Lecture Notes in Physics

Editorial Board

R. Beig, Wien, Austria
W. Beiglböck, Heidelberg, Germany
W. Domcke, Garching, Germany
B.-G. Englert, Singapore
U. Frisch, Nice, France
P. Hänggi, Augsburg, Germany
G. Hasinger, Garching, Germany
K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
H. v. Löhneysen, Karlsruhe, Germany
I. Ojima, Kyoto, Japan
D. Sornette, Nice, France, and Los Angeles, CA, USA
S. Theisen, Golm, Germany
W. Weise, Garching, Germany
J. Wess, München, Germany
J. Zittartz, Köln, Germany
The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching – quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research to serve the following purposes:

• to be a compact and modern up-to-date source of reference on a well-defined topic;
• to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas;
• to be a source of advanced teaching material for specialized seminars, courses and schools.

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Dr. Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer-sbm.com
Local-Moment Ferromagnets

Unique Properties for Modern Applications
For an understanding of the fascinating phenomenon of ferromagnetism, one needs a description of the mechanism that underlies the coupling of the magnetic moments. In some materials, the magnetic moments are caused by itinerant electrons of partially filled conduction bands: the band ferromagnets. In others, they are due to localized electrons of a partially filled atomic shell: the local-moment ferromagnets. The latter class comprises the classical local-moment systems like some rare-earth elements and compounds but also more complex materials like diluted magnetic semiconductors and half-metallic ferromagnets. These materials are a hot topic of current scientific research for two reasons. On the one hand, the exchange interaction between the localized magnetic moments and the quasi-free charge carriers in these materials is far from being fully understood. On the other hand, some of these materials are promising candidates for modern applications in magnetoelectronic as well as spintronic devices because of their unique magnetic properties. The present book provides a status report on our current knowledge about these interesting materials gained from experimental investigations as well as theoretical descriptions.

The various chapters in this book “Local-Moment Ferromagnets: Unique Properties for Modern Applications” are written in tutorial style by experts in the field. They were invited to an international specialists’ conference held under the same title in Wandlitz near Berlin (Germany) from 15 to 18 March 2004. It was the third seminar of this type in Wandlitz. The first seminar in 1998 dealt with magnetism and electronic correlations in classical local-moment systems: Magnetism and Electronic Correlations in Local-Moment Systems: Rare-Earth Elements and Compounds, ed. by M. Donath, P.A. Dowben, W. Nolting (World Scientific Publishing, Singapore, 1998). The second seminar in 2000 was dedicated to the microscopic understanding of band-ferromagnetism as an electron correlation effect: Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena, ed. by K. Baberschke, M. Donath, W. Nolting, Lecture Notes in Physics 580 (Springer, Berlin, 2001). The III. Wandlitz Days on Magnetism in 2004 came back to the phenomenon of local-moment ferromagnetism but with a special focus on particular materials with unique properties as described above. The presentations of twenty-seven invited speakers from thirteen different countries initiated in-
tense and fruitful discussions between the sixty participants of the conference. More results were presented in form of posters during the three days of the seminar. The organizers hope that the lively discussions in Wandlitz support actual and future collaborations between the various specialists in the field of local-moment ferromagnets. Of course, this book cannot give a complete account of these fascinating subjects, given the tremendous worldwide activity, but rather focuses on the authoritative work of the contributors to the conference.

Generous financial support by the Deutsche Forschungsgemeinschaft for this conference made it possible to bring together experimentalists and theoreticians, senior researchers and graduate students, to discuss the present state of affairs, to learn from each other, and to define joint projects for the future. Sincere thanks are due to the staff and associates of the Lehrstuhl Festkörperphysik of the Institute of Physics at the Humboldt-Universität zu Berlin for doing an excellent job with the organization of the seminar. We wish to thank Prof. Dr. Jürgen Braun for his time-consuming work in collecting and composing the contributions to this book. We enjoyed the always effective collaboration with the Springer Verlag.

