Ecological Studies

Volumes published since 2001 are listed at the end of this book.
M. Kappelle (Ed.)

Ecology and Conservation of Neotropical Montane Oak Forests

With 62 Figures and 64 Tables

Springer
Cover illustration: Landscape mosaic of the oak forest zone along the Savegre River at about 2,300 m elevation near San Gerardo de Dota, Costa Rica. This landscape is made up of old-growth montane oak forest along the mountain crests, recovering forests at the lower forest edges, pastures with isolated oak and Buddleja trees, living fences of cypress trees, and orchards with young apple trees. The photo was taken by Maarten Kappelle in 1992.
The editor dedicates this book to his sons Derk Frederik and Bernard Floris, and to all other children living in and near the highland oak forests of the American Tropics. Today, these magnificent forests suffer severely from climate change, land use change, and ultimately, biodiversity loss. If we want our children – and their children and grandchildren – to enjoy the numerous, economically valuable environmental goods and services that these forests provide us, we need to pay for their conservation and sustainable use. Only then will we be able to ensure that human society continues to obtain the benefits of Earth’s natural capital as expressed in unique ecosystems such as the Neotropical montane oak forests. Only then will we assure the conditions for a decent, healthy, and secure life for our children and those to come.
Today, mid- and high-elevation belts in the American Tropics still support montane evergreen broad-leaved oak (*Quercus*) forests. They range from relatively dry woodlands to extremely wet cloud forests, and may occur either as pure monotypic stands – sometimes with giant oaks up to 60 m tall – or as mixed-species systems in which oak co-occurs with other predominant genera such as pine (*Pinus*) and sweetgum (*Liquidambar*). They are found throughout southern Mexico, Central America and the Colombian Andes, and form a major component of the American Tropics ecoregions, biodiversity hotspots, and centers of plant diversity.

Their biological richness, expressed in the large variety of trees, shrubs, epiphytic orchids and bromeliads, ferns, bryophytes, lichens and fungi, is indeed striking. Even animal life is astonishing: the avifauna is among the greatest worldwide, with the mythical Resplendent Quetzal as its most beautiful representative. Large mammals such as jaguar, puma, tapir, peccary and deer still roam around in considerable quantities. In terms of biogeochemical cycling, most of these forests, and especially the oak cloud forests filter large air masses. They capture and incorporate water and nutrients from mist and fog into their cycles, providing nascent rivers with clear fresh water.

Originally, these montane oak forests were widely distributed. However, since the early 1800s, large oak forest areas in the highland Neotropics have made way for coffee plantations and pastures. Today, only few intact blocks remain while most forests are fragmented, suffering from severe disturbance. Remnant patches of forest and woodland are under increasing threat as they are cut for timber, charcoal and fuelwood, or converted into grasslands for cattle.

The importance of this kind of forest for humanity has recently been recognized by various scholars. Experts have noted their key role in providing society with drinking and irrigation water, supplying large urban and rural populations in and near mayor cities in Mesoamerica and the Colombian Andes (e.g., Guatemala City, San José and Bogotá). However, the destructive anthropogenic forces that cause oak forest fragmentation and degradation
ultimately lead to species extinction, and loss of environmental goods and services on which human society so strongly depends.

Over the last 20 years, neotropical montane oak forests have been studied intensively by numerous scientists. In recent years, a considerable amount of scientific knowledge on this forest system has become available. To date, however, this knowledge has mainly appeared in a scattered fashion, often only in gray literature. So far, no publication has addressed this ecosystem in a coherent and integrated manner, oriented to a wider audience. Certainly, such a comprehensive volume, providing a thorough understanding of forest patterns and processes in a synthetic and holistic manner, is particularly important for sustainable forest management and lasting biodiversity conservation.

In view of this growing demand, the editor has assembled, in close cooperation with 67 authors from ten countries, the existing body of knowledge on these magnificent oak forests into one comprehensive scientific volume. It is the first state-of-the-art regional account that treats such diverse aspects as the paleo-ecology, biogeography, structure, composition, biodiversity, population dynamics, ecosystem dynamics, fragmentation and recovery, and conservation and sustainable use of natural and managed oak-dominated forests in the highlands of the American Tropics.

