Kyoji Sassa
Hiroshi Fukuoka
Fawu Wang
Gonghui Wang
(Editors)

Landslides
Risk Analysis and Sustainable Disaster Management
Kyoji Sassa
Hiroshi Fukuoka
Fawu Wang
Gonghui Wang
(Editors)

Landslides
Risk Analysis and Sustainable Disaster Management

Proceedings of the First General Assembly of the International Consortium on Landslides

With 417 Images
Editors

Sassa, Kyoji
President of the International Consortium on Landslides
Research Centre on Landslides, Disaster Prevention Research Institute,
Kyoto University, Uji, Kyoto 611-0011, Japan
Tel: +81-774-38-4110, Fax: +81-774-32-5597, E-mail: sassa@SCL.kyoto-u.ac.jp

Fukuoka, Hiroshi
Research Centre on Landslides, Disaster Prevention Research Institute,
Kyoto University, Uji, Kyoto 611-0011, Japan
Tel: +81-774-38-4111, Fax: +81-774-38-4300, E-mail: fukuoka@SCL.kyoto-u.ac.jp

Wang, Fawu
Research Centre on Landslides, Disaster Prevention Research Institute,
Kyoto University, Uji, Kyoto 611-0011, Japan
Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: wangfw@landslide.dpri.kyoto-u.ac.jp

Wang, Gonghui
Research Centre on Landslides, Disaster Prevention Research Institute,
Kyoto University, Uji, Kyoto 611-0011, Japan
Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: wanggh@landslide.dpri.kyoto-u.ac.jp
Population growth, increasing urbanization, and mountain and coastal development are magnifying the risk of various kinds of disasters. The imperatives of Earth system risk reduction will be even more pressing for sustainable development and environmental protection in the coming decades.

Landslides are various types of gravitational mass movements of the Earth’s surface that pose the Earth-system risk; they are triggered by earthquakes, rainfall, volcanic eruptions and human activities. Landslides cause many deaths and injuries and great economic loss to society by destroying buildings, roads, life lines and other infrastructures; they also pose irrecoverable damage to our cultural and natural heritage. Landslides are multiple hazards, involving typhoons/hurricanes, earthquakes, and volcanic eruptions, and sometimes causing tsunamis. Landslide disaster reduction requires cooperation of a wide variety of natural, social, and cultural sciences.

On 19 January 2005 in Kobe, Japan, the ICL organized the theme session “New International Initiatives for Research and Risk Mitigation of Floods (IFR) and Landslides (IPL)” at the United Nations World Conference on Disaster Reduction together with UNESCO, WMO, FAO, UNU (United Nations University), MEXT, Kyoto University, and others. In this session, the ICL proposed a “Letter of Intent” to United Nations organizations, as well as to the International Council for Science (ICSU) and the World Federation of Engineering Organizations (WFEO), in order to strengthen learning and research on “Earth System Risk Analysis and Sustainable Disaster Management” within the framework of the United Nations International Strategy for Disaster Risk Reduction (ISDR). These functions must be effective in order to create a sound basis of international cooperation in the field of Earth-system risk reduction, including landslides. This Letter of Intent was approved and signed by seven global stakeholders of UNESCO, WMO, FAO, UN/ISDR, UNU, ICSU, and WFEO by 30 June 2005. The electronically combined Letter of Intent is attached below.

Study and learning of landslide risk analysis and sustainable disaster management, including close cooperation with experts and organizations specializing in other types of disasters, must be our task in the coming decades. For the occasion of the ICL First General Assembly, to be held at the Keck Center of the National Academy of Sciences,
LETTER OF INTENT

“United Nations World Conference on Disaster Reduction (WCDR)”, Kobe, Japan, 18-22 January 2005

This ‘Letter of intent’ aims to provide a platform for a holistic approach in research and learning on ‘Integrated Earth system risk analysis and sustainable disaster management’.

