Micrometeorites and the Mysteries of Our Origins
Advances in Astrobiology and Biogeophysics

This series aims to report new developments in research and teaching in the interdisciplinary fields of astrobiology and biogeophysics. This encompasses all aspects of research into the origins of life – from the creation of matter to the emergence of complex life forms – and the study of both structure and evolution of planetary ecosystems under a given set of astro- and geophysical parameters. The methods considered can be of theoretical, computational, experimental and observational nature. Preference will be given to proposals where the manuscript puts particular emphasis on the overall readability in view of the broad spectrum of scientific backgrounds involved in astrobiology and biogeophysics.

The type of material considered for publication includes:

- Topical monographs
- Lectures on a new field, or presenting a new angle on a classical field
- Suitably edited research reports
- Compilations of selected papers from meetings that are devoted to specific topics

The timeliness of a manuscript is more important than its form which may be unfinished or tentative. Publication in this new series is thus intended as a service to the international scientific community in that the publisher, Springer-Verlag, offers global promotion and distribution of documents which otherwise have a restricted readership. Once published and copyrighted, they can be documented in the scientific literature.

Series Editors:

Dr. André Brack
Centre de Biophysique Moléculaire
CNRS, Rue Charles Sadron
45071 Orléans, Cedex 2, France
Brack@cnrs-orleans.fr

Dr. Gerda Horneck
DLR, FF-ME
Radiation Biology
Linder Höhe
51147 Köln, Germany
Gerda.Horneck@dlr.de

Dr. Christopher P. McKay
NASA Ames Research Center
Moffet Field, CA 94035, USA

Prof. Dr. H. Stan-Lotter
Institut für Genetik und Allgemeine Biologie
Universität Salzburg
Hellbrunnerstr. 34
5020 Salzburg, Austria

Prof. Dr. Michel Mayor
Observatoire de Genève
1290 Sauverny, Switzerland
Michel.Mayor@obs.unige.ch
Michel Maurette

Micrometeorites and the Mysteries of Our Origins

Springer
Preface

From cosmic dust to the birth of life. This book is purposely not a conventional monograph about either interplanetary debris captured by the Earth (i.e., meteorites and micrometeorites), the very thin \(\sim 100 \) km-thick shell dubbed as atmosphere that tops our blue planet, and where life is thriving, or the astonishing role of the Moon and Jupiter in our origin. It is rather an extended cross-disciplinary research report about a chaotic cosmic “detective” investigation conducted by our team with the help of a few colleagues, who could foresee the interest of micrometeorites to tackle the opaque mystery of the first \(\sim 500 \) Myr of the solar system history.

One major objective is to show how we strengthened a qualitative suspicion about the role of the accretion of volatile-rich micrometeorites similar to those recovered from recent Antarctica ices and snows in the formation of the air and oceans of our blue planet. This is an important problem because without water there would be no life, as we know it. For this purpose, a scenario coined “EMMA” (Early Micrometeorite Accretion) was slowly extirpated from a set of confusing data buried in the flow of details usually given in most papers (including ours). Other objectives were to assess the role of juvenile micrometeorites in the prebiotic chemistry that led to the birth of life, and their potential as “probes” of early solar system processes, including the formation of the solar system, the early history of comets, the post-lunar greenhouse effect on the Earth that was the only one to be effective in the origin of life, etc.

We had to navigate out of sight on chaotic, cold and beautiful adventures where we met successively:

- the harsh conditions of the superb Antarctic and Greenland ice sheets, where we collected (in spite of the noisy disapproval of Adélie penguins during our first attempt in Antarctica in 1987) large unmelted micrometeorites with sizes of about 100 \(\mu m \);
- the difficult handling of these micrometeorites, which required their fragmentation into several pieces without losing them (i.e., a typical mission “impossible”), with the view of conducting several distinct destructive analyses of the same micrometeorite;
- their difficult analyses frequently conducted at the limit of sensitivity of the most powerful techniques of microanalyses (i.e., when you claim with the
greatest arrogance that this damned weak signal can be reliably extirpated from its terrible host background);

– the comparison of these micrometeorites with the ~135 groups of meteorites known at this date, which forced us to be kinds of first year students (at least until to morrow) in “Meteoritics” under the guidance of Gero Kurat;

