Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Andy M. Tyrrell
The University of York, The Department of Electronics
Heslington, York YO10 5DD, United Kingdom
E-mail: amt@ohm.york.ac.uk

Pauline C. Haddow
The Norwegian University of Science and Technology
Department of Computer and Information Science
Sem Sælands Vei, 7491 Trondheim, Norway
E-mail: pauline@idi.ntnu.no

Jim Torresen
University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, 0316 Oslo, Norway
E-mail: jimtoer@ifi.uio.no

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): B.6, B.7, F.1, I.6, I.2, J.2, J.3

ISSN 0302-9743

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergraphik
Printed on acid-free paper SPIN: 10872784 06/3142 5 4 3 2 1 0
Preface

The idea of evolving machines, whose origins can be traced to the cybernetics movement of the 1940s and 1950s, has recently resurged in the form of the nascent field of bio-inspired systems and evolvable hardware. The inaugural workshop, Towards Evolvable Hardware, took place in Lausanne in October 1995, followed by the First International Conference on Evolvable Systems: From Biology to Hardware (ICES), held in Tsukuba, Japan in October 1996. The second ICES conference was held in Lausanne in September 1998, with the third and fourth being held in Edinburgh, April 2000 and Tokyo, October 2001 respectively. This has become the leading conference in the field of evolvable systems and the 2003 conference promised to be at least as good as, if not better than, the four that preceded it.

The fifth international conference was built on the success of its predecessors, aiming at presenting the latest developments in the field. In addition, it brought together researchers who use biologically inspired concepts to implement real systems in artificial intelligence, artificial life, robotics, VLSI design and related domains. We would say that this fifth conference followed on from the previous four in that it consisted of a number of high-quality interesting thought-provoking papers.

We received 58 papers in total. All of these papers were reviewed by three independent reviewers. As such, we feel that we compiled an excellent package for ICES 2003. The conference included 3 keynote talks titled: “Nano- and biotechnology,” “From wheels to wings with evolutionary spiking neurons,” and “Machine design of quantum computers: A new frontier.” We had 41 technical presentations, a panel debate, and 3 tutorials in the areas of: evolutionary algorithms, evolvable hardware and reconfigurable devices, and nanotechnology. In addition to the technical program, there was a strong and varied social program both during and after the conference.

We would like to thank the reviewers for their time and effort in reviewing all of the submitted papers. We would also like to thank the other members of the organizing committee, including the local chair Keith Downing and publicity chair Gunnar Tufte. We are most grateful to Frode Eskelund, Diego Federici, and Karstein A. Kristiansen for their great help in developing the web-based paper submission and registration tool. We wish to thank the following for their contribution to the success of this conference: The Research Council of Norway; European Community IST programme; Norwegian University of Science and Technology; University of Oslo; European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Research Laboratory; Telenor ASA; Atmel; and Siemens. Finally, we would like to thank all of those authors who put so much effort into their research and decided to publish their work at our conference.
What topics might we consider important for the next few years? It is clear that the field is still developing, evolving, and that many of the “hot” topics at this conference will be seen again next time. These will include: evolutionary hardware design; co-evolution of hybrid systems; evolving hardware systems; intrinsic, and on-line evolution; hardware/software co-evolution; self-repairing hardware; self-reconfiguring hardware; embryonic hardware; morphogenesis; novel devices; adaptive computing; and of course we are always looking for, and interested in, real-world applications of evolvable hardware. Will we see breakthroughs relating to nanotechnology, new reconfigurable FPGAs and new models of reliability for long space missions? Only time will tell – as with all evolution.

We hope you enjoy reading these proceedings as much as we enjoyed putting them together.

January 2003

Andy M. Tyrrell
Pauline C. Haddow
Jim Torresen
Organization

Organizing Committee

General Chair: Andy M. Tyrrell (University of York, UK)
Program Co-chair: Pauline C. Haddow (Norwegian University of Science and Technology, Norway)
Program Co-chair: Jim Torresen (University of Oslo, Norway)
Local Chair: Keith Downing (Norwegian University of Science and Technology, Norway)
Publicity Chair: Gunnar Tufte (Norwegian University of Science and Technology, Norway)

International Steering Committee

Tetsuya Higuchi, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Daniel Mange, Swiss Federal Institute of Technology, Switzerland
Julian Miller, University of Birmingham, UK
Moshe Sipper, Ben-Gurion University, Israel
Adrian Thompson, University of Sussex, UK

Program Committee

Juan Manuel Moreno Arostegui, Universitat Politecnica de Catalunya, Spain
Wolfgang Banzhaf, University of Dortmund, Germany
Peter J. Bentley, University College London, UK
Gordon Brebner, Xilinx, USA
Richard Canham, University of York, UK
Stefano Cagnoni, Universita’ di Parma, Italy
Prabhas Chongstitvatana, Chulalongkorn University, Thailand
Carlos A. Coello Coello, LANIA, Mexico
Peter Dittrich, University of Dortmund, Germany
Marco Dorigo, Université Libre de Bruxelles, Belgium
Keith Downing, Norwegian University of Science and Technology, Norway
Rolf Drechsler, University of Bremen, Germany
Marc Ebner, Universität Würzburg, Germany
Stuart J. Flockton, University of London, UK
Dario Floreano, Swiss Federal Institute of Technology, Switzerland
Terence C. Fogarty, South Bank University, UK
David B. Fogel, Natural Selection, Inc., USA
Andrew Greenstead, University of York, UK
VIII Organization