Rationale
- Understanding that any discussion about global sustainable development without addressing the issue of Disaster Risk Reduction is incomplete;
- Acknowledging that risk-prevention policies including warning systems related to Natural Hazards must be improved or established;
- Underlining that disasters affect poor people and developing countries disproportionately;
- Stressing that after years of under-investment in preventive scientific, technical and communicational infrastructure activities it is time to change course and develop all activities needed to better understand natural hazards and to reduce the vulnerability notably of developing countries to natural hazards, and
- Acknowledging that a harmful deficiency in coordination and communication measurements related to Disaster Risk Reduction exists.

Proposal
Representatives of United Nations Organisations, as well as the Scientific (ICSU) and Engineering (WFEO) Communities propose to promote further joint global activities in disaster reduction and risk prevention through

More specifically it is proposed,

based on the existing structural framework of the ISDR and plan of action of the UN-WCDR, as well as other relevant networks and institutional and international expertises,

to establish specific, goal-oriented ‘Memoranda of Understanding’ (MoUs) between international stakeholders targeting Disaster Risk Reduction, for example focusing on landslide risk reduction, and other natural hazards.

Invitation
Global, regional and national competent institutions are invited to support this initiative by joining any of the specific MoUs following this letter through participation in clearly defined projects related to the issues and objectives of any of the MoUs.

Signatories:

Mr. Kôhshiro Matsura
Director-General
United Nations Educational, Scientific and Cultural Organization

4 MAR 2005

Mr. Michel Jarraud
Secretary-General
World Meteorological Organization

22. 3. 2005

Mr. Jacques Diouf
Director-General
Food and Agriculture Organization of the United Nations

21. 1. 1985

Mr. Salvatore Ribeiro
Director
UN International Strategy for Disaster Risk Reduction

19. 1. 1985

Mr. Hans van Ginkel
Rector
United Nations University

Date

Ms. Jane Lubchenco
President
International Council for Science

Date

Ms. Dominique Panoise
Executive Director
World Federation of Engineering Organizations

Date

The International Consortium on Landslides (ICL) proposed the “Letter of Intent” at the thematic session 3.8 “New International Initiatives for Research and Risk Mitigation of Floods (IF) and Landslides (PL)” of the United Nations World Conference on Disaster Reduction held on 19 January 2005 in Kobe, Japan. This is the Letter of Intent, which was electronically combined based on the original Letters of Intent, formally approved and signed by all parties. All of the original Letters of Intent with signatures are deposited in the secretariat of the International Consortium on Landslides which is located in the Research Centre on Landslides of the Disaster Prevention Research Institute, Kyoto University.
Washington, D.C., we decided to organize a panel discussion on “Earth-system risk analysis and sustainable disaster management, especially in regard to landslides”. This volume, which includes the proceedings of papers submitted to the First General Assembly, is titled “Landslides – Risk Analysis and Sustainable Disaster Management” to symbolize our target in the coming decades.

It is hoped that this volume will visualize the objectives and activities of the International Consortium on Landslides and result in intensified international cooperation in learning and research for landslide disaster reduction within global and regional entities involving in landslides. We request cooperation and support from scientists and engineers working on other disasters, and particularly from those organizations and entities that are willing to contribute to Earth-system risk reduction, including that of landslides.

Acknowledgments

I express my gratitude for the cooperation of the staff of the National Cooperative Geologic Mapping Program and the Landslide Hazard Program of the U.S. Geological Survey and the Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, for organization of the First General Assembly and for edition of this volume. Thanks also go to UNESCO, WMO, FAO, UN/ISDR, UNU, IUGS, and to the governments of Japan, U.S.A., Italy, Canada and Norway for their continued support of ICL activities. It is acknowledged that the organization of the First General Assembly of ICL and this publication are financially supported by the UNESCO fund supporting IPL/ICL activities, the Presidential leadership fund of Kyoto University, and the twenty-first century COE (Centre of Excellence) fund from the Ministry of Education, Culture, Sports, Science and Technology of the Government of Japan allocated to the Disaster Prevention Research Institute, Kyoto University.