Münster, Berlin
August 2005

M. Donath

W. Nolting
Contents

Introduction
M. Donath, W. Nolting .. 1

Part I Concentrated Local-Moment Systems

Critical Behaviour of Heisenberg Ferromagnets
with Dipolar Interactions and Uniaxial Anisotropy
S.N. Kaul .. 11
1 Introduction ... 11
2 Critical Exponents and Amplitudes 12
3 Scaling and Universality 14
4 Renormalization Group and Crossover Phenomena 15
5 The gadolinium Case 20
6 Summary and Future Scope 26
References .. 28

Aspects of the FM Kondo Model: From Unbiased MC
Simulations to Back-of-an-Envelope Explanations
Maria Daghofer, Winfried Koller, Alexander Prüll, Hans Gerd Evertz,
Wolfgang von der Linden 31
1 Introduction ... 31
2 Model Hamiltonian 32
3 Monte Carlo Algorithm 35
4 Results .. 36
5 Summary .. 44
References .. 44

Carrier Induced Ferromagnetism
in Concentrated and Diluted Local-Moment Systems
Wolfgang Nolting, Tilmann Hickel, Carlos Santos 47
1 Local Moment Magnetism 47
2 Kondo-Lattice (s-f) Model 49
3 Electronic Selfenergy of “Concentrated” Local-Moment Systems 52
2 Calculational Technique .. 117
3 Single Band in the Frozen-Magnon Field 118
4 Results for (GaMn)As,(GaCr)As,(GaFe)As 120
5 (ZnCr)Te .. 123
6 Properties of the Holes and Magnetism 124
7 Comparative Study of (GaMn)As and (GaMn)N 127
8 Conclusions ... 131
References .. 131

Exchange Interactions and Magnetic Percolation
in Diluted Magnetic Semiconductors
J. Kudrnovský, L. Bergqvist, O. Eriksson, V. Drchal, I. Turek, G. Bouzerar .. 133
1 Introduction ... 133
2 Formalism ... 135
3 Curie Temperatures ... 141
4 Conclusions ... 145
References .. 146

The Role of Interstitial Mn
in GaAs-Based Dilute Magnetic Semiconductors
Perla Kacman, Izabela Kuryli{sz}-Kudelska .. 149
1 Introduction ... 149
2 High Resolution X-ray Diffraction (HRXRD) Measurements 152
3 Channeling Experiments (c-RBS and c-PIXE) 153
4 SQUID Measurements .. 156
5 Exchange Interactions of Mn Interstitials 158
References .. 161

Magnetic Interactions in Granular Paramagnetic-Ferromagnetic GaAs: Mn/MnAs Hybrids
Wolfram Heimbrodt, Peter J. Klar .. 165
1 Introduction ... 165
2 Growth and Preparation of Hybrid structures 166
3 Magneto-Optical Properties of the GaAs:Mn Matrix 168
4 Galvano-Magnetic Properties of Paramagnetic GaMn:As Epitaxial Layers .. 171
5 Ferromagnetic Properties of MnAs Clusters in GaAs:Mn 174
6 Galvano-Magnetic Properties of Hybrid structures 176
7 Concluding Remarks ... 183
References .. 183
Magnetization, Spin Polarization, and Electronic Structure of NiMnSb Surfaces
Markus Donath, Georgi Rangelov, Jürgen Braun, Wolfgang Grentz . . . 263
1 Introduction .. 263
2 Sample Preparation and Characterization 265
3 Spin-Resolved Appearance Potential Spectroscopy 268
4 Spin-Resolved Inverse Photoemission 271
5 Conclusion .. 273
References ... 274

Spin Injection Experiments from Half-Metallic Ferromagnets into Semiconductors: The Case of NiMnSb and (Ga,Mn)As
Willem Van Roy .. 277
1 Introduction .. 277
2 NiMnSb-Based Spin Injectors .. 278
3 Ga$_{1-x}$Mn$_x$As-Based Spin Injectors 285
4 Conclusions .. 287
References ... 288

Growth and Room Temperature Spin Polarization of Half-metallic Epitaxial CrO$_2$ and Fe$_3$O$_4$ Thin Films
1 Introduction .. 291
2 Half-Metallic Ferromagnets ... 291
3 Magnetite .. 293
4 Chromium Dioxide ... 300
References ... 308

On the Importance of Defects in Magnetic Tunnel Junctions
P.A. Dowben, B. Doudin ... 311
1 Introduction .. 311
2 Chromium Oxide Interfaces and Surface Composition 314
3 Intermediate States in the Barrier 317
4 Polarizable Defects in Cr$_2$O$_3$? 321
5 Defect Mediated Coupling? ... 323
6 Conclusion: Defects May Be Important 327
References ... 328
List of Contributors

