Biomining
Biomining is the generic term that describes the processing of metal-containing ores and concentrates using (micro-) biological technology. This is an area of biotechnology that has seen considerable growth in scale and application since the 1960s, when it was first used, in very basically engineered rock “dumps” to recover copper from ores which contained too little of the metal to be processed by conventional smelting. Refinements in engineering design of commercial biomining operations have paralleled advances in our understanding of the biological agents that drive the process, so biomining is now a multifaceted area of applied science, involving operators and researchers working in seemingly disparate disciplines, including geology, chemical engineering, microbiology and molecular biology. This is reflected in the content of this book, which includes chapters written by persons from industry and academia, all of whom are acknowledged leading practitioners and authorities in their fields.

Biomining has a particular application as an alternative to traditional physical-chemical methods of mineral processing in a variety of niche areas. These include deposits where the metal values are low, where the presence of certain elements (e.g., arsenic) would lead to smelter damage, or where environmental considerations favor biological treatment options. Commercial-scale biomining operations are firmly established in all five continents, with the exception of Europe, though precommercial (“pilot-scale”) investigations have recently been set up in Finland to examine the feasibility of extracting nickel and copper from complex metal ores, in engineered heaps. While copper recovery has been, and continues to be, a major metal recovered via biomining, ores and concentrates of other base metals (such as cobalt) and precious metals (chiefly gold) are also processed using this biotechnology.

Developments and refinements of engineering practices in biomining have been important in improving the efficiency of metal recovery. The application of heap leaching to mineral processing continues to expand and, whereas this was once limited to copper processing, considerable experience has been gained in using heaps for gold recovery in the Carlin Trend deposits of the USA. Also, in recent years, there has been industrial-scale application of a radically different approach for heap leaching (the GEOCOAT process), which is described in this book. The other major engineering approach used in biomining – the use of stirred-tank bioreactors – has been established for
over 20 years. Over this time, these systems, used mostly for processing refractory gold ores, have been found to be far more robust than was initially envisaged. Huge mineral leaching tanks are in place in various parts of the world, and are described in this book by the commercial operators who have designed and constructed the majority of them. This book also includes a chapter describing how the use of high-temperature stirred-tank bioreactors is being explored as an option to recover copper from chalcopyrite, a mineral (quantitatively the most abundant copper mineral) that has so far proven recalcitrant to biological processing.

Two other important aspects of biomining are covered in this book. One is the nature and diversity of the microorganisms that are central to the core function of bioprocessing of ores, and how these may be monitored in commercial operations. The biophysical strategies used by different microorganisms and microbial consortia for the biodegradation of the ubiquitous mineral pyrite, as well as what is known about the pathways and genetics of the enzymes involved in iron and sulfur oxidation are also described. Significant advances that are being made in what has for long been a black box – the modeling of heap reactors – are also described.

This book follows a previous text entitled Biomining: Theory, Microbes and Industrial Processes, also published by Springer (in 1997) and which became out of print a short time after its publication. We believe that, owing to the efforts of colleagues who have contributed to this completely rewritten and updated text, this book is a worthy successor.