Kyoto University, UNESCO and ICL launched the UNITWIN Cooperation Programme “Landslide Risk Mitigation for Society and the Environment” on 18 March 2003, then jointly constructed the UNITWIN Headquarter building as the activity-base on the Uji campus of Kyoto University. It is acknowledged that worldwide cooperation through the UNITWIN network and the facilities of the UNITWIN Headquarter were very helpful for the preparation of the General Assembly and editing this volume.

Kyoji Sassa

President, International Consortium on Landslides
Director of the Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Japan
Welcome Address

Today, many parts of the world, including the United States, are at significant risk from natural disasters. Escalating population and increased development on the coast, fault zones, mountainous areas, and flood plains mean that increasing numbers of people are at risk from hazards. Each year the importance of assessing, preparing for and mitigating the potential effects of natural hazards, including landslides, increases.

For this reason, the U.S. Geological Survey (USGS) and the National Research Council (NRC) of the National Academy of Sciences are pleased to host this important General Assembly of the International Consortium on Landslides (ICL).

It is an honor that the first General Assembly of the ICL is meeting in the Washington, DC area – the center of the U.S. government with numerous Federal agency headquarters, including the USGS, NRC, Federal Emergency Management Agency, Federal Transportation Administration, and the National Oceanic Atmospheric Administration (NOAA). The city is also home to numerous international organizations such as the World Bank, the Organization of American States, the Inter American Bank, and others. We hope that you will have an opportunity to visit this very beautiful city and some of the organizations that would benefit from the work of ICL.

Landslides threaten lives and property in every state in the U.S. Fall and winter of 2004–2005, were especially active landslides seasons with numerous landslides caused by hurricanes in the east coast and heavy rainfall in the west coast, throughout the intermountain states of Utah and Colorado and the east coast states of Ohio, Pennsylvania and New York. Landslides in 2004–2005 caused many deaths and extensive property damage. Communities are still cleaning up after some of the most damaging events. Those members of ICL who will visit southern California will be able to see, first hand, two very heavily impacted areas.

The USGS currently has two important efforts to lessen the impact of natural hazards. The first is the “Initiative to Protect Communities and Resources from Natural Disasters.” The USGS is working toward implementing this initiative by 2007, which will focus on delivering USGS science to public officials and private industry to help them reduce the vulnerability of communities and the environment to hazards including: earthquakes, droughts, floods, landslides, and wildfires. Landslide hazards and debris-flow hazards following wildfires are important elements of this initiative.

The second effort is the NOAA-USGS Debris Flow Warning System, which is a demonstration project which combines the expertise of the two agencies in precipitation forecasting, debris-flow prediction, and debris-flow hazard assessment in order to establish a debris-flow warning system for recently burned areas of southern California. This demonstration project, if successful and if funded, will be expanded to reach other parts of the U.S. which face similar hazards. More detailed explanations about these two important efforts by the USGS will be given during the General Assembly.

International meetings such as this one provide a unique opportunity for managers and researchers to share new research findings, knowledge, and experiences that can lead to better understanding of how to mitigate the devastating effects of natural
hazards. I look forward to learning from the presentations and discussions during the next few days and reading the proceedings of this First General Assembly of the International Consortium of Landslides.

Good luck and best wishes for a successful assembly,

P. Patrick Leahy

Honorary Chairman of the First General Assembly of the International Consortium on Landslides
Acting Director of the U.S. Geological Survey
Contents

Part I
International Consortium on Landslides

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>10</td>
</tr>
<tr>
<td>1.9</td>
<td>11</td>
</tr>
<tr>
<td>1.10</td>
<td>12</td>
</tr>
<tr>
<td>1.11</td>
<td>13</td>
</tr>
<tr>
<td>1.12</td>
<td>13</td>
</tr>
<tr>
<td>1.13</td>
<td>14</td>
</tr>
<tr>
<td>1.14</td>
<td>15</td>
</tr>
<tr>
<td>1.15</td>
<td>15</td>
</tr>
<tr>
<td>1.16</td>
<td>16</td>
</tr>
<tr>
<td>1.17</td>
<td>16</td>
</tr>
<tr>
<td>1.18</td>
<td>17</td>
</tr>
<tr>
<td>1.19</td>
<td>17</td>
</tr>
<tr>
<td>1.20</td>
<td>18</td>
</tr>
<tr>
<td>1.21</td>
<td>18</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>List of Abbreviated Names (in Alphabetical Order)</td>
<td>21</td>
</tr>
</tbody>
</table>