– a stunning “chaos” in the mineralogical, chemical and isotopic compositions of meteorites which is not fully understood;

– several distinct bold intrusions in the friendly world of exobiology where we did not even know about the meanings of the basic letters of the alphabet of this discipline, such as AIB, glycine and peptides, and which were (hopefully) partially successful through the patient and enthusiastic guidance of André Brack;

– authoritative and impressive predictions of models that all rely on hidden adjustable free parameters, which have to be painstakingly identified as to reject courageously, in the greatest loneliness, some models still quoted in the literature as “elegant”, and which are understood by half a dozen experts around the world.

Fortunately, in addition to the Antarctica and Greenland ice sheets, we also met other fascinating beauties such as:

– shooting stars;

– the superbly craterized Moon (that unexpectedly became a “star” in our model);

– the giant Mars-sized body that formed the Moon during its cataclysmic impact with the proto-Earth, and which was on the verge of destroying our baby planet still to become blue;

– the late spike of impactors that formed the 12 large lunar impact basins with diameter ranging from 300 to 1300 km, on the near-side of the Moon, about 3.9 Gyr ago;

– the other inhospitable terrestrial planets (Mars, Venus, Mercury);

– Jupiter, the largest of the giant gaseous planets, which behaves as a gigantic sling firing cosmic projectiles to the Earth;

– asteroids, and comets qualified of small bodies and which have a terrifying killing power;

– the dusty faint enigmatic zodiacal cloud;

– the early dusty solar nebula and its mysterious “x-wind”;

– the dusty stellar “nurseries” where stars are simultaneously born;

– the reviewers, who rejected our papers with the concise and useful statement that they are “not convinced by the authors”;

– beautiful books and challenging papers edited and/or written by a few colleagues who have still a passion for science.

Overview of a cosmic detective investigation. In our investigation “hydrous-carbonaceous” micrometeorites and meteorites turned out to be
major witnesses of the mysteries of our distant past. For the first time, they will be on a par in a book written in English, and their close association will be maintained up to the last final section. They helped to discover a variety of unexpected effects produced by a long lasting giant “storm” of interplanetary dust particles, captured as “juvenile” micrometeorites by the young Earth. It produced a fantastic long-duration storm of shooting stars, with an hourly rate of about 10 million (and not about 10 like today), and which lasted for about 100 Myr after the formation of the Moon.

As about 75% of the incoming flux of micrometeorites is destroyed upon atmospheric entry, either by volatilization or melting, this silent cosmic dust storm effective in the thermosphere (i.e., between about 120 km and 80 km today) induced a new kind of diffuse and soft volcanism “falling from the sky”. It thus injected in particular strong greenhouse gases (H\textsubscript{2}O, SO\textsubscript{2} and CO\textsubscript{2}) and very small “smoke” particles in a kind of giant \(\sim\)50 km thick “cocoon”, located in the thermosphere, and which did homogeneously cap the whole early Earth’s surface for a duration of about 100 Myr!

This accretion was mostly effective just after the formation of the Moon by the impact of a giant Mars-sized body with the Earth. This cataclysmic impact simultaneously blew off most of the complex pre-lunar terrestrial atmosphere, thus leaving a vacant “niche” for the subsequent accumulation of a post-lunar mixture of volatile species generated by this long duration micrometeoritic volcanism. It ended up forming the air and oceans of the early Earth. Furthermore, altogether with micrometeorites that do survive unmelted upon atmospheric entry, it likely opened many new reaction channels that contributed dominantly to the prebiotic chemistry that gave birth to life on the Earth, and possibly on Mars and a few planets orbiting around other Sun-like stars.

One of the key findings supporting this scenario is the astonishing chemical “purity” of the \(\sim\)2.1024 g of volatiles that compose the Earth’s atmosphere formed \(\sim\)4.4 Gyr ago, and which includes the air and oceans, but also sedimentary rocks such as the \(\sim\)270 millions of km3 of carbonates where early CO\textsubscript{2} is now trapped. Indeed, this mixture of volatiles is similar to that expected for a tiny “puff” of gases, which would be released upon the frictional heating of \(\sim\)5 mg aliquot of \(\sim\)500 micrometeorites with sizes of \(\sim\)100–200 \(\mu\)m, and similar to those recovered from recent Antarctic ices –this is the number of Antarcctica micrometeorites, which were painstakingly analyzed over the last decade to determine their average Ne, N\textsubscript{2}, H\textsubscript{2}O and C contents. We further strengthened this deduction while showing that previous scenarios used to tackle the same problem, as well as interesting criticisms addressed to our model, all roughly stumble against this micrometeoric purity that they can hardly bypass.