Douglas E. Rawlings
Barrie Johnson
May 2006
Contents

1 The BIOX™ Process for the Treatment of Refractory Gold Concentrates
 Pieter C. Van Aswegen, Jan Van Niekerk, Waldemar Olivier 1
 1.1 Introduction ... 1
 1.2 The BIOX™ Process Flow Sheet 2
 1.3 Current Status of Operating BIOX™ Plants 5
 1.3.1 The Fairview BIOX™ Plant 5
 1.3.2 The Wiluna BIOX™ Plant 6
 1.3.3 The Sansu BIOX™ Plant 6
 1.3.4 The Fosterville BIOX™ Plant 7
 1.3.5 The Suzdal BIOX™ Plant 7
 1.3.6 Future BIOX™ Operations 8
 1.4 The BIOX™ Bacterial Culture 8
 1.5 Engineering Design and Process Requirements 9
 1.5.1 Chemical Reactions and the Influence of Ore Mineralogy 9
 1.5.1.1 Pyrite ... 10
 1.5.1.2 Pyrrhotite/PyrRITE 11
 1.5.1.3 Arsenopyrite 11
 1.5.1.4 Carbonate Minerals 11
 1.5.2 Effect of Temperature and Cooling Requirements 12
 1.5.3 pH Control ... 13
 1.5.4 Oxygen Supply .. 13
 1.5.5 Process Modeling and Effect of Bioreactor Configuration . 14
 1.5.6 Effect of Various Toxins on Bacterial Performance 16
 1.6 BIOX™ Capital and Operating Cost Breakdown 18
 1.6.1 Capital Cost Breakdown 18
 1.6.2 Operating Cost Breakdown 20
 1.7 New Developments in the BIOX™ Technology 21
 1.7.1 Development of an Alternative Impeller 22
 1.7.2 Cyanide Consumption Optimization 22
 1.7.3 Combining Mesophile and Thermophile Biooxidation 24
 1.8 BIOX™ Liquor Neutralization and Arsenic Disposal 27
 1.8.1 Background ... 27
 1.8.2 Development of the Two-Stage BIOX™ Neutralization Process . 27
 1.8.3 BIOX™ Neutralization Process Design and Performance 29
 1.8.4 The Use of Flotation Tailings in the Neutralization Circuit .. 31
 1.9 Conclusion .. 32
 References ... 32
2 Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors: a Case Study from Laboratory Scale to Industrial Application

DOMINIQUE HENRI ROGER MORIN, PATRICK D'HUGUES

2.1 Introduction

2.2 Feasibility and Pilot-Scale Studies

2.2.1 Characteristics of the Pyrite Concentrate

2.2.2 Bioleaching of the Cobaltiferous Pyrite

2.2.3 Inoculation and Microbial Populations

2.2.4 Optimizing the Efficiency of Bioleaching

2.2.5 Solution Treatment and Cobalt Recovery

2.2.5.1 Neutralization of the Bioleach Slurry

2.2.5.2 Removal of Iron from the Pregnant Solution

2.2.5.3 Zinc Removal

2.2.5.4 Copper Removal

2.2.5.5 Cobalt Solvent Extraction and Electrowinning

2.3 Full-Scale Operation: the Kasese Plant

2.3.1 General Description of the Process Flowsheet

2.3.2 Pyrite Reclamation and Physical Preparations

2.3.3 Bioleach Circuit

2.3.4 Recycling of Sulfide in the Bioleach Process

2.3.5 Monitoring of the Bioleach Process Performance:

Some Practical Results

2.3.6 Bioleaching Performance

2.3.7 Processing of the Pregnant Liquor

2.3.7.1 Iron Removal

2.3.7.2 Solution Purification and Solvent Extraction

2.3.7.3 Cobalt Electrowinning and Conditioning

2.3.7.4 Effluent Treatment and Waste Management

2.4 Conclusion

References

3 Commercial Applications of Thermophile Bioleaching

CHRIS A. DU PLESSIS, JOHN D. BATTY, DAVID W. DEW

3.1 Introduction

3.2 Commercial Context of Copper Processing Technologies

3.2.1 In Situ Leaching

3.2.2 Smelting

3.2.3 Concentrate Leaching

3.2.4 Heap and Dump Leaching

3.3 Key Factors Influencing Commercial Decisions for Copper Projects

3.3.1 Operating Costs

3.3.2 Capital Costs

3.3.3 Mining Costs

3.3.4 Impurities

3.3.5 Level of Sulfur Oxidation Required for Disposal

3.3.6 Alternative Acid Use
3.4 Techno-commercial Niche for Thermophilic Bioleaching

3.4.1 Thermophilic Tank Bioleaching Features

3.4.1.1 Requirement for Thermophilic Conditions

3.4.1.2 Microbial-Catalyzed Reactions

3.4.1.3 Reactor Configuration

3.4.1.4 Oxygen Supply

3.4.1.5 Oxygen Production

3.4.1.6 Carbon Dioxide

3.4.1.7 Agitation

3.4.1.8 Pulp Density

3.4.1.9 Arsenic Conversion to Arsenate

3.4.1.10 BioCyn™

3.4.1.11 Cost Factors

3.4.1.12 Materials of Construction

3.4.2 Thermophilic Tank Bioleaching Application Options and Opportunities

3.5 Thermophilic Heap Bioleaching of Marginal Ores

3.5.1 Basic Heap Design and the Importance of Heat Generation

3.5.2 Sulfur Availability

3.5.3 Microbial activity, CO₂ and O₂

3.5.4 Inoculation

3.5.5 pH

3.5.6 Inhibitory Factors

3.5.7 Heat Retention, Air-Flow Rate, and Irrigation Rate

3.5.7.1 Heap Height

3.5.7.2 Irrigation and Air-Flow Rates

3.6 Summary

References

4 A Review of the Development and Current Status of Copper Bioleaching Operations in Chile: 25 Years of Successful Commercial Implementation

