Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany
Preface

Technological progress is one of the driving forces behind the dramatic development of computer system architectures over the past three decades. Even though it is quite clear that this development cannot only be measured by the maximum number of components on a chip, Moore’s Law may be and is often taken as a simple measure for the non-braked growth of computational power over the years. The more components are realizable on a chip, the more innovative and unconventional ideas can be realized by system architects. As a result, research in computer system architectures is more exciting than ever before.

This book covers the trends that shape the field of computer system architectures. The fundamental trade-off in the design of computing systems is between flexibility, performance, power consumption, and chip area. The full exploitation of future silicon capacity requires new architecture approaches and new design paradigms such as multiple computers on a single chip, reconfigurable processor arrays, extensible processor architectures, and embedded memory technologies. For a successful use in practical applications, it is not enough to solve the hardware problems but also to develop platforms that provide software infrastructure and support effective programming.

A quantum jump in complexity is achieved by embedded computing systems with an unprecedented level of connectivity linking together a growing number of physical devices through networks. Embedded systems will become more and more pervasive as the component technologies become smaller, faster, and cheaper. Their complexity arises not only from the large number of components but also from a lack of determinism and a continual evolution of these systems. The research effort needed to design systems so that they can be developed, deployed, maintained, configured, managed, and trusted will be a key issue for many years. Pervasive computing is therefore much more than an Internet access by mobile devices. The papers presented in this book set out the broadness of the research area established by pervasive computing approaches: input devices for wearable systems, mobile collaborative applications, measurement data acquisition, location awareness, QoS awareness, and context awareness.

One possibility to cope with the growing complexity of computing systems is to make them organic or autonomous, that is, to make them self-learning, self-organizing, self-configuring, self-optimizing, self-healing, self-protecting, and proactive.

In this context, completely new problems arise that should be addressed by an interdisciplinary effort. Natural organic and self-organizing systems have been studied in other scientific disciplines such as philosophy and biology, and their results should now be considered by architects of organic computing systems. Some of the key questions are:
1. Do organic systems feature properties that cannot be derived from the properties of its components? Is this emergent behavior desirable in any case or not?
2. Can we really expect to completely control systems with an emergent behavior?
3. Which mathematical formalisms can help in constructing and analyzing this type of system?
4. How is user privacy maintainable?
5. What is the role of trust?

These questions were discussed during the conference stimulated by two keynote and three invited speeches. Two of the speakers have taken the opportunity to present their ideas in this book.

Organic computing is a research area initiated by the special interest group ARCS of the German computer societies (GI and ITG) that are responsible for the organization of the ARCS conference series. Future ARCS conferences will therefore continue to give a platform to revolutionary ideas for a new generation of organic computing systems.

The great interest of the research community in the research field of this conference is expressed in a large number of submitted papers. Altogether, we received 174 papers, 32 of them were accepted and are presented in this book. We were especially pleased by the wide range of countries represented at the conference. We thank all the members of the Program Committee, who did a great job. Many additional reviewers supported us in selecting the best papers. We thank all reviewers for their elaborated reviews which greatly helped the authors to further improve their papers. Readers will appreciate this effort yielding a book with high quality.

The organization of this conference was done at two different locations. Organizational tasks were performed at the University of Frankfurt a.M., while the work on the program was done at the University of Passau. We thank all staff members for their excellent work making this conference a success. Special thanks for their excellent work go to: Markus Damm, Diana Firnges, Jan Haase, Johannes Herr, Wilhelm Heupke, Joachim Höhne, Alexander Hofmann, Andreas Hofmann, Eva Kapfer, Anita Plattner, Franz Rautmann, Rüdiger Schroll.

March 2006

Werner Grass
Bernhard Sick
Klaus Waldschmidt
Organization

ARCS 2006 was jointly organized by GI (German Informatics Society) and ITG (Information Technology Society).

Executive Committee

General Chair: Klaus Waldschmidt (University of Frankfurt, Germany)
Program Chair: Werner Grass (University of Passau, Germany)
Workshop and Tutorial Chair: Wolfgang Karl (University of Karlsruhe, Germany)