S.N. Kaul
School of Physics
University of Hyderabad
Hyderabad 500 046
India
and
CITIMAC, Facultad de Ciencias
Universidad de Cantabria
39005 Santander, Spain

Maria Daghofer
Institute for Theoretical
and Computational Physics
Graz University of Technology
daghofer@itp.tu-graz.ac.at

Winfried Koller
Department of Mathematics
Imperial College

Alexander Prüll
Institute for Theoretical
and Computational Physics
Graz University of Technology

Hans Gerd Evertz
Institute for Theoretical
and Computational Physics
Graz University of Technology

Wolfgang von der Linden
Institute for Theoretical
and Computational Physics
Graz University of Technology

Wolfgang Nolting
Institut für Physik
Humboldt-Universität zu
Berlin, Newtonstr. 15
12489 Berlin, Germany

Tilmann Hickel
Institut für Physik
Humboldt-Universität zu
Berlin, Newtonstr. 15
12489 Berlin, Germany

Carlos Santos
Institut für Physik
Humboldt-Universität zu
Berlin, Newtonstr. 15
12489 Berlin, Germany

Yukitoshi Motome
RIKEN (The Institute of Physical
and Chemical Research)
2-1 Hirosawa, Saitama 351-0198
Japan
motome@riken.jp
Nobuo Furukawa
Department of Physics
Aoyama Gakuin University
5-10-1 Fuchinobe, Sagamihara
Kanagawa 229-8558, Japan
furukawa@phys.aoyama.ac.jp

Naoto Nagaosa
CREST, Department of Applied Physics
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656, Japan
and
Correlated Electron Research Center, AIST
Tsukuba Central 4, 1-1-1 Higashi
Tsukuba, Ibaraki 305-8562
Japan
and
Tokura Spin Superstructure Project ERATO
Japan Science and Technology Corporation, c/o AIST
Tsukuba Central 4, 1-1-1 Higashi
Tsukuba, Ibaraki 305-8562
Japan
nagaosa@appi.t.u-tokyo.ac.jp

K.U. Neumann
Department of Physics
Loughborough University
Loughborough LE11 3TU, UK

S. Dann
Department of Chemistry
Loughborough University
Loughborough LE11 3TU, UK

K. Fröhlich
Department of Physics
Loughborough University
Loughborough LE11 3TU, UK

A. Murani
Institute Laue Langevin
Rue Horowitz, 36048 Grenoble
Cedex, France

B. Ouladdiaf
Institute Laue Langevin
Rue Horowitz, 36048 Grenoble
Cedex, France

K.R.A. Ziebeck
Department of Physics
Loughborough University
Loughborough LE11 3TU, UK

T. Toliński
Institut für Experimentalphysik Freie Universität Berlin
Arnimallee 14
D-14195 Berlin, Germany
and
Institute of Molecular Physics, PAS, Smoluchowskiego 17
60-179 Poznań, Poland
babgroup@physik.fu-berlin.de

K. Lenz
Institut für Experimentalphysik Freie Universität Berlin
Arnimallee 14
D-14195 Berlin, Germany
babgroup@physik.fu-berlin.de

J. Lindner
Fachbereich Physik
Experimentalphysik-AG Farle
Universität Duisburg-Essen
Lotharstr. 1, D-47048 Duisburg
Germany
babgroup@physik.fu-berlin.de
K. Baberschke
Institut für Experimentalphysik
Freie Universität Berlin
Arnimallee 14, D-14195 Berlin
Germany
babgroup@physik.fu-berlin.de

A. Ney
Solid State and Photonics Lab
Stanford University
Stanford, CA 94305-4075, USA

T. Hesjedal
Paul-Drude-Institut
für Festkörperelektronik
Hausvogteiplatz 5-7, D-10117
Berlin, Germany

C. Pampuch
Specs GmbH, Voltastraße 5
13355 Berlin, Germany

L. Däweritz
Paul-Drude-Institut
für Festkörperelektronik
Hausvogteiplatz 5-7, D-10117
Berlin, Germany

R. Koch
Paul-Drude-Institut
für Festkörperelektronik
Hausvogteiplatz 5-7, D-10117
Berlin, Germany

K.H. Ploog
Paul-Drude-Institut
für Festkörperelektronik
Hausvogteiplatz 5-7, D-10117
Berlin, Germany