It is expected that this volume will be useful to tropical and temperate biologists alike, to biogeographers, plant ecologists, conservation biologists, foresters, policy makers, site practitioners, researchers, lecturers, tutors, and all others with an interest in tropical oak forest ecology and conservation. The editor is confident that this work will help advance scientific knowledge, vitally needed for conserving, restoring and sustainably using the rich oak forests still present in the highland tropics of the New World.

At Springer Verlag in Heidelberg, I would like to gratefully acknowledge Andrea Schlitzberger for initial encouragement to prepare the book and for guiding it to completion. Dieter Czeschlik supported the project throughout its development. Monique Delafontaine and Friedmut Kröner did an excellent job copy-editing and production-editing the chapters, respectively. Ernst-Detlef Schulze, Series Editor in Jena, suggested many improvements to the original manuscript. Finally, I can never thank enough my beloved wife – and co-author of one of the chapters – Marta E. Juárez, for her moral support and encouragement during the gestation of this book.

Maarten Kappelle

San José, Costa Rica

October 2005
Contents

Part I Introduction to Neotropical Montane Oak Forests

1 Global and Neotropical Distribution and Diversity of Oak (Genus *Quercus*) and Oak Forests 3
 K.C. Nixon

1.1 Introduction 3
1.2 Higher-Level Taxonomy 4
1.3 Distribution and Species Diversity 6
1.4 Species Diversity in Central America 9
1.5 Conclusions 11
References 12

Part II Paleo-Ecology and Biogeography

2 Immigration of Oak into Northern South America: a Paleo-Ecological Document 17
 H. Hooghiemstra

2.1 Introduction 17
2.2 Miocene Central American Oak Forest and Oak Migration into South America During the Late Pleistocene 17
2.3 Late Pleistocene Records of Neotropical Oak Forest Dynamics 21
2.4 Discussion 25
2.5 Conclusions 26
References 27
Contents

3 Effects of the Younger Dryas Cooling Event on Late Quaternary Montane Oak Forest in Costa Rica

G.A. Islebe and H. Hooghiemstra

- 3.1 Introduction .. 29
- 3.2 Present Vegetation ... 30
- 3.3 Methods ... 30
- 3.4 Description of Pollen Zones 31
- 3.5 Paleocology .. 32
- 3.6 Vegetation of the Late Glacial-Holocene Transition 33
- 3.7 Regional Younger Dryas 34
- 3.8 Conclusions .. 35

References ... 35

4 Altitudinal Zonation of Montane Oak Forests Along Climate and Soil Gradients in Costa Rica

M. Kappelle and J.-G. van Uffelen

- 4.1 Introduction .. 39
- 4.2 Altitudinal Transect Study 39
 - 4.2.1 Sample Plots .. 39
 - 4.2.2 Climate Measurements 40
 - 4.2.3 Soil Analysis ... 40
- 4.3 Altitudinal Oak Forest Zonation 41
 - 4.3.1 Plant Species Richness 41
 - 4.3.2 Forest Layering .. 42
 - 4.3.3 Tree Stem Density .. 43
 - 4.3.4 Classification of Montane Oak Forest Communities 44
 - 4.3.5 Climatic Changes Along Elevations and Between Seasons 45
 - 4.3.6 Soil Genesis and Classification 46
 - 4.3.7 Soil Changes Along Elevations and Between Slopes 47
- 4.4 Conclusions .. 48

References ... 50

5 Saprotrophic and Ectomycorrhizal Macrofungi of Costa Rican Oak Forests

G.M. Mueller, R.E. Halling, J. Carranza, M. Mata, and J.P. Schmit

- 5.1 Introduction .. 55
 - 5.1.1 Importance of Macrofungi 55
5.1.2 Need for Scientific Knowledge 55
5.1.3 Macrofungal Research in Costa Rica 57
5.2 Methods ... 58
5.2.1 Macrofungal Sampling 58
5.2.2 Information Sources and Data Analysis 58
5.3 Results ... 59
5.3.1 Polyporid Fungi 59
5.3.2 Fleshy Macrofungi 60
5.4 Conclusions .. 65
References .. 66

6 Diversity and Biogeography of Lichens in Neotropical Montane Oak Forests 69
H.J.M. Sipman

6.1 Introduction .. 69
6.2 Floristic Composition 70
6.3 Phytogeographical Considerations 71
6.4 Conclusions .. 73
References .. 80