Program Committee

Nader Bagherzadeh University of California, Irvine, USA
Jürgen Becker University of Karlsruhe, Germany
Michael Beigl University of Karlsruhe, Germany
Riccardo Bettati Texas A&M University, College Station, USA
Uwe Brinkschulte University of Karlsruhe, Germany
Hermann De Meer University of Passau, Germany
Francois Dolivo IBM, Zurich Research Laboratory, Switzerland
Stefan Dulman Ambient Systems, Enschede, The Netherlands
Marc Duranton Philips Research, Eindhoven, The Netherlands
Alois Ferscha University of Linz, Austria
Marisol Garcia-Valls University Carlos III, Madrid, Spain
Jean-Luc Gaudiot University of California, Irvine, USA
Werner Grass University of Passau, Germany
Paul Havinga University of Twente, The Netherlands
Oliver Heckmann Technical University of Darmstadt, Germany
Wolfgang Karl University of Karlsruhe, Germany
Rudolf Kober Siemens AG, Munich, Germany
Spyros Lalis University of Thessaly, Greece
Paul Lukowicz University for Health Sciences, Medical Informatics and Technology, Austria
Erik Maehe University of Lübeck, Germany
Tom Martin Virginia Tech, Blacksburg, USA
Christian Müller-Schloer University of Hanover, Germany
Timothy M. Pinkston University of Southern California, Los Angeles, USA
Ichiro Satoh National Institute of Informatics, Tokyo, Japan
Hartmut Schmeck University of Karlsruhe, Germany
Martin Schulz Lawrence Livermore National Laboratory, Livermore, USA
Karsten Schwan Georgia Institute of Technology, Atlanta, USA
Bernhard Sick University of Passau, Germany
Peter Steenkiste Carnegie Mellon University, Pittsburgh, USA
Roy Sterritt University of Ulster at Jordanstown, UK
Jürgen Teich University of Erlangen-Nuremberg, Germany
Yoshito Tobe Tokyo Denki University, Japan
Kishor Trivedi Duke University, Durham, USA
Rich Uhlig Intel Microprocessor Research Lab, USA
Theo Ungerer University of Augsburg, Germany
Klaus Waldschmidt University of Frankfurt, Germany
Ralph Welge University of Lüneburg, Germany
Sami Yehia ARM Research, Cambridge, UK

Additional Referees

C. Albrecht F. Hochberger F. Picioroaga
F. Bagci C. Hoernagl A. Pietzowski
J. H. Bahn A. Hofmann T. Pionteck
P. Basanta-Val T. Hofmeijer G. Rey
M. Berger R. Holzer F. Rochner
G. Brancovici C. Holzmann S. Roos
J. Brehm I. Iliadis Y. Saizides
I. Buhan C. Ilioudis A. Schill
C. Cachin G. Karjoth T. Schöler
J. Camenisch S. Karlsson W. Schröder-Preikschat
Z. Chamisky T. Kirste P. Scotton
S. Cho D. Koblitz T. Smaoui
V. Desmet R. Koch P. Sobe
O. Durmaz Incel W. P. Kowalk P. Soulard
S. Eilers M. Litra M. Stolze
I. Estevez-Ayres T. Loukopolos D. Tavangarian
L. Evers N. Luttenberger P. Trancoso
F. Fuchs G. Mahmoudi J. Trescher
R. Gemesi M. Marin-Perianu W. Trumler
M. Göne R. Marin-Perianu V. Turaau
M. Graf N. Meratnia E. Van Herreweghen
A. Grösslinger M. Mnif S. Voigt
K.-E. Grosspietsch F. Mösch S. Wang
C. Gruber M. Mühlhäuser E. Zehendner
A. Hatanaka K. Muthukrishnan A. Zell
A. Hazem El-Mahdy F. Neeser Y. Zhu
E. A. Heinz E. Özzer
J. Henkel H. Pals

We also thank all additional referees whose names are unknown to the Executive Committee.
Table of Contents

Invited and Keynote Papers

Life-Inspired Systems and Their Quality-Driven Design
Lech Jóźwiak .. 1

The Robustness of Resource Allocations in Parallel and Distributed Computing Systems
Vladimir Shestak, Howard Jay Siegel, Anthony A. Maciejewski, Shoukat Ali .. 17

Pervasive Computing

FingerMouse – A Button Size Visual Hand Tracking and Segmentation Device
Patrick de la Hamette, Gerhard Tröster 31

An Ad-Hoc Wireless Network Architecture for Face-to-Face Mobile Collaborative Applications
Gustavo Zurita, Miguel Nussbaum 42

Background Data Acquisition and Carrying: The BlueDACS Project
Thomas Wieland, Martin Fenne, Benjamin Stöcker 56

Prototypical Implementation of Location-Aware Services Based on Super-Distributed RFID Tags
Jürgen Bohn .. 69

Combined Resource and Context Model for QoS-Aware Mobile Middleware
Sten Lundesgaard Amundsen, Frank Eliassen 84

Distributed Modular Toolbox for Multi-modal Context Recognition
David Bannach, Kai Kunze, Paul Lukowicz, Oliver Amft 99

