Springer Complexity

Springer Complexity is a publication program, cutting across all traditional disciplines of sciences as well as engineering, economics, medicine, psychology and computer sciences, which is aimed at researchers, students and practitioners working in the field of complex systems. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior through self-organization, e.g., the spontaneous formation of temporal, spatial or functional structures. This recognition, that the collective behavior of the whole system cannot be simply inferred from the understanding of the behavior of the individual components, has led to various new concepts and sophisticated tools of complexity. The main concepts and tools – with sometimes overlapping contents and methodologies – are the theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms.

The topics treated within Springer Complexity are as diverse as lasers or fluids in physics, machine cutting phenomena of workpieces or electric circuits with feedback in engineering, growth of crystals or pattern formation in chemistry, morphogenesis in biology, brain function in neurology, behavior of stock exchange rates in economics, or the formation of public opinion in sociology. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. The Springer Complexity program therefore seeks to foster cross-fertilization between the disciplines and a dialogue between theoreticians and experimentalists for a deeper understanding of the general structure and behavior of complex systems.

The program consists of individual books, books series such as “Springer Series in Synergetics”, “Institute of Nonlinear Science”, “Physics of Neural Networks”, and “Understanding Complex Systems”, as well as various journals.
Understanding Complex Systems

Series Editor

J.A. Scott Kelso
Florida Atlantic University
Center for Complex Systems
Glades Road 777
Boca Raton, FL 33431-0991, USA

Understanding Complex Systems

Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems are complex in both their composition (typically many different kinds of components interacting with each other and their environments on multiple levels) and in the rich diversity of behavior of which they are capable. The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts, methods and tools of self-organizing dynamical systems at all levels of description and in all scientific fields, especially newly emerging areas within the Life, Social, Behavioral, Economic, Neuro- and Cognitive Sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields of Engineering and Computation such as robotics, nanotechnology and informatics, third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leading to deeper insight and understanding. UCS will publish monographs and selected edited contributions from specialized conferences and workshops aimed at communicating new findings to a large multidisciplinary audience.
Non-equilibrium Thermodynamics and the Production of Entropy

Life, Earth, and Beyond

With a Foreword by Hartmut Grassl

Springer
For many millions of years the Earth has been a life-supporting planet with on average increasing biodiversity and its mean near surface air temperature varying only by a few percent (± 5 Kelvin) around the present mean of about 288K. However, despite this comparably small temperature change, the concentration of a major radiatively active gas, carbon dioxide, was more than double the present anthropogenically enhanced value before glaciation set in and only slightly above half the present value during maximum glaciation, the continents have changed shape and have moved to different geographical latitudes, and the luminosity of the sun has increased substantially.

Which processes have guaranteed this impressive temperature stability? A first candidate with the buffering capacity needed is planetary shortwave albedo, which – by decreasing only from 30 to 29 percent – could cause a radiative forcing of the same magnitude but with opposite sign as a drop in carbon dioxide concentration from its value in an interglacial, like our Holocene, to a typical maximum glaciation value of slightly less than 200 part per million by volume. As the maximum contribution to planetary albedo stems from tropospheric clouds both in the tropics and mid-latitudes, their change could be the key stabilizing agent. But why should cloud cover and/or cloud optical depth increase in an interglacial as compared to the glacial? At present we do not know. Because clouds are the expression of an important diabatic process – phase fluxes of water – these fluxes contribute strongly to entropy production in the atmosphere, second only to longwave radiative flux divergence, which is again strongly modulated by clouds.