7 Epiphytic Communities of Bryophytes and Macrolichens in a Costa Rican Montane Oak Forest 83
I. Holz

7.1 Introduction .. 83
7.2 Study Area ... 84
7.3 Primary Forest .. 84
7.3.1 Species Richness and Biogeography 84
7.3.2 Microhabitats and Life Forms 85
7.3.3 Host Preference, Vertical Distribution and Community Composition 86
7.3.4 Factors Controlling the Microhabitat Differentiation ... 92
7.4 Recovering Forests 92
7.4.1 General Aspects 92
7.4.2 Species Diversity 93
7.4.3 Indicator Species 94
7.4.4 Recovery of Cryptogamic Epiphyte Communities 94
7.5 Conclusions .. 95
References .. 96
Part III Stand Structure and Composition

8 Composition and Structure of Humid Montane Oak Forests at Different Sites in Central and Eastern Mexico . . 101
I. Luna-Vega, O. Alcántara-Ayala, C.A. Ruiz-Jiménez, and R. Contreras-Medina

8.1 Humid Montane Oak Forests in Mexico 101
8.2 Study Area . 102
8.3 Localities and Sampled Sites 102
8.3.1 Selection of Localities and Floristic Composition 102
8.3.2 Vegetation Sampling . 102
8.4 Composition and Structure Analyses 104
8.4.1 Lolotla (LT) . 104
8.4.2 Molocotlán (ML) . 104
8.4.3 Teocelo-Ixhuacán (IX) . 104
8.4.4 Ocuilan (OC) . 108
8.4.5 Comparison of Localities . 108
8.5 Conclusions . 111
References . 112

9 Oak Forests of the Hyper-Humid Region of La Chinantla, Northern Oaxaca Range, Mexico 113
J.A. Meave, A. Rincón, and M.A. Romero-Romero

9.1 Introduction . 113
9.2 La Chinantla Region . 114
9.3 Floristic Survey and Vegetation Sampling 115
9.4 Altitudinal Distributions of Oak Species at La Chinantla . . 116
9.5 Higher-Elevation Oak Forests at the Watershed Divide . . . 117
9.6 Lower-Elevation Oak Forests . 121
9.7 Discussion . 121
9.8 Conclusions . 123
References . 123
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Structure and Composition of Costa Rican Montane Oak Forests</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>M. Kappelle</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>10.2</td>
<td>Geographic Forest Distribution</td>
<td>129</td>
</tr>
<tr>
<td>10.3</td>
<td>Plant Geography</td>
<td>130</td>
</tr>
<tr>
<td>10.4</td>
<td>Forest Structure and Physiognomy</td>
<td>132</td>
</tr>
<tr>
<td>10.5</td>
<td>Plant Diversity</td>
<td>133</td>
</tr>
<tr>
<td>10.6</td>
<td>Floristic Composition</td>
<td>135</td>
</tr>
<tr>
<td>10.7</td>
<td>Conclusions</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>136</td>
</tr>
<tr>
<td>11</td>
<td>Structure and Composition of Colombian Montane Oak Forests</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>M.T. Pulido, J. Cavelier, and S.P. Cortés</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Biogeography</td>
<td>141</td>
</tr>
<tr>
<td>11.2</td>
<td>Taxonomy</td>
<td>141</td>
</tr>
<tr>
<td>11.3</td>
<td>Morphological Variability</td>
<td>143</td>
</tr>
<tr>
<td>11.4</td>
<td>Molecular Variability</td>
<td>146</td>
</tr>
<tr>
<td>11.5</td>
<td>Floristic Composition and Phytosociology</td>
<td>146</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Composition</td>
<td>146</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Phytosociology</td>
<td>148</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusions</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>Regeneration and Population Dynamics</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>of Quercus rugosa at the Ajusco Volcano, Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Bonfil</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>12.2</td>
<td>The Ajusco Volcano</td>
<td>156</td>
</tr>
<tr>
<td>12.3</td>
<td>Seedling Dynamics</td>
<td>157</td>
</tr>
<tr>
<td>12.4</td>
<td>Population Dynamics</td>
<td>160</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>161</td>
</tr>
</tbody>
</table>
13 Ecology of Acorn Dispersal by Small Mammals in Montane Forests of Chiapas, Mexico 165
F. López-Barrera and R.H. Manson