Part II
International Programme on Landslides

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>37</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>Preliminary Remarks on Monitoring, Geomorphological Evolution and Slope Stability of Inca Citadel of Machu Picchu (C101-1)</td>
</tr>
<tr>
<td>3.1</td>
<td>Geological Setting</td>
</tr>
<tr>
<td>3.2</td>
<td>Structural Setting</td>
</tr>
<tr>
<td>3.3</td>
<td>Geomechanical Setting</td>
</tr>
<tr>
<td>3.4</td>
<td>Geomorphology and Slope Instability</td>
</tr>
<tr>
<td>3.5</td>
<td>GPS Monitoring Network</td>
</tr>
<tr>
<td>3.6</td>
<td>Realization of a Three-Dimensional Digital Terrain Model of the INCA Citadel</td>
</tr>
<tr>
<td>3.7</td>
<td>Monitoring with JRC GB-SAR</td>
</tr>
<tr>
<td>3.8</td>
<td>Interferometric Synthetic Aperture Radar (InSAR)</td>
</tr>
<tr>
<td>3.9</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>4</td>
<td>Geomorphological Investigations at Machu Picchu, Peru (C101-1)</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Study Site</td>
</tr>
<tr>
<td>4.3</td>
<td>Methods</td>
</tr>
<tr>
<td>4.4</td>
<td>Results</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>5</td>
<td>The Application of Ground Penetrating Radar (GPR) at Machu Picchu, Peru (C101-1)</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Setting</td>
</tr>
<tr>
<td>5.3</td>
<td>Background Theory</td>
</tr>
<tr>
<td>5.4</td>
<td>Methods and Results</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>6</td>
<td>Assessing the Capabilities of VHR Satellite Data for Debris Flow Mapping in the Machu Picchu Area (C101-1)</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Description of the Study Area</td>
</tr>
<tr>
<td>6.3</td>
<td>Methodology</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion of Results</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>7</td>
<td>Influence of Thermal Expansion on Slope Displacements (C101-2)</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Study Site</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>8</td>
<td>Emergency Intervention for the Geo-Mechanical Conservation of the Niches of Bamiyan Buddhas (Northern Afghanistan) (C101-3)</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>General Features of the Area</td>
</tr>
</tbody>
</table>
8.3 Long-Term Conservation Strategy for the Geo-Mechanical Preservation of the Site 76
8.4 Emergency Measures ... 77
8.5 Conclusion ... 78
References ... 79

9 Landslide Risk Assessment and Disaster Management
in the Imperial Resort Palace of Lishan, Xian, China (C101-4) 81
9.1 Introduction ... 81
9.2 Objects at Risk in Lishan .. 81
9.3 Potential Landslide Zoning .. 82
9.4 Depth of the Lishan Landslide ... 84
9.5 Travel Distance of the Landslide ... 85
9.6 Deformation Monitoring of the Lishan Landslide 85
9.7 The Results of Extensometer Monitoring 86
9.8 Landslide Risk Preparedness .. 88
9.9 Summary ... 88
Acknowledgments ... 89
References ... 89

10 Formation Conditions and Risk Evaluation of Debris Flow in Tianchi Lake Area
of Changbai Mountains Natural Protection Area, China (C101-5) 91
10.1 Introduction ... 91
10.2 Formation Condition of Debris Flow 92
10.3 The Types and Distribution of Debris Flow in Study Area 93
10.4 Risk Degree Evaluation of Debris Flow 95
10.5 Conclusion ... 96
References ... 97