For me this book is an exceptional one, as it offers a way forward, maybe the solution. It gives as strong hope that an integral principle, maximum entropy production (MEP), is at work in all open systems with large distance to thermodynamic equilibrium, i.e. those governed by non-linear thermodynamics like the Earth. The low import of entropy, expressed as net shortwave flux density divided by the sun’s blackbody radiation (∼6000 K) and the high export of entropy, expressed as the net longwave flux density at the top of the atmosphere divided by a typical terrestrial temperature (250 to 300 K), point to strong entropy production within the Earth system. It is largely due to the well-known diabatic processes radiative flux divergence, phase changes of water, turbulent sensible heat flux, and dissipation of turbulent kinetic energy.
This book contains, in addition to these purely physical processes, attempts to integrate life as it enhances diabatic processes through evapotranspiration, higher surface roughness and higher emissivity. Life intensifies the global cycles of water, carbon and nitrogen. If all thermodynamic systems far from equilibrium are subject to MEP, life on Earth included, it would also be a governing principle for the evolution of the Earth system. There would no longer be the need for ad-hoc assumptions, like the Gaia hypothesis. On the contrary, we would have a powerful tool to ask climate and Earth system models – the latter just emerging – what kind of human behaviour would lead to which state as we would be able to add MEP as a constraint in addition to the well-known physical laws and boundary conditions (dynamical, thermodynamical and radiation principles; spectral solar irradiance). These models would then search for the most probable future state which will be attained with very high probability. We could for example also see the consequences of land use changes, including the redistribution of water, which strongly impact biodiversity and the carbon cycle, as well as those changes caused by an enhanced greenhouse effect. This would help us to find a sustainable development path. Additionally, the regional, and perhaps global, consequences of air pollution would become visible.

The MEP principle is also connected to self-organized criticality. It could thus become a tool to better understand the abrupt changes of thermohaline circulation and also local-scale phenomena like avalanches. Besides answers to questions raised earlier, it may even offer means to determine bounds for the best place of a planet with respect to its sun and the composition of its crust best suited for the development of life.

If discrepancies emerge between observations and such diverse modeling for recent history, this tells us about either the lack of information to describe the system or insufficient, maybe incorrect constraints or deficiencies in the handling of diabatic processes.

Earth system or climate models applying or exploring the MEP principle will be extremely demanding of computer time. Thus simplified models will be useful tools in the near future as also demonstrated in this book. Their results, although promising, are still not the real test that MEP governs climate and the Earth system. However, a joint activity of high performance computing centres working with Earth system and climate models could rapidly bring us closer to reality if the global observing system is adequate for a real check. I propose an international basic research project devoted to MEP and Climate, initiated by the group that has been gathered to write the chapters of this book, and which could form the nucleus for basic research with immediate repercussions for the global society. I recommend besides individual research projects a joint action by the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP) through the Working Group on Coupled Modelling (WGCM) and the Global Analysis, Integration and Modelling (GAIM) element, respectively; because this kind of research needs global data sets from several disciplines, access to largest...
computers and best models. At the same time the MEP principle will facilitate the search for better parameterizations as all processes in open systems would also obey it.

It was a great pleasure for me to read all the chapters. I hope that scientists from many different disciplines pick up the chapters most relevant for their future work.

Max-Planck-Institut für Meteorologie

Hamburg, Germany

Hartmut Grassl

Director
Preface

“A theory is more impressive the greater the simplicity of its premises, the more different are the kinds of things it relates, and the more extended its range of applicability. Therefore, the deep impression which classical thermodynamics made on me. It is the only physical theory of universal content, which I am convinced, that within the framework of applicability of its basic concepts will never be overthrown.”

Albert Einstein (1879-1955)

This book arose from an encounter between the two editors, a Geography professor and a planetary scientist, two people who might otherwise have little in common. Both of us had independently, along with many of the contributors to this volume, grown aware of the profound importance of nonequilibrium thermodynamics and the potential utility of the principle of Maximum Entropy Production. The possible applications span a bewildering diversity of fields, and thus we felt it useful to all of us to draw some of these threads together in a reference volume that captures the ‘state of the art’.

But our encounter at the American Geophysical Union meeting in San Francisco in December 2002 would not have led to our undertaking this book were it not for a growing informal network of researchers in MEP – many of us each feeling alone in the wilderness of our own fields. This network has grown, and many of the ideas in the chapters of this book have been developed at informal workshops, notably a workshop on Maximum Entropy Production at INRA in Bordeaux in April 2003 organized by Roderick Dewar and a series of ‘Beyond Daisyworld’ workshops organized by Tim Lenton and Inman Harvey. These workshops take considerable time and effort to organize, and the editors therefore are most grateful to these ‘unsung heroes’ of the field, who as well as bringing MEP researchers together play a vital role in exposing others to the idea.