13.1 Introduction .. 165
13.2 The Role of Mast Seeding in Oak Dispersal and Recruitment 168
13.3 Forest Fragmentation Effects on Patterns of Acorn Removal and Dispersal by Rodents 169
13.3.1 Acorn Removal Rates and Edge Effects 169
13.3.2 Acorn Dispersal ... 170
13.4 The Trade-Off Between Acorn Perishability and Acorn Germination 171
13.5 Forest Fragmentation and Perspectives for Conservation of Montane Oak Forest 172
13.6 Conclusions .. 173
References ... 174

14 Establishment, Survival and Growth of Tree Seedlings Under Successional Montane Oak Forests in Chiapas, Mexico 177
N. Ramírez-Marcial, A. Camacho-Cruz, M. González-Espinosa, and F. López-Barrera

14.1 Introduction .. 177
14.2 Montane Pine-Oak Forest in Chiapas 178
14.3 Ecological Niche and Performance of Seedlings 179
14.4 Survival and Growth of Tree Seedlings 179
14.4.1 Naturally Established Seedlings 179
14.4.2 Transplanted Seedlings 180
14.4.3 Greenhouse Experiment 180
14.4.4 Species Grouping ... 182
14.4.5 Natural vs. Greenhouse Survival 182
14.4.6 Relative Growth Rates 183
14.5 Conservation and Restoration Implications 185
14.6 Conclusions .. 186
References ... 187
15 Population Structures of Two Understory Plant Species Along an Altitudinal Gradient in Costa Rican Montane Oak Forests

15.1 Introduction
15.2 Study Area
15.3 Field Sampling
15.4 Selected Study Species
15.5 Data Analysis
15.6 Environmental Correlations
15.7 Abundance of Two Species
15.8 Life Stages and Growth Forms of A. concinnatum
15.9 Conclusions
References

Part V Ecosystem Disturbance and Regeneration

16 Secondary Succession in Montane Pine-Oak Forests of Chiapas, Mexico

M. González-Espinosa, N. Ramírez-Marcial, and L. Galindo-Jaimes

16.1 Introduction
16.2 Sources of Information
16.3 Pines and Oaks in the Forests of Chiapas
16.4 Post-Agricultural Succession in Montane Habitats of Chiapas
16.4.1 Old-Field Fallow (FF)
16.4.2 Grassland (GRA)
16.4.3 Shrubland (SHR)
16.4.4 Early-Successional Forest (ESF)
16.4.5 Mid-Successional Forest (MSF)
16.4.6 Old-Growth Montane Pine-Oak Forest Associations
16.5 Relationships Among Seral Stages
16.6 Conclusions
References
Contents

19.4 Seeding Biomass and Mortality in Response to Edge Gradients .. 248
19.5 Seedling Physiological Responses .. 250
19.5.1 Leaf Phenology .. 250
19.5.2 Seedling Moisture Stress .. 250
19.5.3 Foliar Nutrient Status and Resorption ... 251
19.6 Edges: Facilitative Effects or Regeneration Barriers? ... 253
19.7 Conclusions .. 254
References .. 255

20 Morphological Variations of Gall-Forming Insects on Different Species of Oaks (*Quercus*) in Mexico ... 259
K. OYAMA, C. SCARELI-SANTOS, M.L. MONDRAGÓN-SÁNCHEZ, E. TOVAR-SÁNCHEZ, and P. CUEVAS-REYES

20.1 Introduction ... 259
20.2 Gall Induction and Development of Galls .. 260
20.3 Gall Morphology in Mexican Oaks .. 260
20.3.1 Introduction to Gall Morphology in Mexican Oaks ... 260
20.3.2 External Gall Morphology .. 261
20.3.3 Internal Gall Morphology .. 263
20.4 The Role of Oak Hybridization in Gall-Forming Insects ... 264
20.5 Conclusions .. 266
References .. 267

21 Above-Ground Water and Nutrient Fluxes in Three Successional Stages of Costa Rican Montane Oak Forest with Contrasting Epiphyte Abundance ... 271
L. KöHLER, D. HöLSCHER, and C. LEUSCHNER