11 Aerial Prediction of Earthquake and Rain Induced Rapid and Long-Traveling
Flow Phenomena (APERITIF) (M101) 99
11.1 Introduction ... 99
11.2 Mapping of Micro Topography Using Airborne Laser Scanning 101
11.3 Full-Scale Landslide Flume Experiments
and an Artificial Rainfall-Induced Landslide on a Natural Slope 102
11.4 Landslide Risk Evaluation and Hazard Zoning
for Rapid and Long-Traveling Landslides in Urban Development Areas .. 104
11.5 Conclusions ... 108
Acknowledgments ... 108
References ... 108

12 Investigating Rock-Slope Failures in the Tien Shan:
State-of-the-Art and Perspectives of International Cooperation (M111) 109
12.1 Introduction ... 109
12.2 Completed and Ongoing Activities ... 110
12.3 Aims and Goals of Further Studies ... 110
12.4 Conclusions ... 111
References ... 111

13 Multi-Temporal and Quantitative Geomorphological Analysis
on the Large Landslide of Craco Village (M118) 113
13.1 Introduction ... 113
13.2 Study Site ... 113
13.3 Methods ... 115
13.4 Results ... 115
References ... 117
20 Chemical Weathering and the Occurrence of Large-Scale Landslides in the Hime River Basin, Central Japan

20.1 Introduction .. 165
20.2 Outline of Research Area 165
20.3 Samples and Analytical Method 166
20.4 Results of Chemical Analyses 167
20.5 The Hieda-Yama Landslide Area (the Kanayama-Zawa Watershed) 168
20.6 Estimation of Chemical Weathering Rate 168
20.7 Connection between Chemical Weathering and Landslide Occurrence 169
20.8 Identification of the Buried Altered Zones 170
20.9 Summary .. 170
Acknowledgments ... 171
References .. 171

21 Mechanism of Landslide Causing the December 2002 Tsunami at Stromboli Volcano (Italy)

21.1 Introduction .. 173
21.2 Sciara del Fuoco Morphology and Instability Phenomena 173
21.3 The December 2002 Tsunamogenic Landslides 174
21.4 Lithological and Physical Properties of Volcanoclastic Material 176
21.5 Stress Loading Ring Shear Test Results 176
21.6 Discussion and Conclusions 179
Acknowledgments ... 180
References .. 180

22 Characteristics of the Recent Landslides in the Mid Niigata Region – Comparison between the Landslides by the Heavy Rainfall on 13 July 2004, and by the Intensive Earthquakes on 23 October 2004

22.1 Introduction .. 181
22.2 Landslide Distribution by Heavy Rainfall on 13 July 2004 182
22.3 Landslides Triggered by the Intensive Chuetsu Earthquake on 23 October 2004 ... 182
22.4 Comparison between the Landslides by the Heavy Rainfalls and Those by Chuetsu Earthquake on 23 October 2004 184
22.5 Summary and Discussion 184
Acknowledgments ... 185
References .. 185