Memory Systems

Dynamic Dictionary-Based Data Compression for Level-1 Caches
Georgios Keramidas, Konstantinos Aisopos, Stefanos Kaxiras .. 114
A Case for Dual-Mapping One-Way Caches
 Arul Sandeep Gade, Yul Chu 130

Cache Write-Back Schemes for Embedded Destructive-Read DRAM
 Haakon Dybdahl, Marius Grannæs, Lasse Natvig 145

A Processor Architecture with Effective Memory System for Sort-Last Parallel Rendering
 Woo-Chan Park, Duk-Ki Yoon, Kil-Whan Lee, Il-San Kim,
 Kyung-Su Kim, Won-Jong Lee, Tack-Don Han, Sung-Bong Yang 160

Architectures

Controller Synthesis for Mapping Partitioned Programs on Array Architectures
 Hritam Dutta, Frank Hannig, Jürgen Teich 176

M2E: A Multiple-Input, Multiple-Output Function Extension for RISC-Based Extensible Processors
 Xiaoyong Chen, Douglas L. Maskell 191

An Operating System Infrastructure for Fault-Tolerant Reconfigurable Networks
 Dirk Koch, Thilo Streichert, Steffen Dittrich, Christian Strengert,
 Christian D. Haubelt, Jürgen Teich 202

Architectural Tradeoffs in Wearable Systems
 Nagendra Bhargava Bharatula, Urs Anliker, Paul Lukowicz,
 Gerhard Tröster .. 217

Multiprocessing

Do Trace Cache, Value Prediction and Prefetching Improve SMT Throughput?
 Chen-Yong Cher, Il Park, T.N. VijayKumar 232

Scalable and Partitionable Asynchronous Arbiter for Micro-threaded Chip Multiprocessors
 Nabil Hasasneh, Ian Bell, Chris Jesshope 252

GigaNetIC – A Scalable Embedded On-Chip Multiprocessor Architecture for Network Applications
 Jörg-Christian Niemann, Christoph Puttmann, Mario Porrmann,
 Ulrich Rückert ... 268
Energy Efficient Design

Efficient System-on-Chip Energy Management with a Segmented Bloom Filter

Mrinmoy Ghosh, Emre Özer, Stuart Biles, Hsien-Hsin S. Lee 283

Estimating Energy Consumption for an MPSoC Architectural Exploration

Rabie Ben Atitallah, Smail Niar, Alain Greiner, Samy Meftali,
Jean Luc Dekeyser ... 298

An Energy Consumption Model for an Embedded Java Virtual Machine

Sébastien Lafond, Johan Lilius 311

Power Awareness

PASCOM: Power Model for Supercomputers

Arrvindh Shriraman, Nagarajan Venkateswaran,
Niranjan Soundararajan .. 326

Power-Aware Collective Tree Exploration

Miroslaw Dynia, Miroslaw Korzeniowski, Christian Schindelhauer 341

Biologically-Inspired Optimization of Circuit Performance and Leakage:
A Comparative Study

Ralf Salomon, Frank Sill .. 352

Network Protocols

A Synchronous Multicast Application for Asymmetric Intra-campus Networks: Definition, Analysis and Evaluation

Pilar Manzanares-Lopez, Juan Carlos Sanchez-Aarnoutse,
Josemaría Malgosa-Sanahuja, Joan Garcia-Haro 367

Esteban Egea-López, Javier Vales-Alonso,
Alejandro S. Martínez-Sala, Joan García-Haro,
Pablo Pavón-Mariño, M. Victoria Bueno-Delgado 382

An Effective Video Streaming Method for Video on Demand Services in Vertical Handoff

Jae-Won Kim, Hye-Soo Kim, Jae-Woong Yun, Sung-Jea Ko 397
Security

A High-Throughput System Architecture for Deep Packet Filtering in Network Intrusion Prevention

 Dae Y. Kim, Sunil Kim, Lynn Choi, Hyogon Kim 407

A Hierarchical Key Management Approach for Secure Multicast

 Jian Wang, Miodrag J. Mihaljevic, Lein Harn, Hideki Imai 422

A Cache Design for a Security Architecture for Microprocessors (SAM)

 Jörg Platte, Edwin Naroska, Kai Grundmann 435

Distributed Networks

Constraint-Based Deployment of Distributed Components in a Dynamic Network

 Didier Hoareau, Yves Mahéo .. 450

Comparative Analysis of Ad-Hoc Networks Oriented to Collaborative Activities

 Sebastián Echeverría, Raúl Santelices, Miguel Nussbaum 465

Fault Tolerant Time Synchronization for Wireless Sensor Networks

 Soyoung Hwang, Yunju Baek ... 480

Author Index .. 495