21.1 Introduction ... 271
21.2 Study Sites ... 271
21.3 LAI and Epiphyte Biomass .. 272
21.4 Water and Nutrient Fluxes .. 273
21.5 Litterfall and Associated Nutrient Fluxes ... 276
21.6 The Influence of Epiphytes on Water and Nutrient Fluxes .. 278
21.7 Conclusions .. 279
References .. 280
Changes in Fine Root System Size and Structure During Secondary Succession in a Costa Rican Montane Oak Forest

D. Hertel, D. Hölscher, L. Köhler, and C. Leuschner

Introduction

Study Sites

Soil Morphology and Chemistry

Fine Root System Structure and Morphology

Does Tropical Rain Forest Fine Root Mass Generally Increase During Secondary Succession?

Are Large Fine Root Systems Characteristic for High-Elevation Tropical Rain Forests?

Conclusions

References

Soil Seed Bank Changes Along a Forest Interior–Edge–Pasture Gradient in a Costa Rican Montane Oak Forest

M. ten Hoopen and M. Kappelle

Introduction

Study Area

Methods

Site Selection and Transect Establishment

Seedling Emergence Monitoring

Quantitative Data Analysis

Seedling Abundance and Diversity

Seed Dispersal Strategies

Changes Along the Forest Interior–Edge–Pasture Gradient

Conclusions

References

Frugivorous Birds, Habitat Preference and Seed Dispersal in a Fragmented Costa Rican Montane Oak Forest Landscape

J.J.A.M. Wilms and M. Kappelle

Introduction

Study Area

Habitat Selection and Plot Establishment

Vegetation Sampling
Part VI Conservation and Sustainable Use

28 Dynamics and Silviculture of Montane Mixed Oak Forests in Western Mexico

M. Olvera-Vargas, B.L. Figueroa-Rangel, J.M. Vázquez-López, and N. Brown

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>28.2</td>
<td>Spatial Variation in Floristic Composition</td>
<td>364</td>
</tr>
<tr>
<td>28.3</td>
<td>Patterns of Change Over Time</td>
<td>368</td>
</tr>
<tr>
<td>28.4</td>
<td>The Regeneration Dynamics</td>
<td>369</td>
</tr>
<tr>
<td>28.5</td>
<td>Implications for Silvicultural Management</td>
<td>370</td>
</tr>
<tr>
<td>28.6</td>
<td>Conclusions</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>373</td>
</tr>
</tbody>
</table>
29 Vascular Epiphytes and Their Potential as a Conservation Tool in Pine-Oak Forests of Chiapas, Mexico

J.H.D. Wolf and A. Flamenco-S

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1 Introduction</td>
<td>375</td>
</tr>
<tr>
<td>29.2 Physiography, Forest Formations and Anthropogenic Disturbance</td>
<td>376</td>
</tr>
<tr>
<td>29.3 Epiphyte Diversity, Composition and Distribution</td>
<td>376</td>
</tr>
<tr>
<td>29.3.1 Sampling and Analysis</td>
<td>376</td>
</tr>
<tr>
<td>29.3.2 The Chiapas Epiphyte Database</td>
<td>377</td>
</tr>
<tr>
<td>29.3.3 Epiphytes of the Pine-Oak Forest</td>
<td>377</td>
</tr>
<tr>
<td>29.3.4 Epiphyte Distribution Patterns</td>
<td>379</td>
</tr>
<tr>
<td>29.4 Pine-Oak Epiphytes and Man</td>
<td>383</td>
</tr>
<tr>
<td>29.4.1 Epiphyte Response to Anthropogenic Disturbance in Pine-Oak Forest</td>
<td>383</td>
</tr>
<tr>
<td>29.4.2 Epiphytes as a Tool for Pine-Oak Forest Conservation</td>
<td>386</td>
</tr>
<tr>
<td>29.5 Conclusions</td>
<td>389</td>
</tr>
<tr>
<td>References</td>
<td>390</td>
</tr>
</tbody>
</table>