23 Slope Instability Conditions in the Archaeological Site of Tharros (Western Sardinia, Italy)

23.1 Geologic, Geomorphic and Climatic Characteristics of the Area 187
23.2 Historical and Archaeological Summary 189
23.3 The Murru Mannu Landslide (Tofet Area) 189
23.4 Rockfalls in the San Giovanni Di Sinis Necropolis 190
23.5 Mass Movements in the Capo San Marco Necropolis 192
23.6 The Complex Mass Movement of the Southern End of Capo San Marco 194
23.7 Conclusions ... 194
Acknowledgments ... 195
References .. 195
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>‘ROM’ Scale for Forecasting Erosion Induced Landslide Risk on Hilly Terrain</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Geotechnical Field Observations of Landslides in Fine-Grained Permafrost Soils in the Mackenzie Valley, Canada</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Slope-Structure Stability Modeling for the Rock Hewn Church of Bet Abo Libanos in Lalibela (Ethiopia): Preliminary Results</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Clay Minerals Contributing to Creeping Displacement of Fracture Zone Landslides in Japan</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Geotechnical Landslide Risk Analysis on Historical Monuments: Methodological Approach</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Collection of Data on Historical Landslides in Nicaragua</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>World Heritage “Monasteries of Mount Athos” at Rock Slide Risk, in Greece</td>
<td>235</td>
</tr>
<tr>
<td>30.1 Introduction</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>30.2 Study Case</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>30.3 Conclusions</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>The Archaeological Site of Delphi, Greece: a Site Vulnerable to Earthquakes, Rockfalls and Landslides</td>
<td>241</td>
</tr>
<tr>
<td>31.1 Introduction</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>31.2 Geological and Tectonic Setting</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>31.3 Seismotectonic Activity of the Area</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>31.4 Stability Conditions of the Monuments</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>31.5 Geotechnical Modeling of the Limestone Cliffs</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>31.6 Rockfall Protection Measures</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>31.7 Conclusions</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>The Landslide Sequence Induced by the 2002 Eruption at Stromboli Volcano</td>
<td>251</td>
</tr>
<tr>
<td>32.1 Introduction</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>32.2 Sciara del Fuoco Morphology</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>32.3 The Sciara del Fuoco Deposit</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>32.4 Investigations</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>32.5 The Sequence of Landslide Events Triggered by the December 2002 Eruption</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>32.6 Geometry of the Slid Masses</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>32.7 Mechanisms of Instability</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Slope Phenomena in the Region of the Historical Monument “The Horseman of Madara” in NE Bulgaria</td>
<td>259</td>
</tr>
<tr>
<td>33.1 Introduction</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>33.2 Madara Reserve Area</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>33.3 Geological and Tectonic Preconditions for the Development of Slope Processes</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>33.4 Seismotectonic Conditions for Activation of Slope Processes</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>33.5 Mechanism of Slope Processes</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>33.6 Monitoring of Contemporary Movements in the Marginal Zone of the Plateau</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>33.7 Conclusions</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>267</td>
<td></td>
</tr>
</tbody>
</table>

Part IV

Sustainable Disaster Management

<p>| 34 | Landslide Hazard Mapping and Evaluation of the Comayagua Region, Honduras | 271 |
| 34.1 Introduction | 271 | |
| 34.2 Geological Setting | 271 |
| 34.3 Methods | 273 |
| 34.4 Results | 273 |
| References | 274 |
| 35 | Swift Action Taken by the Geographical Survey Institute to Analyze and Provide Landslide Information on the Mid Niigata Prefecture Earthquakes of 23 October 2004 | 275 |
| 35.1 Topographic Features of Damaged Areas | 275 |
| 35.2 Addressing the Issues | 276 |
| 35.3 Concluding Remarks | 284 |
| References | 284 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.7</td>
<td>Lessons Learned</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>326</td>
</tr>
<tr>
<td>42</td>
<td>Interpretation of the Mechanism of Motion and Suggestion</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>of Remedial Measures Using GPS Continuous Monitoring Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>42.2 Surface Monitoring Systems</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>42.3 Study Area</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>42.4 Regional Study</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>42.5 Complementary Study and Monitoring</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>42.6 Data Analysis and Interpretation of the Mechanism of Motion</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>42.7 Conclusions</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>42.8 Recommendations</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>335</td>
</tr>
<tr>
<td>43</td>
<td>On the Use of Ground-Based SAR Interferometry</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>for Slope Failure Early Warning: the Cortenova Rock Slide (Italy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>43.2 Study Site</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>43.3 Methods</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>43.4 Results</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>43.5 Conclusions</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>342</td>
</tr>
<tr>
<td>44</td>
<td>Preservation from Rockfall of the Engraved Wall</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>in the Fugoppe Cave, Hokkaido, Japan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>44.2 Photographs for Image Processing</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>44.3 Geological Features</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>44.4 Identification of Rockfall-Prone Areas of the Walls</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>44.5 Concluding Remarks</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>349</td>
</tr>
<tr>
<td>45</td>
<td>Landslide Hazard and Mitigation Measures</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>in the Area of Medieval Citadel of Sighisoara, Romania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>45.2 Morphological and Geological Conditions</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>45.3 Meteorological and Hydrological Data</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>45.4 Hydrogeological Conditions</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>45.5 Instability Phenomena</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>45.6 Geotechnical Works</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>45.7 Landslide Risk Assessment</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>45.8 Mitigation Measures</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>356</td>
</tr>
<tr>
<td>46</td>
<td>A Hazard Assessment of Settlements and Historical Places</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>in the Upper Volga River Region, Russia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>46.2 Landslide Activity in the Studied Area</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>46.3 Other Geological Processes Developed in the Studied Area</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>46.4 Summary</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>360</td>
</tr>
</tbody>
</table>
Appendices ... 361