Next, we decided to further check the validity of this scenario switching to the concentration of a very refractory and highly siderophile element (iridium) in the very different environment of the Earth’s mantle. The good fit between
predictions and observations for rocks from the upper mantle did build up our confidence to explore the unexpected potential of micrometeorites to decrypt other mysteries of our distant past.

The readers of this book will be in touch with very recent ideas about our origins, which are either still hotly debated or even not published yet – if they want to have a conventional view of the topics discussed in this book they have just to turn to the beautiful Encyclopedia available today. Therefore, the first chapter is a kind of teaching help where they will find the basics required to understand these ideas and the importance of the data that support them. Moreover, these basics will be further developed in each of the following chapters. For example, the complex classification of meteorites, which has already been presented in detail in excellent monographs, will be summarized in just four pages, trying to keep only the most salient features of this classification (Sect. 6.1). Modern ideas about the origin of life, which have also been presented in good monographs, are sketched in the two and a half pages of Sect. 12.1. We also selected a set of 52 figures, which might be consulted first to get a feeling about the topics discussed in this book.

Acknowledgements

I benefited from the long-term support of a few colleagues and institutions. They include:

- Robert M. (“Bob”) Walker, for his requiring teaching about “good research” when I was his first PhD student and favorite teacher about french wines;
- the young scientists of our team, Jean Duprat, Cécile Engrand and Matthieu Gounelle, for their enthusiastic and decisive help on our chaotic road leading to the mysteries of our distant past;
- the glaciologists Claus Hammer and Michel Pourchet, who ensured the success of all our expeditions in Greenland and our two first expeditions in Antarctica, respectively;
- the mineralogists Gero Kurat and Mireille Michel-Levy, who spotted first many interesting characteristics of micrometeorites, including their dominant relationship with CM-type chondrites;
- André Brack, who constantly supported our intrusions in exobiology;
- Jacques Reiss, for a decisive stimulating review of our first paper about the formation of the Earth’s atmosphere;
- the radioastronomer Jean-Louis Steinberg, who strongly endorsed our first proposal to collect micrometeorites in Greenland, which paved the way for the funding of our 10 subsequent expeditions in Greenland and Antarctica, between 1984 and 2002;
– Christian Jouret and Patrick Veyssières, who initiated the decrypting of the fossil record of micrometeorites on a microscale by analytical electron microscopy;
– Philippe Bonny, who did a still unsurpassed modeling of the atmospheric entry of micrometeorites and ended up composing electronic music;
– George Slodzian, who conceived one of the most powerful instruments of our discipline, the ion microprobe (and its latest version, the NanoSIMS), which has opened so many fruitful areas of research;
– The two truly multidisciplinary scientists, who did a very constructive review of a preliminary version of this book, submitted on a great date in the French folklore (i.e., April 1st 2004);
– the French institutions IN2P3 and CNES, from which we received most of our funding, and IPEV, which supported our five splendid summer vacations (i.e., from December to February) in Antarctica, in the company of steam generators.
The most difficult thing when you are right is to prove that you are not wrong

Pierre Dac
French humorist
1893–1975
Contents

Part I Staging the Cosmic Theater

1 Solar System Bodies and “Primitiveness” 3

2 The Power of Wetherill’s Friend, Jupiter 10

3 The Earth–Moon System
 in a Gigantic Cosmic “Firing” Range 12
 3.1 The Artistry of Radiochronometers 12
 3.2 Formation of the Moon by the Last Planetary Embryo
 Merging the Earth 13
 3.3 From Highly Cratered Highlands
 to Sparsely Cratered Mare on the Moon 15
 3.4 Reprocessing of Planetary Materials in Regoliths 18
 3.5 Scavenging of Highly Siderophile Elements
 During Large Impacts 21