30 Land Use, Ethnobotany and Conservation in Costa Rican Montane Oak Forests

M. Kappelle and M.E. Juárez

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1 Introduction</td>
<td>393</td>
</tr>
<tr>
<td>30.2 Colonization, Deforestation and Land Use History</td>
<td>393</td>
</tr>
<tr>
<td>30.3 Altitudinal Zonation of Agroecological Belts</td>
<td>395</td>
</tr>
<tr>
<td>30.4 Ethnobotany</td>
<td>398</td>
</tr>
<tr>
<td>30.5 Protected Areas Preserving Montane Oak Forests</td>
<td>399</td>
</tr>
<tr>
<td>30.6 Involving Local People in Conservation Action</td>
<td>401</td>
</tr>
<tr>
<td>30.7 Linking Biodiversity Conservation to Poverty Alleviation</td>
<td>402</td>
</tr>
<tr>
<td>30.8 Macroeconomic Trends, Conventions and Conservation Implications</td>
<td>403</td>
</tr>
<tr>
<td>30.9 Conclusions</td>
<td>403</td>
</tr>
<tr>
<td>References</td>
<td>407</td>
</tr>
</tbody>
</table>

31 Charcoal Production in a Costa Rican Montane Oak Forest

R. aus der Beek, G. Venegas, and L. Pedroni

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Introduction</td>
<td>407</td>
</tr>
<tr>
<td>31.1.1 Charcoal as an Alternative Energy Source</td>
<td>407</td>
</tr>
<tr>
<td>31.1.2 Charcoal Production History in the High Talamancas</td>
<td>408</td>
</tr>
</tbody>
</table>
31.3 Scope of this Study
31.2 Charcoal Production Process
31.2.1 General Aspects of the Production Process
31.2.2 The Traditional Earth Pit
31.2.3 The Transportable Metal Kiln
31.3 Study Design
31.4 Charcoal Production Processing Time
31.5 Productivity Levels
31.6 Quality Levels
31.7 Ownership and the Future of the ‘Carboneros’
31.8 Conclusion
References

32 Criteria and Indicators for Sustainable Management of Central American Montane Oak Forests
B. Herrera and A. Chaverri

32.1 Introduction
32.2 Ecological Factors Determining Montane Oak Forest Management
32.3 Socioeconomic Factors and Montane Oak Forest Management
32.4 Development of Management Standards
32.4.1 Defining a Conceptual Framework and Attributes for C&I
32.4.2 Defining the Geographic Area for Standards Development
32.4.3 Selecting Criteria and Indicators
32.5 Criteria and Indicators at Different Scales of Application
32.5.1 Regional and National Levels
32.5.2 Forest Management Unit (FMU)
32.6 Conclusions
References

33 Economic Valuation of Water Supply as a Key Environmental Service Provided by Montane Oak Forest Watershed Areas in Costa Rica
G. Barrantes Moreno

33.1 Introduction
33.2 A Transformed Vision for Use of Environmental Services
33.3 Importance of Forests for Providing Water to Society
33.4 Economic-Ecological Valuation of Water
Contributors

A LCÁNTARA-AYALA, OTHÓN

Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-399, Ciudad Universitaria, México 04510 DF, Mexico

ASBJORNSEN, HEIDI

Department of Natural Resource Ecology and Management, Iowa State University, 234 Science II, Ames, IA 50011, USA, e-mail: hasbjorn@iastate.edu

ASHTON, P. MARK S.

School of Forestry and Environmental Studies, Yale University, 360 Prospect Street, New Haven, CT 06511, USA

AUS DER BEEK, ROBIN

Regional Community Forestry Training Center, Kasetsart University, P.O. Box 1111, Bangkok 10903, Thailand. Current address: c/o SNV Bhutan, P.O. Box 825, Langjophakha, Thimphu, Bhutan, e-mail: robinadb@druknet.bt

BARRANTES MORENO, GERARDO

Fundación Instituto de Políticas para la Sostenibilidad (IPS), Apartado Postal 900-3000, Heredia, Costa Rica, e-mail: gerardo@ips.or.cr

BONFIL, CONSUELO

Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, México DF 04510, Mexico, e-mail: cbs@fciencias.unam.mx
Brown, Nick

Department of Plant Sciences, Oxford Forestry Institute, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

Camacho-Cruz, Angélíca

Departamento Interuniversitario de Ecología, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain

Carranza, Julieta

School of Biology, University of Costa Rica (UCR), San Pedro de Montes de Oca, Costa Rica

Cavelier, Jaime

Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, and The Gordon and Betty Moore Foundation, 1747 Connecticut Avenue NW, Washington, DC 20009, USA

Chaverri, Adelaida †

School of Environmental Sciences, Universidad Nacional (UNA), Heredia, Costa Rica

Cleef, Antoine M.

Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands

Contreras-Medina, Raúl

Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-399, Ciudad Universitaria, México 04510 DF, Mexico

Cortés-S, Sandra P.

Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia

Cuevas-Reyes, Pablo

Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
Figueroa-Rangel, Blanca L.
Departamento de Ecología y Recursos Naturales, IMECBIO, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Apartado Postal # 108, Autlán de Navarro, CP 48900 Jalisco, Mexico, and School of Geography and the Environment, University of Oxford, Mansfield Road, Oxford OX1 3TB, UK

Flamenco-S., Alejandro
El Colegio de la Frontera Sur (ECOSUR), Apartado Postal 63, San Cristóbal de Las Casas, Chiapas C.P. 29200, Mexico

Galindo-Jaimes, Luis
Departamento Interuniversitario de Ecología, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain

García-Rojas, Michael
Programa Regional de Manejo de Vida Silvestre (PRMVS), Universidad Nacional Costa Rica, P.O. Box 1350-3000 Heredia, Costa Rica. Current address: Instituto Monteverde, P.O. Box 69-5655, Monteverde, Puntarenas, Costa Rica, e-mail: mgarcia@mvinstitute.org

González-Espinosa, Mario
Departamento de Ecología y Sistemática Terrestres, El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, 29290 San Cristóbal de Las Casas, Chiapas, Mexico, e-mail: mgonzale@sclc.ecosur.mx

Groot, Thomas V.M.
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands

Guariguata, Manuel R.
Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 7170 Turrialba, Costa Rica. Current address: United Nations Environment Program (UNEP), Secretariat of the Convention on Biological Diversity (SCBD), 413 Rue St. Jacques, Suite 800, Montréal H2Y 1N9, Canada, e-mail: manuel.guariguata@biodiv.org
XXVIII Contributors

HALLING, ROY E.
Institute of Systematic Botany, The New York Botanical Garden, Bronx, 10458-5126 NY, USA

HERRERA, BERNAL
Tropical Agricultural Research and Education Center (CATIE), Turrialba 7170, Costa Rica, and University of Costa Rica (UCR), San Pedro de Montes de Oca, Costa Rica. Current address: The Nature Conservancy (TNC), Apartado 230-1225, San José, Costa Rica; e-mail: bherrera@tnc.org

HERTEL, DIETRICH
Department of Plant Ecology, Albrecht-von-Haller-Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; e-mail: dhertel@gwdg.de

HÖLSCHER, DIRK
Department of Tropical Silviculture, Institute of Silviculture, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany

HOLZ, INGO
Universität Greifswald, Botanisches Institut und Botanischer Garten, Grimmer Str. 88, 17487 Greifswald, Germany; e-mail: ingo.holz@uni-greifswald.de

HOOGHIEMSTRA, HENRY
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands; e-mail: hooghiemstra@science.uva.nl

ISLEBE, GERALD A.
El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Herbarium, AP 424, CP 77000 Chetumal, Quintana Roo, Mexico; e-mail: gerald@ecosur-qroo.mx

JUÁREZ, MARTA E.
Apartado 549-1260, Plaza Colonial, Escazú, Costa Rica

KAPPELLE, MAARTEN
The Nature Conservancy (TNC), Apartado 230-1225, San José, Costa Rica; e-mail: mkappelle@tnc.org
Köhler, Lars
Department of Plant Ecology, Albrecht-von-Haller-Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany, e-mail: koehlerlars@hotmail.com

Leuschner, Christoph
Department of Plant Ecology, Albrecht-von-Haller-Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany

Lira-Torres, Iván
Universidad del Mar, Puerto Escondido, Oaxaca 71980, Mexico

López-Barrera, Fabiola
Departamento de Ecología Funcional, Instituto de Ecología, A.C., km 2.5 Carretera Antigua a Coatepec No. 351, Congregación el Haya Xalapa, Veracruz 91070, Mexico, e-mail: fabiola@ecologia.edu.mx