Hugo deGaris, Utah State University, USA
Tim Gordon, University College London, UK
Darko Grundler, University of Zagreb, Croatia
Pauline C. Haddow, Norwegian University of Science and Technology, Norway
David M. Halliday, University of York, UK
Alister Hamilton, University of Edinburgh, UK
Arturo Hernandez Aguirre, Tulane University, USA
Francisco Herrera, University of Granada, Spain
Jean-Claude Heudin, Pule Universitaire Léonard de Vinci, France
Tetsuya Higuchi, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Hitoshi Iba, University of Tokyo, Japan
Masaya Iwata, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Alex Jackson, University of York, UK
Tatiana Kalganova, Brunel University, UK
Didier Keymeulen, Jet Propulsion Laboratory, USA
Michael Korkin, Genobyte, Inc., USA
Sanjeev Kumar, University College London, UK
William B. Langdon, University College London, UK
Yong Liu, University of Aizu, Japan
Jason Lohn, NASA Ames Research Center, USA
Michael Lones, University of York, UK
Evelyne Lutton, INRIA, France
Daniel Mange, Swiss Federal Institute of Technology, Switzerland
Karlheinz Meier, Heidelberg University, Germany
Julian Miller, University of Birmingham, UK
David Montana, BBN Technologies, USA
Masahiro Murakawa, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Marek A. Perkowski, Portland State University, USA
Matteo Sonza Reorda, Politecnico di Torino, Italy
Mehrdad Salami, School of Biophysical Sciences and Electrical Engineering, Australia
Eduardo Sanchez, Swiss Federal Institute of Technology, Switzerland
Lukas Sekanina, Brno University of Technology, Czech Republic
Moshe Sipper, Ben-Gurion University, Israel
Giovanni Squillero, Politecnico di Torino, Italy
Andre Stauffer, Swiss Federal Institute of Technology, Switzerland
Adrian Stoica, Jet Propulsion Laboratory, USA
Kiyoshi Tanaka, Shinshu University, Japan
Gianluca Tempesta, Swiss Federal Institute of Technology, Switzerland
Christof Teuscher, Swiss Federal Institute of Technology, Switzerland
Jonathan Timmis, University of Kent, UK
Adrian Thompson, University of Sussex, UK
Peter Thomson, Napier University, UK
Jim Torresen, University of Oslo, Norway
Gunnar Tufte, Norwegian University of Science and Technology, Norway
Andy Tyrrell, University of York, UK
Piet van Remortel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
Milan Vasilko, Bournemouth University, UK
Xin Yao, University of Birmingham, UK
Moritoshi Yasunaga, University of Tsukuba, Japan
Ricardo S. Zebulum, Jet Propulsion Laboratory, USA

Sponsoring Institutions

We wish to thank the following for their contribution to the success of this conference:

The Research Council of Norway
European Community IST programme (Fifth Framework Programme)
Department of Computer and Information Science, Norwegian University of Science and Technology
Department of Informatics, University of Oslo
European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Research Laboratory
Telenor ASA
Atmel
Siemens
Table of Contents

Evolution

On Fireflies, Cellular Systems, and Evolware 1
 Christof Teuscher and Mathieu S. Capcarre

A Comparison of Different Circuit Representations
for Evolutionary Analog Circuit Design 13
 Lyudmilla Zinchenko, Heinz Mühlenbein, Victor Kureichik,
 and Thilo Mahnig

Fault Tolerance and Fault Recovery

Fault Tolerance via Endocrinologic Based Communication
for Multiprocessor Systems ... 24
 Andrew J. Greensted and Andy M. Tyrrell

Using Negative Correlation to Evolve Fault-Tolerant Circuits 35
 Thorsten Schnier and Xin Yao

A Genetic Representation for Evolutionary Fault Recovery
in Virtex FPGAs .. 47
 Jason Lohn, Greg Larchev, and Ronald DeMarra

Development

Biologically Inspired Evolutionary Development 57
 Sanjeev Kumar and Peter J. Bentley

Building Knowledge into Developmental Rules for Circuit Design 69
 Gunnar Tufte and Pauline C. Haddow

Evolving Fractal Proteins .. 81
 Peter J. Bentley

A Developmental Method for Growing Graphs and Circuits 93
 Julian F. Miller and Peter Thomson

Developmental Models for Emergent Computation 105
 Keith L. Downing

Developmental Effects on Tuneable Fitness Landscapes 117
 Piet van Remortel, Johan Ceuppens, Anne Defaweux,
 Tom Lenaerts, and Bernard Manderick
Table of Contents