A.1 ICL Statutes and Structure ... 361
 A1.1 International Consortium on Landslides – Statutes ... 361
 A1.2 International Consortium on Landslides – Bylaws ... 363
 A1.4 Members and Supporting Organizations ... 365

A.2 IPL Projects .. 367
 A2.1 Coordinating Projects ... 367
 A2.2 Member Projects ... 368

A.3 ICL Documents ... 371
 A3.1 The 1997 Xian Appeal ... 371
 A3.2 The 1999 Tokyo Appeal ... 373
 A3.3 The 1999 Memorandum of Understanding between UNESCO and Disaster...
 Prevention Research Institute, Kyoto University .. 373
 A3.4 The 2001 Tokyo Declaration ... 375
 A3.5 The 2002 Kyoto Declaration ... 375
 A3.6 2003 The Agreement of a UNITWIN Cooperation Programme
 between UNESCO, Kyoto University and ICL ... 375
 A3.7 The 2005 Letter of Intent proposed by ICL and Approved by UNESCO,
 WMO, FAO, UN/ISDR, UNU, ICSU, and WFEO ... 375

Index ... 379
List of Contributors

Abdrakhmatov, Kanatbek E. (Chapter 12)
Institute of Seismology, National Academy of Science, Asanbay 52/1, Bishkek, Kyrgyzstan

Abidin, Roslan Zainal (Chapter 24)
Director, National Soil Erosion Research Centre, Universiti Teknologi MARA, Shah Alam, Malaysia
Corresponding author of Chapter 24:
Tel: +603-5544-2779, Fax: +603-5544-2783, E-mail: roslanza@salam.uitm.edu.my

Abu Hassan, Zulkifli (Chapter 24)
Postgraduate Student, Faculty of Civil Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

Antonello, Giuseppe (Chapter 43)
European Commission, Joint Research Center, Via E. Fermi 1, Ispra (VA), 21020, Italy

Araiba, Kiminori (Chapter 40)
National Research Institute of Fire and Disaster/14-1, Nakahara 3 chome, Mitaka, Tokyo 181-8633, Japan

Astete, Fernando V. (Chapters 2, 4)
Instituto Nacional de Cultura (INC), Calle San Bernardo s/n., Cusco, Peru

Ayalew, Lulseged (Chapter 22)
Addis Ababa University, P.O. Box 29970, Addis Ababa, Ethiopia

Baldi, Paolo (Chapter 32)
Dept. of Physics, University of Bologna, Italy

Benavente, Edwin (Chapter 2)
Instituto Nacional de Cultura (INC), Calle San Bernardo s/n., Cusco, Peru

Best, Mel (Chapter 5)
BEMEX Consulting, 5288 Cordova Bay Rd., British Columbia, Victoria, Canada

Bhandary, Netra P. (Chapter 27)
Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
Corresponding author of Chapter 27:
Tel: +81-89-927-8566, Fax: +81-89-927-8566, E-mail: netra@dpc.ehime-u.ac.jp

Bobrowsky, Peter (Chapter 5)
NRCan, Geological Survey of Canada, 601 Booth Street, Ontario, Ottawa, Canada
Corresponding author of Chapter 5:
Tel: +1-613-947-0333, Fax: +1-613-992-0190, E-mail: pbobrows@nrcan.gc.ca
Boldini, Daniela · (Chapter 21)
Department of Structural and Geotechnical Engineering, University of Rome “La Sapienza”,
Via Monte d’Oro 28, 00186 Rome, Italy