ESTEBAN M. DOMIC

4.1 Historical Background and Development of Copper Hydrometallurgy in Chile

4.2 Technical Developments in Chile in the Direct Leaching of Ores

4.3 Current Status of Chilean Commercial Bioleaching Operations and Projects

4.3.1 Lo Aguirre Mine

4.3.2 Cerro Colorado Mine

4.3.3 Quebrada Blanca Mine

4.3.4 Zaldívar Mine

4.3.5 Ivan Mine

4.3.6 Chuquicamata Low-Grade Sulfide Dump Leach

4.3.7 Carmen de Andacollo Mine

4.3.8 Collahuasi Solvent Extraction–Electrowinning Operation
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.9 Dos Amigos Mine</td>
<td>90</td>
</tr>
<tr>
<td>4.3.10 Alliance Copper Concentrate Leaching Plant</td>
<td>91</td>
</tr>
<tr>
<td>4.3.11 La Escondida Low-Grade Sulfide Ore Leaching</td>
<td>91</td>
</tr>
<tr>
<td>4.3.12 Spence Mine Project</td>
<td>92</td>
</tr>
<tr>
<td>4.4 Current Advances Applied Research and Development in Bioleaching in Chile</td>
<td>93</td>
</tr>
<tr>
<td>4.5 Concluding Remarks</td>
<td>94</td>
</tr>
<tr>
<td>References</td>
<td>95</td>
</tr>
<tr>
<td>5 The GeoBiotics GEOCOAT® Technology – Progress and Challenges</td>
<td>97</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>97</td>
</tr>
<tr>
<td>5.2 The GEOCOAT® and GEOLEACHTM Technologies</td>
<td>97</td>
</tr>
<tr>
<td>5.2.1 Complementary GeoBiotics Technologies</td>
<td>99</td>
</tr>
<tr>
<td>5.2.2 The GEOCOAT® Process</td>
<td>99</td>
</tr>
<tr>
<td>5.2.3 Advantages of the GEOCOAT® Process</td>
<td>101</td>
</tr>
<tr>
<td>5.3 The Agnes Mine GEOCOAT® Project</td>
<td>103</td>
</tr>
<tr>
<td>5.4 Developing Technologies</td>
<td>111</td>
</tr>
<tr>
<td>References</td>
<td>112</td>
</tr>
<tr>
<td>6 Whole-Ore Heap Biooxidation of Sulfidic Gold-Bearing Ores</td>
<td>113</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>6.2 History of BIOPRO™ Development</td>
<td>113</td>
</tr>
<tr>
<td>6.3 Commercial BIOPRO™ Process</td>
<td>115</td>
</tr>
<tr>
<td>6.3.1 Biooxidation Facilities Overview</td>
<td>115</td>
</tr>
<tr>
<td>6.3.2 Biooxidation Process Description</td>
<td>115</td>
</tr>
<tr>
<td>6.4 Commercial BIOPRO™ Operating Performance</td>
<td>120</td>
</tr>
<tr>
<td>6.4.1 Collecting Data and Monitoring Performance</td>
<td>120</td>
</tr>
<tr>
<td>6.4.2 Original Facility Design/As-Built Comparison</td>
<td>121</td>
</tr>
<tr>
<td>6.4.3 Performance History</td>
<td>122</td>
</tr>
<tr>
<td>6.4.4 Microbial Populations</td>
<td>126</td>
</tr>
<tr>
<td>6.4.5 Process Advances</td>
<td>127</td>
</tr>
<tr>
<td>6.5 Lessons Learned</td>
<td>128</td>
</tr>
<tr>
<td>6.5.1 Ore Control</td>
<td>128</td>
</tr>
<tr>
<td>6.5.2 Crush Size</td>
<td>129</td>
</tr>
<tr>
<td>6.5.3 Compaction and Hydraulic Conductivity</td>
<td>129</td>
</tr>
<tr>
<td>6.5.4 Inoculum/Acid Addition and Carbonate Destruction</td>
<td>130</td>
</tr>
<tr>
<td>6.5.5 Biosolution Chemistry</td>
<td>131</td>
</tr>
<tr>
<td>6.5.6 Impacts of Precipitates</td>
<td>131</td>
</tr>
<tr>
<td>6.5.7 Pad Aeration</td>
<td>132</td>
</tr>
<tr>
<td>6.5.8 Cell Irrigation and Temperature Response</td>
<td>133</td>
</tr>
<tr>
<td>6.5.9 Pad Base Conditions</td>
<td>134</td>
</tr>
<tr>
<td>6.5.10 Carbon-in-Leach Mill Experience</td>
<td>135</td>
</tr>
<tr>
<td>6.5.11 Expectations</td>
<td>136</td>
</tr>
<tr>
<td>6.6 Final Thoughts</td>
<td>136</td>
</tr>
<tr>
<td>References</td>
<td>137</td>
</tr>
</tbody>
</table>
7 Heap Leaching of Black Schist
JAAKKO A. PUHAKKA, ANNA H. KAKSONEN, MARJA RIEKKOLA-VANHANEN 139
7.1 Introduction ... 139
7.2 Significance and Potential of Talvivaara Deposit 139
7.3 Biooxidation Potential and Factors Affecting Bioleaching 140
7.4 Leaching of Finely Ground Ore with Different Suspension Regimes ... 141
7.5 Heap Leaching Simulations ... 142
7.6 Dynamics of Biocatalyst Populations 148
References ... 150