We thank Christian Caron at Springer Verlag for his encouragement and assistance with this project. We are also most grateful to the contributors to this volume, for their patient hard work in dealing with the editing pro-

cess and the frustrations of document templates. Last, but not least, we are grateful to Ma-Li Kleidon for her help with editing the book chapters.

We hope that with this book we demonstrate the wide potential applicability of thermodynamic concepts, and the principle of Maximum Entropy Production in particular, ranging from the evolution of the Universe, planetary climate systems, life on Earth, and the economic activity of humans and its interaction with the environment.

College Park, Tucson
April 2004

Axel Kleidon
Ralph Lorenz
Contents

1 Entropy Production by Earth System Processes
Axel Kleidon, Ralph Lorenz .. 1
1.1 Introduction ... 1
1.2 Entropy Production of Climate Systems 2
 1.2.1 Earth’s Climate System 3
 1.2.2 Other Planetary Climate Systems 4
1.3 The Principles of Minimum
and Maximum Entropy Production .. 5
 1.3.1 Heat Transport and Minimum Entropy Production 6
 1.3.2 Heat Transport and Maximum Entropy Production 7
1.3.3 Maximum Entropy Production in a Planetary Context 10
 1.3.4 Minimization Versus Maximization
of Entropy Production .. 11
1.4 Entropy Production and Life on Earth 12
 1.4.1 Environmental Effects of Biotic Activity 12
 1.4.2 The Gaia Hypothesis 14
 1.4.3 Optimization and Entropy Production
Within the Biosphere .. 14
1.5 Structure of This Book .. 16

2 Non-equilibrium Thermodynamics
in an Energy-Rich Universe
Eric J. Chaisson .. 21
2.1 Introduction ... 21
2.2 Time’s Arrow ... 22
2.3 Cosmological Setting ... 24
2.4 Complexity Rising .. 26

3 Stumbling into the MEP Racket: An Historical Perspective
Garth W. Paltridge ... 33

4 Maximum Entropy Production
and Non-equilibrium Statistical Mechanics
Roderick C. Dewar ... 41
4.1 Introduction ... 42
4.2 Boltzmann, Gibbs, Shannon, Jaynes 43
Contents

11.3 Scaling Laws in Hydrology 138
11.4 Thermodynamics of Fractal Networks 141
11.5 Entropy and Shoreline Profiles 144
11.6 Concluding Remarks 145

12 Entropy Production in the Planetary Context
Ralph D. Lorenz 147
12.1 Equator-Pole Temperature Gradients
of Planetary Atmospheres 147
12.1.1 Earth .. 148
12.1.2 Titan .. 148
12.1.3 Mars ... 149
12.1.4 Venus .. 150
12.1.5 Other Planets 150
12.1.6 Other Processes in Planetary Atmospheres 150
12.2 A Probabilistic Explanation for MEP 151
12.3 Dissipation and Heat Transport 152
12.4 Geomorphology and Dissipative Structures 154
12.5 The Yarkovsky Effect – Migration of Meteorites
via a Photon Heat Engine 155
12.6 Dyson Sphere – The Ultimate Stage
in Planetary Evolution 157
12.7 Concluding Remarks 158

13 The Free-Energy Transduction and Entropy Production
in Initial Photosynthetic Reactions
Davor Juretić, Paško Županović 161
13.1 Introduction ... 161
13.2 The Two-State Kinetic Model 162
13.3 The Five State Model
for Chlorophyll Based Photoconversion 164
13.4 Slip Coefficients and Forward Static Head State 167
13.5 Conclusions .. 168

14 Biotic Entropy Production
and Global Atmosphere-Biosphere Interactions
Axel Kleidon, Klaus Fraedrich 173
14.1 Introduction ... 173
14.2 Photosynthetic Activity and Climatic Constraints 175
14.2.1 Climatic Constraints on Biotic Productivity 175
14.2.2 Dynamic Constraints
of Terrestrial Energy- and Water Exchange 177
14.3 Biogeophysical Effects and Feedbacks 178
14.3.1 Vegetation Effects on Land Surface Characteristics ... 178
14.3.2 Climate Feedbacks of Terrestrial Vegetation 179

