5

Springer Series on Chemical Sensors and Biosensors

Methods and Applications

Series Editor: O. S. Wolfbeis
Springer Series on Chemical Sensors and Biosensors
Series Editor: O. S. Wolfbeis
Recently Published and Forthcoming Volumes

Piezoelectric Sensors
Volume Editors: Steinem C., Janshoff A.
Vol. 5, 2006

Surface Plasmon Resonance Based Sensors
Volume Editor: Homola J.
Vol. 4, 2006

Frontiers in Chemical Sensors
Novel Principles and Techniques
Volume Editors: Orellana G., Moreno-Bondi M. C.
Vol. 3, 2005

Ultrathin Electrochemical
Chemo- and Biosensors
Technology and Performance
Volume Editor: Mirsky V. M.
Vol. 2, 2004

Optical Sensors
Industrial, Environmental and Diagnostic Applications
Volume Editors:
Narayanaswamy R., Wolfbeis O. S.
Vol. 1, 2003
Piezoelectric Sensors

Volume Editors: Claudia Steinem · Andreas Janshoff

With contributions by
M. A. Cooper · L. Daikhin · D. Johannsmann · F. L. Dickert
F. Eichelbaum · H. Furusawa · E. Gileadi · G. G. Guilbault
V. Heitmann · F. Höök · A. Janshoff · D. Johannsmann · B. Kasemo
P. A. Lieberzeit · R. Lucklum · K. A. Marx · M. Mascini
M. Minunni · T. Mori · T. Nihira · Y. Okahata · B. Reiß
C. Steinem · S. Tombelli · V. Tsionsky · M. Urbakh
R. D. Vaughan · J. Wegener

Springer
Chemical sensors and biosensors are becoming more and more indispensable tools in life science, medicine, chemistry and biotechnology. The series covers exciting sensor-related aspects of chemistry, biochemistry, thin film and interface techniques, physics, including opto-electronics, measurement sciences and signal processing. The single volumes of the series focus on selected topics and will be edited by selected volume editors. The Springer Series on Chemical Sensors and Biosensors aims to publish state-of-the-art articles that can serve as invaluable tools for both practitioners and researchers active in this highly interdisciplinary field. The carefully edited collection of papers in each volume will give continuous inspiration for new research and will point to existing new trends and brand new applications.
Series Editor

Prof. Dr. Otto S. Wolfbeis
Institute of Analytical Chemistry, Chemo- and Biosensors
University of Regensburg
93040 Regensburg, Germany
otto.wolfbeis@chemie.uni-regensburg.de

Volume Editors

Prof. Dr. Andreas Janshoff
University of Mainz
Institute of Physical Chemistry
Welder Weg 11
55128 Mainz
Germany
janshoff@uni-mainz.de

Prof. Dr. Claudia Steinem
Georg August University
Institute of Organic and Biomolecular Chemistry
Tammannstr. 2
37077 Göttingen
Germany
claudia.steinem@chemie.uni-goettingen.de
For all customers who have a standing order to Springer Series on Chemical Sensors and Biosensors, we offer the electronic version via SpringerLink free of charge. Please contact your librarian who can receive a password or free access to the full articles by registering at:

springerlink.com

If you do not have a subscription, you can still view the tables of contents of the volumes and the abstract of each article by going to the SpringerLink Homepage, clicking on “Browse by Online Libraries”, then “Chemical Sciences”, and finally choose Springer Series on Chemical Sensors and Biosensors.

You will find information about the

– Editorial Board
– Aims and Scope
– Instructions for Authors
– Sample Contribution

at springer.com using the search function.
Preface

Demand for in situ surface analysis tools has increased considerably with the advent of nanotechnology and the rapid development of life sciences and chemical sensors. Investigating surface reactions in physics, chemistry, and biology is rewarding and demanding at the same time. In particular, non-invasive techniques are required to study subtle effects as they occur at cellular membranes. The detection and quantification of subtle shifts in mechanical properties comprising viscoelastic properties of soft matter, friction on small length scales, adsorption of biomolecules, and interfacial forces created by molecular contacts are desirable measurements for understanding processes occurring at the solid liquid and solid gas interface.

In the last few years, acoustic resonators have leaped forward, meeting many of the demands of interfacial sensors. Among them, thickness shear mode (TSM) resonators are the most widespread and versatile acoustic resonators capable of studying viscoelastic properties of soft matter, adsorption of molecules down to the picogram regime, motility of living cells just to name a few prominent achievements. The beauty of this approach is that the information content goes beyond most optical techniques comprising information about mass density, contact mechanics, dynamics of interfacial processes, surface roughness, and viscoelasticity of many layer systems. Acoustic sensor technology is a highly interdisciplinary field. Researchers from different areas ranging from electrical engineering to cell biology have contributed valuable technological concepts, theoretical insights and applications to the use and development of thickness shear mode resonators as extremely sensitive, robust and versatile sensors, which are discussed in this book.