8 Modeling and Optimization of Heap Bioleach Processes
JOCHEN PETERSEN, DAVID G. DIXON .. 153
8.1 Introduction ... 153
8.2 Physical, Chemical and Biological Processes Underlying Heap Bioleaching ... 154
8.2.1 Solution Flow ... 154
8.2.2 Gas Flow .. 155
8.2.3 Heat Flow .. 155
8.2.4 Diffusion Transport .. 156
8.2.5 Microbial Population Dynamics 156
8.2.6 Solution Chemistry ... 157
8.2.7 Mechanism of Mineral Leaching 157
8.2.8 Grain Topology ... 157
8.3 Mathematical Modeling .. 159
8.3.1 Mineral Kinetics ... 160
8.3.2 Microbial Kinetics ... 161
8.3.3 Gas–Liquid Mass Transfer 161
8.3.4 Diffusion Transport .. 162
8.3.5 The Combined Diffusion–Advection Model 162
8.3.6 Gas Transport ... 163
8.3.7 Heat Balance ... 164
8.3.8 The HeapSim Package ... 164
8.4 Application of Mathematical Modeling – from Laboratory to Heap ... 165
8.4.1 Model Parameters .. 165
8.4.2 Model Calibration and Laboratory-Scale Validation 166
8.4.3 Extending to Full Scale – Model Applications 167
8.5 Case Study I – Chalcocite ... 168
8.6 Case Study II – Sphalerite and Pyrite 171
8.7 The Route Forward – Chalcopyrite 174
8.8 Conclusions .. 174
References ... 175

9 Relevance of Cell Physiology and Genetic Adaptability of Biomining Microorganisms to Industrial Processes
DOUGLAS E. RAWLINGS .. 177
9.1 Introduction .. 177
10.4.1.2 Thermotolerant and Moderately Thermophilic Cultures .. 206