4 A Microscopic Suspect for the Formation
 of the Earth’s Atmosphere 23
 4.1 Beware of Visible and Invisible Shooting Stars 23
 4.2 A New “Star” in the Cosmic Theater 25
 4.3 A Giant Storm of Cometary Shooting Stars? 26
 4.4 A Decisive “Rendez-Vous” with Antarctic Micrometeorites . . . 28

Part II “Primitive” Extraterrestrial Matter
 on the Earth

5 The Space Collector “Earth” 31
 5.1 Dark Stones in Cold and Hot Deserts 31
 5.2 Micrometeorites in the Stratosphere and Deep Sea Sediments
 and Antarctic Ice Sheets 39
 5.3 Micrometeorites on the Greenland
 and Antarctic Ice Sheets 39
 5.4 Moving to Central Antarctica
 to Avoid “Cryogenic” Weathering 51
6 Classification of Meteorites and Micrometeorites 54
 6.1 Meteorites ... 54
 6.2 The Hunt for “Primitiveness” ... 59
 6.3 The “Deceptively” Simple Classification of Antarctic Micrometeorites ... 61
 6.4 Beware of Chemical, Mineralogical and Isotopic “Chaos” .. 67

7 The Major Contribution of Micrometeorites to the Delivery of Hydrous–Carbonaceous Material to the Earth .. 72

Part III Formation of the Post-Lunar Earth’s Atmosphere

8 The Inadequacy of Previous Scenarios 81
 8.1 Competing Scenarios ... 81
 8.2 Volcanic Outgassing, Accretion of Nebular Gases and Cometary Impacts ... 82
 8.3 A Wrong Neon for the Giant “wet” Asteroid? 83

9 A Prime Suspect for the Formation of the Atmosphere ... 86
 9.1 Concentrations of Volatiles in Antarctic Micrometeorites 86
 9.2 The Micrometeorite “Purity” of the Early Earth’s Atmosphere .. 89

10 Formation of the Post-lunar Atmosphere 93
 10.1 The Invariant Composition of Micrometeorites with Time ... 94
 10.2 An Accretion Formula Born with the Moon 96
 10.3 Two Estimates of $\Phi(t_1)$ from Neon and Nitrogen in the Atmosphere ... 97
 10.4 A Third Independent Estimate of $\Phi(t_1)$ from the Lunar Impact Record ... 98
 10.5 An Astonishingly Good Fit Between Predictions and Observations ... 99
 10.6 Controversies about Pre-atmospheric Solar Neon and Nitrogen in Micrometeorites 101

11 The Mysterious Fate of Early Micrometeoritic Oxygen ... 103
Part IV Exobiology with Unmelted Micrometeorites

| 12 | The Birth of Life on the Early Earth | 107 |

12.1 The Pioneers | 108 |

12.2 Discontinuous “Bursts” of Early Life Prior to about 4.2 Gyr Ago? | 110 |

| 13 | Microscopic Chondritic Chemical Reactors | 112 |

13.1 A Hydrous-Carbonaceous Chondritic Composition | 112 |

13.2 A Shielding within a Thin Magnetite Shell | 116 |

13.3 A New “Cosmochromatograph” and Catalyst, Ferricydrite | 118 |

| 14 | Radiation Reprocessing of Organics by Energetic Ions in Space | 125 |

14.1 Reprocessing of Meteorites and Sporadic Micrometeorites | 125 |

14.2 Pristine Organics in Shower Micrometeorites: Beware of Analytical Techniques! | 128 |

Part V Micrometeorite Ashes in Exobiology and Early Climatology

| 15 | First Hints | 135 |

| 16 | Micrometeorite and Minimeteorite Ashes in Prebiotic Chemistry | 136 |

16.1 High Input Rates of SO\(_2\) and CO\(_2\) to Feed the Early Submarine Hydrothermal System | 136 |

16.2 Kerogen in Shooting Star Chemistry | 138 |

16.3 Dreaming in Sandy Deserts about Persistent Meteor Trains in the Hadean Night Sky | 143 |

16.4 Meteors of cm-size “Minimeteorites” | 148 |

16.5 Oligoelements in Precambrian Oceans | 150 |

| 17 | Micrometeorites in the Post-lunar Greenhouse Effect | 152 |

17.1 The Major Role of the Moon-forming Impact | 152 |

17.2 Early Climatic Effects of the Post-lunar Thermospheric Cocoon | 153 |

Part VI Micrometeorites in Comparative Planetology

| 18 | Micrometeoritic Iridium in the Earth’s Mantle with the Hartmann’s Conjuncture | 159 |
XIV Contents