14.4 Thermodynamics of Fractal Networks 141
14.5 Entropy and Shoreline Profiles 144
14.6 Concluding Remarks 145

12 Entropy Production in the Planetary Context

Ralph D. Lorenz 147
12.1 Equator-Pole Temperature Gradients
of Planetary Atmospheres 147
12.1.1 Earth .. 148
12.1.2 Titan .. 148
12.1.3 Mars ... 149
12.1.4 Venus .. 150
12.1.5 Other Planets 150
12.1.6 Other Processes in Planetary Atmospheres 150
12.2 A Probabilistic Explanation for MEP 151
12.3 Dissipation and Heat Transport 152
12.4 Geomorphology and Dissipative Structures 154
12.5 The Yarkovsky Effect – Migration of Meteorites
via a Photon Heat Engine 155
12.6 Dyson Sphere – The Ultimate Stage
in Planetary Evolution 157
12.7 Concluding Remarks 158

13 The Free-Energy Transduction and Entropy Production
in Initial Photosynthetic Reactions

Davor Juretić, Paško Županović 161
13.1 Introduction ... 161
13.2 The Two-State Kinetic Model 162
13.3 The Five State Model
for Chlorophyll Based Photoconversion 164
13.4 Slip Coefficients and Forward Static Head State 167
13.5 Conclusions .. 168

14 Biotic Entropy Production
and Global Atmosphere-Biosphere Interactions

Axel Kleidon, Klaus Fraedrich 173
14.1 Introduction ... 173
14.2 Photosynthetic Activity and Climatic Constraints 175
14.2.1 Climatic Constraints on Biotic Productivity 175
14.2.2 Dynamic Constraints
of Terrestrial Energy- and Water Exchange 177
14.3 Biogeophysical Effects and Feedbacks 178
14.3.1 Vegetation Effects on Land Surface Characteristics ... 178
14.3.2 Climate Feedbacks of Terrestrial Vegetation 179
14.4 Biotic Entropy Production and MEP 181
 14.4.1 Conditions for Biotic MEP States 182
 14.4.2 Biotic States of MEP .. 183
 14.4.3 Biotic MEP and Gaia .. 186
14.5 Conclusions ... 187

15 Coupled Evolution of Earth’s Atmosphere and Biosphere

David C. Catling ... 191
15.1 Introduction ... 191
15.2 The Earliest Earth: Its Atmosphere and Biosphere 192
 15.2.1 What Was the Composition of the Prebiotic Atmosphere? 192
 15.2.2 When Did Earth Acquire a Biosphere? 192
 15.2.3 What Effect Did Primitive Life Have on the Early Atmosphere? 193
15.3 Long-Term Climate Evolution and the Biosphere 195
15.4 Atmospheric Redox Change: The Rise of Oxygen 197
15.5 Oxygen, Energy, and Life 199
 15.5.1 Aerobic Versus Anaerobic Energetics 199
 15.5.2 Why Complex Life Anywhere in the Universe Will Likely Use Oxygen 200
15.6 The Anomalous Nature of Earth’s Current Atmosphere 202

16 Temperature, Biogenesis, and Biospheric Self-Organization

David Schwartzman, Charles H. Lineweaver 207
16.1 Introduction ... 207
 16.1.1 Cosmology and Temperature 208
16.2 Biogenesis at Life’s Upper Temperature Limit: A Hyperthermophilic Origin of Life 208
16.3 The Temperature Constraint on Biologic Evolution 212
16.4 Future Directions .. 217

17 Entropy and Gaia: Is There a Link Between MEP and Self-Regulation in the Climate System?

Thomas Toniazzo, Timothy M. Lenton, Peter M. Cox, Jonathan Gregory 223
17.1 Introduction ... 223
17.2 Daisyworld ... 224
17.3 Model Formulation ... 226
17.4 Two-Component System ... 229
17.5 Multi-component System .. 231
17.6 Saturated Growth ... 231
17.7 A Two-Box Model ... 233
List of Contributors

Victor R. Baker
Department of Hydrology and Water Resources
University of Arizona
Tucson, AZ, USA
baker@hwr.arizona.edu