10.4.1.3 High-Temperature Cultures .. 207

10.4.2 Microbial Populations in Ore Heap Leaching ... 207

10.5 Diversity in Iron Oxidation ... 208

10.5.1 Mesophiles .. 209

10.5.2 Thermophiles .. 210

10.6 Summary .. 211

References ... 212

11 The Microbiology of Moderately Thermophilic and Transiently Thermophilic Ore Heaps

JASON J. PLUMB, REBECCA B. HAWKES, PETER D. FRANZMANN .. 217

11.1 Introduction ... 217

11.2 Heat Generation Within Bioleaching Heaps .. 218

11.3 Effect of Temperature on Bioleaching Microorganisms ... 221

11.4 Microbial Populations of Moderately Thermophilic or Transiently Thermophilic Commercial Bioleaching Heaps .. 226

11.4.1 Newmont Biooxidation Heaps .. 227

11.4.2 Nifty Copper Operation Heap Bioleaching ... 228

11.4.3 Myanmar Ivanhoe Copper Company Monywa Project .. 229

11.5 Summary .. 232

References ... 233

12 Techniques for Detecting and Identifying Acidophilic Mineral-Oxidizing Microorganisms

D. BARRIE JOHNSON, KEVIN B. HALLBERG .. 237

12.1 Biodiversity of Acidophilic Microorganisms That Have Direct and Secondary Roles in Mineral Dissolution ... 237

12.2 General Techniques for Detecting and Quantifying Microbial Life in Mineral-Oxidizing Environments ... 238

12.2.1 Microscopy-Based Approaches ... 238

12.2.2 Biomass Measurements .. 239

12.2.3 Measurements of Activity .. 240

12.3 Cultivation-Dependent Approaches ... 241

12.3.1 Enrichment Media .. 241

12.3.2 Most Probable Number Counts ... 242

12.3.3 Cultivation on Solid Media and on Membrane Filters 243

12.4 Polymerase Chain Reaction (PCR)-Based Microbial Identification and Community Analysis ... 245

12.4.1 Rapid Identification and Detection of Specific Acidophiles in Communities 247

12.4.2 Techniques for Microbial Community Analysis .. 248

12.4.3 PCR Amplification from Community RNA for Identification of Active Microorganisms .. 250

12.4.4 Phylogenetic Analysis of Amplified Genes for Microbial Identification 251
12.4.5 Other Genes Useful for Microbial Identification and Community Analysis 252
12.5 PCR-Independent Molecular Detection and Identification of Acidophiles 253
12.5.1 Immunological Detection and Identification of Acidophiles ... 253
12.5.2 Detection and Enumeration of Acidophiles by RNA-Targeting Methods 254
12.6 Future Perspectives on Molecular Techniques for Detection and Identification of Acidophiles 255
References ... 257

13 Bacterial Strategies for Obtaining Chemical Energy by Degrading Sulfide Minerals
HELmut TRIBUTSCH, JOSE ROJAS-CHAPANA .. 263
13.1 Introduction ... 263
13.2 Pyrite As a Model System for Understanding Bacterial Sulfide Leaching Activities 264
13.3 Electronic Structure and Thermodynamic Properties of Pyrite ... 264
13.4 The Energy Strategy of Leptospirillum ferrooxidans ... 269
13.5 The Energy Strategy of Acidithiobacillus ferrooxidans ... 272
13.6 Surface Chemistry, Colloids and Bacterial Activity ... 274
13.7 Mechanism of Colloidal Particle Uptake into the Capsule and Exopolymeric Substances 274
13.7.1 Sulfur Colloid Formation .. 275
13.7.2 Pyrite Colloid Formation .. 276
13.8 Energy Turnover at the Nanoscale, a Strategic Skill Evolved by Bacteria 277
13.9 Summary ... 278
References ... 279

14 Genetic and Bioinformatic Insights into Iron and Sulfur Oxidation Mechanisms of Bioleaching Organisms
DAVID S. HOLMES, VIOLANE BONNEFOY ... 281
14.1 Introduction ... 281
14.2 Relevant Biochemical and Chemical Reactions ... 282
14.3 Genetics of Bioleaching Microorganisms ... 282
14.3.1 Introduction ... 282
14.3.2 Gene Cloning .. 284
14.3.3 Gene Transfer Systems .. 284
14.3.3.1 Acidiphilium spp. ... 284
14.3.3.2 Acidithiobacillus thiooxidans ... 285
14.3.3.3 Acidithiobacillus ferrooxidans ... 285
14.3.4 Mutant Construction ... 286
14.4 Iron and Sulfur Oxidation and Reduction in Acidithiobacillus ferrooxidans 287
14.4.1 Ferrous Iron Oxidation .. 287
14.4.1.1 Introduction .. 287
14.4.1.2 The “Downhill” Electron Pathway 287
14.4.1.3 The “Uphill” Electron Pathway 289
14.4.2 Sulfur Oxidation ... 291
14.4.3 Ferric Iron and Sulfur Reduction in
 Acidithiobacillus ferrooxidans 295
14.5 Iron Oxidation in Other Bioleaching Microorganisms 296
 14.5.1 Introduction .. 296
 14.5.2 *Ferroplasma* spp. 297
 14.5.3 *Leptospirillum* spp. 298
 14.5.4 *Metallosphaera sedula* 300
 14.5.5 Sulfur Oxidation in Other Bioleaching Microorganisms 300
14.6 Outstanding Questions and Future Directions 301
References .. 302