POEtic

POEtic Tissue: An Integrated Architecture for Bio-inspired Hardware 129

 Andy M. Tyrrell, Eduardo Sanchez, Dario Floreano,
 Gianluca Tempesta, Daniel Mange, Juan-Manuel Moreno,
 Jay Rosenberg, and Alessandro E.P. Villa

Ontogenetic Development and Fault Tolerance in the POEtic Tissue 141

 Gianluca Tempesta, Daniel Roggen, Eduardo Sanchez,
 Yann Thoma, Richard Canham, and Andy M. Tyrrell

A Morphogenetic Evolutionary System: Phylogenesis of the POEtic Circuit 153

 Daniel Roggen, Dario Floreano, and Claudio Mattiussi

Spiking Neural Networks for Reconfigurable POEtic Tissue 165

 Jan Eriksson, Oriol Torres, Andrew Mitchell, Gayle Tucker,
 Ken Lindsay, David Halliday, Jay Rosenberg,
 Juan-Manuel Moreno, and Alessandro E.P. Villa

A Learning, Multi-layered, Hardware Artificial Immune System
 Implemented upon an Embryonic Array ... 174

 Richard Canham and Andy M. Tyrrell

Applications 1

Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware 186

 Lukáš Sekanina

Gene Finding Using Evolvable Reasoning Hardware .. 198

 Moritoshi Yasunaga, Ikuo Yoshihara, and Jung H. Kim

Evolvable Fuzzy System for ATM Cell Scheduling .. 208

 J.H. Li and M.H. Lim

Evolution of Digital Circuits

Synthesis of Boolean Functions Using Information Theory 218

 Arturo Hernández Aguirre, Edgar C. González Equihua, and Carlos A. Coello Coello

Evolving Multiplier Circuits by Training Set and Training Vector Partitioning 228

 Jim Torrersen

Evolution of Self-diagnosing Hardware .. 238

 Miguel Garvie and Adrian Thompson
Hardware Challenges

Routing of Embryonic Arrays Using Genetic Algorithms .. 249
Cesar Ortega-Sanchez, Jose Torres-Jimenez, and Jorge Morales-Cruz

Exploiting Auto-adaptive μGP
for Highly Effective Test Programs Generation .. 262
F. Corno, F. Cumani, and G. Squillero

Speeding up Hardware Evolution:
A Coprocessor for Evolutionary Algorithms .. 274
Tilmann Schmitz, Steffen Hohmann, Karlheinz Meier, Johannes Schemmel, and Felix Schürmann

Applications 2

Automatic Evolution of Signal Separators
Using Reconfigurable Hardware ... 286
Ricardo S. Zebulum, Adrian Stoica, Didier Keymeulen, M.I. Ferguson, Vu Duong, Xin Guo, and Vatche Vorperian

Distributed Control in Self-reconfigurable Robots .. 296
Henrik Hautop Lund, Rasmus Lock Larsen, and Esben Hallundbæk Østergaard

Co-evolving Complex Robot Behavior ... 308
Esben Hallundbæk Østergaard and Henrik Hautop Lund

Evolutionary Hardware

Evolving Reinforcement Learning-Like Abilities for Robots 320
Jesper Blynel

Evolving Image Processing Operations
for an Evolvable Hardware Environment .. 332
Stephen L. Smith, David P. Crouch, and Andy M. Tyrrell

Hardware Implementation of a Genetic Controller
and Effects of Training on Evolution ... 344
M.A. Hannan Bin Azhar and K.R. Dimond

Neural Systems

Real World Hardware Evolution:
A Mobile Platform for Sensor Evolution .. 355
Robert Goldsmith

Real-Time Reconfigurable Linear Threshold Elements
and Some Applications to Neural Hardware .. 365
Snorre Aunet and Morten Hartmann
Simulation of a Neural Node Using SET Technology 377
 Rudie van de Haar and Jaap Hoekstra

General Purpose Processor Architecture for Modeling Stochastic Biological Neuronal Assemblies 387
 N. Venkateswaran and C. Chandramouli

Logic Design

Use of Particle Swarm Optimization to Design Combinational Logic Circuits .. 398
 Carlos A. Coello Coello, Erika Hernández Luna, and Arturo Hernández Aguirre

A Note on Designing Logical Circuits Using SAT 410
 Giovani Gomez Estrada

Evolutionary Strategies

Using Genetic Programming to Generate Protocol Adaptors for Interprocess Communication 422
 Werner Van Belle, Tom Mens, and Theo D’Hondt

Using Genetic Programming and High Level Synthesis to Design Optimized Datapath .. 434
 Sérgio G. Araújo, A. Mesquita, and Aloysio C.P. Pedroza

The Effect of the Bulge Loop upon the Hybridization Process in DNA Computing ... 446
 Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi

Quantum versus Evolutionary Systems. Total versus Sampled Search 457
 Hugo de Garis, Amit Gaur, and Ravichandra Sriram

Author Index .. 467