kr

Koseki, Atsushi
Mechanical Engineering Research Laboratory, Hitachi Ltd., 502 Kandatsu, Tsuchiura, Ibaraki 300-0013, Japan
koseki@gm.merl.hitachi.co.jp

Kouzmitcheva, Olena
Institute of Automation, University of Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen, Germany, olena@iat.uni-bremen.de

Krebs, Hermano Igo
Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Ave, 3-137, Cambridge, MA 02139 USA; Well Medical College of Cornell University, The Winifred Masterson Burke Medical Research Institute, Department of Neurology and Neuroscience
hikrebs@mit.edu

Kwon, Han Jo
Dept. of Electrical Engineering and Computer Science, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
hanz@cheonji.kaist.ac.kr

Laschi, C.
Scuola Superiore Sant’Anna, ARTS (Advanced Robotics Technology Systems) Lab, c/o Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
cecilia@arts.sssup.it

Lee, Choon-Young
Digital Content Research Division, ETRI, 161 Gajeong-dong Yuseong-gu, Daejeon, 305-350 Korea
cylee7309@etri.re.kr

Lee, Ju-Jang
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
jjlee@ee.kaist.ac.kr

Loureiro, Rui
The University of Reading, School of Systems, Engineering, Department of Cybernetics, Whiteknights, Reading, RG6 6AY, UK
R.C.V.Loureiro@reading.ac.uk
Mahoney, Richard
Rehabilitation Technology Division,
Applied Resources Inc.,
1275 Bloomfield Ave.,
Fairfield, NJ, 07004 USA
rmahoney@appliedresource.com

Martens, Christian
RHEINMETALL-DEFENCE-ELECTRONICS, Brüggeweg 54,
28309 Bremen, Germany,
martens.c@rheinmetall-de.com

Mokhtari, Mounir
GET/Institut National des
Télécommunications-INSELM U.483,
Handicom Lab. Evry, France
Mounir.Mokhtari@int-evry.fr

Nishihara, Kazue
Department of Welfare Systems
Engineering, Kanagawa Institute
of Technology, 1030 Shimo-ogino,
Atsugi-shi, Kanagawa, 243-0292, Japan
nisi@we.kanagawa-it.ac.jp

Nokata, Makoto
Department of Robotics, Faculty of
Science and Engineering, Ritsumeikan
University
nokata@se.ritsumei.ac.jp

Oh, Changmok
Department of Electrical Engineering
and Computer Science, KAIST, 373-1
Guseong-dong, Yuseong-gu, Daejeon
305-701, Republic of Korea
cmoh@odyssey.kaist.ac.kr

Pape, Andreas
Robert BOSCH GmbH,
Gasoline Systems, GS/EFA3,
Postfach 30 02 40, 70442 Stuttgart,
Andreas.Pape3@de.bosch.com

Park, Kwang-Hyun
Department of Electrical Engineering
and Computer Science, KAIST, 373-1
Guseong-dong, Yuseong-gu, Daejeon
305-701, Republic of Korea
akai@robotian.net

Peters, Geer
RTD hetDorp, Heijenoordseweg 130,
NL-6813 GC, Arnhem,
The Netherlands,
g.peters@rtdhetdorp.nl

Rahman, Tariq
A.I. duPont Hospital for Children,
1600 Rockland Rd, Wilmington,
DE 19899
rahman@asel.udel.edu

Roccella, Stefano
Centro INAIL RTR, Via Vetreria 7,
55049 Viareggio (LU), Italy
s.roccella@mail-arts.sssup.it

Römer, Gert Willem
Exact Dynamics, Edisonstraat 96,
NL-6942 PZ, Didam, The Netherlands,
research@exactdynamics.nl

Sample, Whitney
A.I. duPont Hospital for Children,
1600 Rockland Rd, Wilmington,
DE 19899
sample@asel.udel.edu

Schmidt, Tobias
Fraunhofer Institute IPK-Berlin,
Department Robotics and
Automation, Pascalstraße 8-9,
10587 Berlin, Germany

Sebastiani, Francesco
Centro INAIL RTR, Via Vetreria 7,
55049 Viareggio (LU), Italy
f.sebastiani@mail-arts.sssup.it

Seliktar, Rahamim
School of Biomedical Engineering,
Drexel University, 32 and Chestnut Sts,
Philadelphia PA 19104
seliktar@cbis.ece.drexel.edu
Seo, Kap-Ho
Department of Electrical Engineering and Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
khseo@odyssey.kaist.ac.kr

She, Haiying
Institute of Automation, University of Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen, Germany, she@iat.uni-bremen.de

Soyama, Ryoji
SECOM Co., Ltd., Intelligent Systems Laboratory, Medical Welfare Division, 8-10-16 Shimorenjaku, Mitaka, Tokyo 181-8528, Japan
r-soyama@secom.co.jp

Stefanov, Dimitar
Cardiff & Vale NHS Trust, Rehabilitation Engineering Unit, Cardiff, CF5 2YN, UK; Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 4, 1113 Sofia, Bulgaria
D_Stefanov@excite.com