Index ... 309
List of Contributors

Murray Bath
GeoBiotics, LLC, Suite 310, 12345 W. Alameda Parkway, Lakewood, CO 80228, USA

John D. Batty
Johannesburg Technology Centre, BHP Billiton, Private Bag X10014, Randburg, 2125, South Africa

Violaine Bonnefoy
CNRS, Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et de Microbiologie, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

James A. Brierley
Brierley Consultancy LLC, 2074 E. Terrace Drive, Highlands Ranch, CO 80126, USA

David W. Dew
Johannesburg Technology Centre, BHP Billiton, Private Bag X10014, Randburg, 2125, South Africa

David G. Dixon
Department of Materials Engineering, University of British Columbia, 6350 Stores Road, Vancouver, BC, V6T 1Z4, Canada

Patrick d’Hugues
BRGM, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2, France

Chris A. du Plessis
Johannesburg Technology Centre, BHP Billiton, Private Bag X10014, Randburg, 2125, South Africa

Esteban M. Domic
DOMIC SA, Office 61, Santa Magdalena 10, Providencia, Chile, and Mining Engineering Department, Universidad de Chile, Santiago, Chile

Peter D. Franzmann
Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia

Kevin B. Hallberg
School of Biological Sciences, University of Wales, Bangor LL47 4UF, UK

Todd J. Harvey
GeoBiotics, LLC, Suite 310, 12345 W. Alameda Parkway, Lakewood, CO 80228, USA
Rebecca B. Hawkes
School of Biological Sciences and Biotechnology, Murdoch University, South Street, Murdoch, WA 6150, Australia

David S. Holmes
Laboratory of Bioinformatics and Genome Biology, Andrés Bello University and Millennium Institute of Fundamental and Applied Biology, Santiago, Chile

D. Barrie Johnson
School of Biological Sciences, University of Wales, Bangor LL47 4UF, UK

Anna H. Kaksonen
Institute of Environmental Engineering and Biotechnology, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland

Thomas C. Logan
Newmont Mining Corporation, 10101 E. Dry Creek Road, Englewood, CO 80112, USA

Dominique Henri Roger Morin
BRGM, 3 Avenue Claude Guillemin, 45060 Orléans Cedex 2, France

Paul R. Norris
Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK

Waldemar Olivier
Goldfields Limited, St. Andrews Road, Parktown, Johannesburg, 2193, South Africa

Jochen Petersen
Department of Chemical Engineering, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa

Jason J. Plumb
Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia

Jaakko A. Puhakka
Institute of Environmental Engineering and Biotechnology, Tampere University of Technology, P.O. Box 541, 33101 Tampere, Finland

Douglas E. Rawlings
Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Marja Riekkola-Vanhanen
Talvivaara Mining Company Limited, Salmelantie 6, 88600 Sotkamo, Finland

José Rojas-Chapana
Nanoparticle Technology Department, Research Center Caesar, 53175 Bonn, Germany

Thom Seal
Newmont Mining Corporation, Carlin Operations, P.O. Box 669, Carlin, NV 89822, USA

Helmut Tributsch
Solare Energetik Department, Hahn–Meitner-Institut Berlin, 14109 Berlin, Germany
List of Contributors

Pieter C. van Aswegen
Goldfields Limited, St. Andrews Road, Parktown, Johannesburg, 2193, South Africa

Jan van Niekerk
Goldfields Limited, St. Andrews Road, Parktown, Johannesburg, 2193, South Africa