Luna-Vega, Isolda
Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-399, Ciudad Universitaria, México 04510 DF, Mexico, e-mail: ilv@hp.fciencias.unam.mx

Manson, Robert H.
Departamento de Ecología Funcional, Instituto de Ecología, A.C., km 2.5 Carretera Antigua a Coatepec No. 351, Congregación el Haya Xalapa, Veracruz 91070, Mexico, e-mail: manson@ecologia.edu.mx

Mata, Milagro
Instituto Nacional de Biodiversidad (INBio), Apartado 22-3100, Santo Domingo de Heredia, Costa Rica

Meave, Jorge A.
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México 04510 DF, Mexico, e-mail: jamdc@fciencias.unam.mx

Mondragón-Sánchez, Maria L.
Instituto Tecnológico de Morelia, Morelia, Michoacán, Mexico
Mueller, Gregory M.

Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, 60605 IL, USA, e-mail: gmueller@fieldmuseum.org

Naranjo, Eduardo J.

Departamento de Ecología y Sistemática Terrestres, El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, 29290 San Cristóbal de Las Casas, Chiapas, Mexico

Nixon, Kevin C.

L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA, e-mail: kcn2@cornell.edu

Olvera-Vargas, Miguel

Departamento de Ecología y Recursos Naturales, IMECBIO, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Apartado Postal # 108, Autlán de Navarro, CP 48900 Jalisco, Mexico, and Department of Plant Sciences, Oxford Forestry Institute, University of Oxford, South Parks Road, Oxford OX1 3RB, UK, e-mail: molvera@cucsur.udg.mx

Oostermeijer, J. Gerard B.

Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands

Oyama, Ken

Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190 Michoacán, Mexico, e-mail: akoyama@oikos.unam.mx

Pedroni, Lucio

Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 7170 Turrialba, Costa Rica

Pulido, María T.

Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, and Jardín Botánico, Universidad Nacional Autónoma de México (UNAM), México DF 04510, Mexico, e-mail: mtpulido@yahoo.com
Contributors XXXI

Ramírez-Marcial, Neptalí

Departamento de Ecología y Sistemática Terrestres, El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, 29290 San Cristóbal de Las Casas, Chiapas, Mexico, e-mail: nramirezm@sclc.ecosur.mx

Rincón, Armando

Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México 04510 DF, Mexico

Romero-Romero, Marco A.

Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México 04510 DF, Mexico

Ruiz-Jiménez, Carlos A.

Departamento de Biología Evolutiva, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-399, Ciudad Universitaria, México 04510 DF, Mexico

Sáenz, Grace P.

Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 7170 Turrialba, Costa Rica

Scareli-Santos, Claudia

Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190 Michoacán, Mexico

Schmit, John P.

Center for Urban Ecology, 4598 Macarthur Blvd. Nw, Washington, DC 20007, USA

Sipman, Harrie J.M.

Botanic Garden & Botanical Museum, Koenigin-Luise-Str. 6-8, 14191 Berlin, Germany, e-mail: h.sipman@bgbm.org
Stift, Marc
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands

ten Hoopen, Martijn
Centro Agronómica de Investigación y Enseñanza (CATIE), 7170 Turrialba, Costa Rica

Tobler, Mathias W.
Botanical Research Institute of Texas, 509 Pecan Street, Fort Worth, TX 76102, USA, e-mail: matobler@gmx.net

Tovar-Sánchez, Efrain
Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190 Michoacán, Mexico

van den Bergh, Maurits B.
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), P.O. Box 94062, 1090 GB Amsterdam, The Netherlands

van Uffelen, Jan-Gerrit
Hessenweg 59, 7771 RD Hardenberg, The Netherlands

Vázquez-López, José M.
Departamento de Ecología y Recursos Naturales, IMECBIO, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Apartado Postal # 108, Autlán de Navarro, CP 48900 Jalisco, Mexico

Venegas, Geoffrey
Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 7170 Turrialba, Costa Rica

Vogt, Kristina A.
College of Forest Resources, University of Washington, Seattle, WA 98195, USA
Concurrent Contributors

WILMS, JOOST J.A.M.
Jaboncillos, San Gerardo de Dota, Costa Rica

WOLF, JAN H.D.
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam, P.O. Box 94062, 1090 GB Amsterdam, The Netherlands, e-mail: wolf@science.uva.nl