David C. Catling
Astrobiology Program
Department of Atmospheric Sciences
University of Washington
Box 351640
Seattle, WA 98195, USA
davidc@atmos.washington.edu

Eric J. Chaisson
Wright Center &
Physics Department
Tufts University
Medford, MA 02155, USA
eric.chaisson@tufts.edu

Peter M. Cox
Hadley Centre for Climate
Prediction and Research
Fitzroy Road
Exeter, Devon, EX1 3PB, UK
peter.cox@metoffice.com

Roderick C. Dewar
Unité d’Ecologie Fonctionelle et
Physique de l’Environnement
INRA, BP 81,
33883 Villeneuve d’Ornon Cedex,
France;
dewar@bordeaux.inra.fr

Klaus Fraedrich
Meteorologisches Institut
Universität Hamburg
Bundesstraße 55
20146 Hamburg, Germany
fraedrich@dkrz.de

Jonathan Gregory
Hadley Centre for Climate
Prediction and Research
Fitzroy Road
Exeter, Devon, EX1 3PB, UK
jonathan.gregory@metoffice.com

Takamitsu Ito
Program in Atmospheres, Oceans
and Climate
Massachusetts
Institute of Technology
Cambridge, MA 02139, USA
ito@ocean.mit.edu

Davor Juretić
Faculty of Natural Sciences,
Mathematics and Education
University of Split,
Split, Croatia;
juretic@pmfst.hr
Axel Kleidon
Department of Geography and Earth System Science
Interdisciplinary Center
2181 Lefrak Hall
University of Maryland
College Park
MD 20742, USA
akleidon@umd.edu

Timothy M. Lenton
School of Environmental Sciences
University of East Anglia
Norwich NR4 7TJ, UK
t.lenton@uea.ac.uk

Charles H. Lineweaver
Department of Astrophysics and Optics
University of New South Wales
Sydney, 2052, Australia
charley@bat.phys.unsw.edu.au

Ralph D. Lorenz
Lunar and Planetary Lab
University of Arizona
Tucson, AZ 85721, USA
rlorenz@lpl.arizona.edu

Hideaki Miyamoto
Department of Geosystem Engineering
University of Tokyo
Tokyo, Japan
hirdy@lpl.arizona.edu

Hisashi Ozawa
Institute for Global Change Research
Frontier Research System for Global Change
Yokohama 236–0001, Japan
ozawa@jamstec.go.jp

Garth W. Paltridge
IASOS, University of Tasmania
GPO Box 252–77, Hobart
Tasmania, Australia
g.paltridge@utas.edu.au

Olivier M. Pauluis
Courant Institute of Mathematical Sciences
New York University
Warren Weaver Hall
251 Mercer St.
New York
NY 10012-1185, USA
pauluis@cims.nyu.edu

Matthias Ruth
Environmental Policy Program
School of Public Policy
University of Maryland
College Park
MD 20742, USA
mruth1@umd.edu

David W. Schwartzman
Department of Biology
Howard University
Washington, DC 20059, USA
dws@scs.howard.edu

Shinya Shimokawa
National Research Institute for Earth Science and Disaster Prevention
Tsukuba 305–0006, Japan
simokawa@bosai.go.jp

Joël Sommeria
Laboratoire des Ecoulements Géophysiques et Industriels
LEGI/Coriolis 21 Avenue des Martyrs
38 000 Grenoble, France;
sommeria@coriolis-legi.org
Thomas Toniazzo
Hadley Centre for Climate Prediction and Research
Fitzroy Road
Exeter, Devon, EX1 3PB, UK
thomas.toniazzo@metoffice.com

Robert E. Ulanowicz
University of Maryland Center for Environmental Science
Chesapeake Biological Laboratory
Solomons, MD 20688–0038 USA
ulan@cbl.umces.edu

Michael J. Zickel
University of Maryland Center for Environmental Science
Chesapeake Biological Laboratory
Solomons, MD 20688–0038 USA
zickel@earthlink.net

Paško Županović
Faculty of Natural Sciences, Mathematics and Education
University of Split
Split, Croatia
pasko@pmfst.hr