The book is intended to give a state-of-the-art overview of the recent achievements in the area of piezoelectric sensors. The focus lies on TSM resonators, since this class of piezoelectric devices is most frequently used in physical and chemical sensor and biosensor applications, and they are largely commercially available. The book is divided into three parts. The first four chapters cover the physical background of piezoelectric devices. While Ralf Lucklum and Frank Eichelbaum discuss different interface circuits to drive a TSM resonator in the first chapter, Diethelm Johannsmann provides a comprehensive picture of how to treat different load situations of the quartz crystal microbalance (QCM) in the second, including rather new development in the area of con-
tact mechanics in the fourth chapter. The third chapter, written by Michael Urbakh and coworkers, the solid/liquid interface, as probed by the QCM, is discussed focusing on the impact of surface roughness and interfacial friction. The second part of the book then presents a variety of possible applications of the QCM and surface acoustic wave (SAW) sensors. The chapter by Franz Dickert and Peter Lieberzeit describes how functionalization of a QCM and SAW sensor surface with imprinted polymers allow monitoring very different analytes ranging from simple organic molecules to bacteria and cells. The next two chapters by Marco Mascini and coworkers and Robert Vaughan and George G. Guilbault, respectively, provide an overview of nucleic acid biosensors and immunosensors based on QCM techniques. In the eighth chapter we show that, besides pure analytical applications, the combination of QCM with atomic force microscopy measurements, and Monte-Carlo simulations allow for a better understanding of the formation process of solid supported membranes (SSMs) on quartz resonator surfaces and the interaction of proteins with SSMs. Joachim Wegener and coworkers demonstrate in the ninth chapter that, due to the sensitivity of a TSM resonator to changes in viscoelasticity, the QCM is an invaluable tool to monitor and understand the interface between cells and the resonator’s surface, which makes it possible to use this device in whole cell biosensor applications.

This aspect is also discussed in the chapter written by Kenneth Marx, who not only describes recent applications of the QCM to study thin polymer films, electron transfer systems, biological macromolecules, and cells, but also the application of the electrochemical QCM. This chapter is one of four of the third part of this book, which is devoted to advanced QCM techniques. Yoshio Okahata and coworkers demonstrate that a 27 MHz quartz plate enables one to monitor the action of enzymes online, while Matthew Cooper gives an overview on resonant acoustic profiling (RAPTM) and rupture event scanning (REVSTM) realized by a QCM at Akubio. Fredrik Höök and Bengt Kasemo point out the applicability of the QCM-D technique to biological questions pronouncing that there is more than pure microgravimetry involved in interfacial processes.

We hope that the reader will find these contributions from leading scientists working in the field of piezoelectric sensors stimulating.

Finally, we would like to express our gratitude to all the authors who have contributed to this book, to Britta Wecker for her able handling of the manuscripts, and to Otto S. Wolfbeis for his invitation to edit a book on this cutting-edge topic in sensor development for this series and to Springer for their professionalism in producing this book.

October 2006

Andreas Janshoff

Claudia Steinem
Contents

Part I
Physical Aspects of QCM-Measurements

Interface Circuits for QCM Sensors
R. Lucklum · F. Eichelbaum .. 3

Studies of Viscoelasticity with the QCM
D. Johannsmann ... 49

Probing the Solid/Liquid Interface with the Quartz Crystal Microbalance
M. Urbakh · V. Tsionsky · E. Gileadi · L. Daikhin 111

Studies of Contact Mechanics with the QCM
D. Johannsmann ... 151

Part II
Chemical and Biological Applications of the QCM

Imprinted Polymers in Chemical Recognition for Mass-Sensitive Devices
F. L. Dickert · P. A. Lieberzeit 173

Analytical Applications of QCM-based Nucleic Acid Biosensors
M. Minunni · M. Mascini · S. Tombelli 211

Piezoelectric Immunosensors
R. D. Vaughan · G. G. Guilbault .. 237

Specific Adsorption of Annexin A1 on Solid Supported Membranes: A Model Study
C. Steinem · A. Janshoff ... 281
The Quartz Crystal Microbalance in Cell Biology:
Basics and Applications
V. Heitmann · B. Reiß · J. Wegener · 303

Part III
Applications Based on Advanced QCM-Techniques

Enzyme Reactions on a 27 MHz Quartz Crystal Microbalance
Y. Okahata · T. Mori · H. Furusawa · T. Nihira · 341

The Quartz Crystal Microbalance and the Electrochemical QCM:
Applications to Studies of Thin Polymer Films, Electron Transfer Systems,
Biological Macromolecules, Biosensors, and Cells
K. A. Marx · 371

The QCM-D Technique
for Probing Biomacromolecular Recognition Reactions
F. Höök · B. Kasemo · 425

Resonant Acoustic Profiling (RAP™)
and Rupture Event Scanning (REVS™)
M. A. Cooper · 449

Subject Index · 481