19 Micrometeoritic Neon on the Earth 161
 19.1 Earlier Suggestions About Micrometeoritic Neon
 in the Earth’s Mantle 161
 19.2 A Unique Isotopic Signature of Neon
 in Antarctic Micrometeorites 163
 19.3 The Severe Solar Wind “Sunburns”
 of Micrometeorites 166
 19.4 Two “Relicts” of Early Micrometeoritic Neon
 in the Present-Day Atmosphere 176
 19.5 A Relict of Micrometeoritic Neon
 in the Upper Mantle 177

20 The Micrometeoritic Purity
 of the Atmosphere and Early Earth’s Processes 179
 20.1 A Finely Tuned Occurrence
 of Early Earth’s Processes 179
 20.2 The Right Cleaning Impact at the Right Time 180

21 Extrapolation of EMMA to the Moon
 and Mars ... 183
 21.1 The Lunar Iridium Puzzle 183
 21.2 EMMA with Spirit and Opportunity on Mars 189
 21.3 A Hard Time for EMMA on the Moon and Mars 195

Part VII Parent Bodies of Micrometeorites
 and Early Solar System Processes

22 The “Hunt” for Micrometeorites’ Parent Bodies 199
 22.1 Conventional Views: a Small Abundance
 of Cometary Micrometeorites 199
 22.2 The Inadequacy of Previous Simulations
 of Atmospheric Entry 201
 22.3 Additional Evidence for a Cometary Origin
 of Micrometeorites 203
 22.4 Search for Leonid Cometary Micrometeorites
 from the Cold ... 208

23 No Consensus About the Early History
 of the Lunar Impact Flux 211
 23.1 The LH Bomb in the Debris-Disk Sun 211
 23.2 The Fossil Record 213
 23.3 Conflicting Conjunctures 216
 23.4 Hard Time on the Conjunctures 219
 23.5 Regoliths and Old Australian Zircons 226
24 Micrometeorites and Early Solar System Processes

24.1 A Gigantic Conveyor Belt System of Dust Grains in the Solar Nebula

24.2 The Invariant Composition of the Micrometeorite Flux

24.3 The Lost Record of High Dust Collision Rates in the Early Debris Disk

Part VIII Challenges Ahead

25 Relationships with CM-type Chondrites

25.1 The Primitive Chondritic Chemical Composition

25.2 Anhydrous and Hydrous Silicates

25.3 A Broad Distribution of Short Galactic Cosmic Rays Exposure Ages

25.4 Major Differences between AMMs and CM Chondrites

26 The Enigmatic Differences between Stratospheric and Antarctic Micrometeorites

26.1 Chemical Composition and Mineralogy of SMMs

26.2 Differences with the Cap-Prudhomme AMMs

26.3 The Isotopic Puzzle

27 The World of Hidden Biases: From Collection to Sample Processing

27.1 Biases in Greenland and Antarctica

27.2 A Preferential “Skimming” of Fine-grained Primitive Dust in the Stratosphere?

28 Stardust Attacks in Bob Laboratory for Space Sciences

29 Challenges Still to Be Appropriately Addressed

29.1 The Opaque Mystery of the Heavy Noble Gases

29.2 Japanese Doubts about the Physics of the Giant Moon-forming Impact

29.3 The New Hf-W Chronology Invalidates the Timing of EMMA?

29.4 The Need for a Strong EUV Heating of the Early Thermosphere Invalidates EMMA?

29.5 Light or Heavy Micrometeorite SMOW Water

29.6 Nitrogen on Trial

29.7 Further Search for a Micrometeorite Contamination of Mars and Venus
Part IX Science and Fiction

30 Summary ... 283
Epilogue: The Birth of “Micrometeoritics” 290
References ... 298
Index .. 327