Wolfram Heimbrodt
Department of Physics
and Material Sciences Center
Philipps-Universität Marburg
Renthof 5, D-35032 Marburg
Germany

Peter J. Klar
Department of Physics
and Material Sciences Center
Philipps-Universität Marburg
Renthof 5, D-35032 Marburg
Germany

Perla Kacman
Institute of Physics
Polish Academy of Sciences
Warsaw, Poland

Izabela Kuryliszyn-Kudelska
Institute of Physics
Polish Academy of Sciences
Warsaw, Poland

J. Kudrnovský
Institute of Physics Academy of
Science of the Czech Republic
Prague, Czech Republic

L. Bergqvist
Department of Physics
Uppsala University
Uppsala, Sweden

O. Eriksson
Department of Physics
Uppsala University
Uppsala, Sweden
V. Drchal
Institute of Physics Academy of Science of the Czech Republic
Prague, Czech Republic

I. Turek
Institute of Physics of Materials Academy of Science of the Czech Republic, Brno
Czech Republic and
Department of Electronic Structures Charles University
Prague, Czech Republic

G. Bouzerar
Institut Laue – Langevin
Grenoble, France

L.M. Sandratskii
Max-Planck Institut für Mikrostrukturphysik
Weinberg 2, D-06120 Halle, Germany
lsandr@mpi-halle.de

P. Bruno
Max-Planck Institut für Mikrostrukturphysik
Weinberg 2, D-06120 Halle
Germany
bruno@mpi-halle.de

J.M.D. Coey
Physics Department
Trinity College
Dublin 2, Ireland

J.J. Attema
Electronic Structure of Materials
University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
The Netherlands

L. Chioncel
Electronic Structure of Materials
University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
The Netherlands

C.M. Fang
Electronic Structure of Materials
University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
The Netherlands

G.A. de Wijs
Electronic Structure of Materials
University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
The Netherlands

R.A. de Groot
Electronic Structure of Materials
University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen
The Netherlands and
Laboratory of Chemical Physics
MSC, University of Groningen
Nijenborgh 4
9747 AG Groningen
The Netherlands

V.Yu. Irkhin
Institute of Metal Physics
620219, Ekaterinburg
Russia
M.I. Katsnelson
Department of Physics
Uppsala University
Box 530, SE-751 21 Uppsala
Sweden

A.I. Lichtenstein
Institute of Theoretical Physics
University of Hamburg
Jungiusstrasse 9, 20355 Hamburg
Germany

S.J. Jenkins
Department of Chemistry
University of Cambridge
Lensfield Road
Cambridge CB2 1EW
United Kingdom
sjj24@cus.cam.ac.uk

Markus Donath
Physikalisches Institut
Westfälische Wilhelms-Universität
Wilhelm-Klemm-Str. 10
48149 Münster
Germany

Georgi Rangelov
Physikalisches Institut
Westfälische Wilhelms-Universität
Wilhelm-Klemm-Str. 10
48149 Münster
Germany

Jürgen Braun
Physikalisches Institut
Westfälische Wilhelms-Universität
Wilhelm-Klemm-Str. 10
48149 Münster
Germany

Wolfgang Grentz
Kantonschule Zürcher Oberland
8620 Wetzikon
Switzerland

Willem Van Roy
IMEC, Kapeldreef 75
B-3001 Leuven, Belgium
vanroy@imec.be

M. Fonin
Fachbereich Physik
Universität Konstanz, 78457
Konstanz, Germany

Yu. S. Dedkov
Institut für Festkörperphysik
Technische Universität Dresden
01062 Dresden, Germany

U. Rüdiger
Fachbereich Physik
Universität Konstanz, 78457
Konstanz, Germany

G. Güntherodt
II. Physikalisches Institut
Rheinisch-Westfälische Technische
Hochschule Aachen
52056 Aachen, Germany

P.A. Dowben
Department of Physics and
Astronomy and the Center
for Materials Research
and Analysis (CMRA)
116 Brace Laboratory of Physics
University of Nebraska
P.O. Box 880111
Lincoln, Nebraska
USA 68588-0111
XVIII List of Contributors

B. Doudin
Department of Physics and Astronomy and the Center for Materials Research and Analysis (CMRA) 116 Brace Laboratory of Physics
University of Nebraska
P.O. Box 880111
Lincoln, Nebraska USA 68588-0111