Stuyt, Harry
Exact Dynamics BV, Edisonstraat 96, NL-6942 PZ, Didam, The Netherlands
research@exactdynamics.nl

Surdilovic, Dragoljub
Fraunhofer Institute IPK-Berlin, Department Robotics and Automation, Pascalstraße 8-9, 10587 Berlin, Germany
dragoljub.surdilovic@ipk.fhg.de

Takeuchi, Ikuo
Mechanical Engineering Research Laboratory, Hitachi, Ltd., 502 Kandatsu, Tsuchiura, Ibaraki 300-0013, Japan
takeuchi@gm.merl.hitachi.co.jp

Tejima, Nori-yuki
Department of Robotics, Faculty of Science and Engineering, Ritsumeikan University
tejima@se.ritsumei.ac.jp

Tóth, András
Budapest University of Technology and Economics, Department of Manufacturing Engineering, Egy J. u. 1. Budapest 1111 Hungary
toth@manuf.bme.hu

Van der Loos, H.F.
Machiel, Rehabilitation R & D Center, VA Palo Alto Health Care System, 3801 Miranda Ave. # 153, Palo Alto, CA, 94304 USA
vdl@stanford.edu

Van Woerden, J.A.
TNO TPD, PO-BOX 155, 2600 AD Delft, The Netherlands,
vwonderen@tpd.tno.nl

Van Woerden, Koos
TNO TPD, Stieltjesweg 1, NL-2628 CK, Delft, The Netherlands,
vwoerden@tpd.tno.nl

Vecchi, Fabrizio
Centro INAIL RTR, Via Vetraia 7, 55049 Viareggio (LU), Italy
f.vecchi@mail-arts.sssup.it

Versluis, A.H.G.
TNO TPD, PO-BOX 155, 2600 AD Delft, The Netherlands,
vversluis@tpd.tno.nl

Volosyak, Ivan
Institute of Automation, University of Bremen, Otto-Hahn-Allee, NW1, 28359 Bremen, Germany,
vvolosyak@iat.uni-bremen.de
Volpe, Bruce
Department of Neurology and Neuroscience, Weill Medical College
Cornell University, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
BVOILPE@burke.org

Yoo, Dong Hyun
Dept. of Electrical Engineering and Computer Science, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
ydh@cheonji.kaist.ac.kr

Yoshidome, Tadashi
Department of Welfare Systems Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi-shi, Kanagawa, 243-0292, Japan
yosidome@we.kanagawa-it.ac.jp

Williams, Dustin
Interactive Motion Technologies, Inc., 56 Highland Ave, Cambridge, MA 02139, USA
dustinw@interactive-motion.com

Zecca, Massimiliano
Scuola Superiore Sant’Anna, ARTS Labs, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
m.zecca@mail-arts.sssup.it

Zhang, Jinyu
Fraunhofer Institute IPK-Berlin, Department Robotics and Automation, Pascalstraße 8-9, 10587 Berlin, Germany

Zlatov, Nikolay
Cardiff University, Manufacturing Engineering Centre, The Parade P O Box 925 Cardiff CF24 0YF Wales, UK
zlatovnb@cf.ac.uk
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>active compliance control</td>
</tr>
<tr>
<td>ADL</td>
<td>activities of daily living</td>
</tr>
<tr>
<td>AGW</td>
<td>automatically guided wheelchairs</td>
</tr>
<tr>
<td>ARM</td>
<td>assistive robotic manipulator</td>
</tr>
<tr>
<td>BWS</td>
<td>body weight support</td>
</tr>
<tr>
<td>COP</td>
<td>center of pressure</td>
</tr>
<tr>
<td>DLS</td>
<td>double limb support</td>
</tr>
<tr>
<td>DoF</td>
<td>degree of freedom</td>
</tr>
<tr>
<td>DoFs</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyography, electromyographic</td>
</tr>
<tr>
<td>FMMNN</td>
<td>Fuzzy Min-Max Neural Networks</td>
</tr>
<tr>
<td>FSR</td>
<td>force sensing resistors</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>ICORR</td>
<td>International Conference on Rehabilitation Robotics</td>
</tr>
<tr>
<td>LNA</td>
<td>low noise amplifier</td>
</tr>
<tr>
<td>LRF</td>
<td>laser range finder</td>
</tr>
<tr>
<td>LPM</td>
<td>log-polar mapping</td>
</tr>
<tr>
<td>QOL</td>
<td>quality of life</td>
</tr>
<tr>
<td>ROL</td>
<td>respect of living</td>
</tr>
<tr>
<td>RR</td>
<td>rehabilitation robot</td>
</tr>
<tr>
<td>RRs</td>
<td>rehabilitation robots</td>
</tr>
<tr>
<td>RTAI</td>
<td>Real-Time Application Interface</td>
</tr>
<tr>
<td>sls</td>
<td>single limb support</td>
</tr>
<tr>
<td>TOD</td>
<td>task-oriented design</td>
</tr>
</tbody>
</table>