Caillaux, Victor Carlotto · (Chapter 5)
INGEMMET, Instituto Geologico Minero y Metalurgico, Av. Canada, No 1470, San Borja, Lima, Peru

Canuti, Paolo · (Chapters 3, 23)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy

Cao, Binglan · (Chapter 10)
Environmental Geological Disaster Research Institute, Jilin University, 6 Ximinzhu Street,
Changchun 130026, China
Corresponding author of Chapter 10:
Tel: +86-431-854-0912, Fax: +86-431-556-7570, E-mail: caobl@jlu.edu.cn

Carreño, Raúl · (Chapters 17, 34)
GRUDEC AYAR, Apartado Postal 638, Cusco, Peru
Corresponding author of Chapters 17, 34:
Tel: +51-84-974-1455, Fax: +51-84-26-2590, E-mail: raulcarreno@ayar.org.pe

Casagli, Nicola · (Chapters 3, 6, 23, 43)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy

Cheibany, Ould Elemine · (Chapter 20)
Research Institute for Hazards in Snowy Areas, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan

Chiocci, Francesco Latino · (Chapter 32)
Dept of Earth Sciences, University of Rome “La Sapienza”, Italy

Christaras, Basile · (Chapter 30)
School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Corresponding author of Chapter 30:
Tel: +30-2310-99-8506, Fax: +30-2310-99-8506, E-mail: christar@geo.auth.gr

Colombini, Vittorio · (Chapter 8)
Via Merulana 272, 00185 Rome, Italy

Coltelli, Mauro · (Chapter 32)
INGV, Catania, Italy

Coman, Mihai · (Chapter 45)
ISPIF SA, 35-37, Oltenitei St., Bucharest, Romania

Crippa, Carlo · (Chapter 8)
Trevi S.p.A, Divisione Rodio, Via Pandina 5, 26831 Casalmaiocco, Lodi, Italy

Delmonaco, Giuseppe · (Chapters 3, 13, 26)
ENEA CR Casaccia, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy
Corresponding author of Chapter 13:
Tel: +39-06-3048-4502, Fax: +39-06-3048-4029, E-mail: delmonaco@casaccia.enea.it
Devoli, Graziella · (Chapter 29)
International Centre for Geohazards, c/o Norwegian Geotechnical Institute, P.O. Box 3930, Ulevala Stadion, 0806 Oslo, Norway
and Ph.D. Candidate at University of Oslo, Department of Geosciences, Norway
Corresponding author of Chapter 29:
Tel: +47-2202-3045, Fax: +47-2223-0448, E-mail: gde@geohazards.no

Dimitriou, Anastasios · (Chapter 30)
School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Dimopoulos, George · (Chapter 30)
School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Douma, Marten · (Chapter 5)
NRCan, Geological Survey of Canada, 601 Booth Street, Ontario, Ottawa, Canada

El-Shayeb, Yasser · (Chapter 28)
Faculty of Engineering, Cairo University, Giza 12613, Egypt
Corresponding author of Chapter 28:
Tel: +20-10-604-4698, Fax: +20-2-571-0035, E-mail: yasser.elshayeb@tempus-egypt.com

Emamjomeh, Reza · (Chapter 42)
Soil Conservation and Watershed Management Research Institute, P.O. Box 13445-1136, Tehran, Iran

Falconi, Luca · (Chapter 13)
ENEA CR Casaccia, Via Anguillaresre 301, 00060 Rome, Italy

Fanti, Riccardo · (Chapters 6, 23)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy
Corresponding author of Chapters 6, 23:
Tel: +39-055-275-7523, Fax: +39-055-275-6296, E-mail: rfanti@steno.geo.unifi.it

Farina, Paolo · (Chapter 43)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy
Corresponding author of Chapter 43:
Tel: +39-055-275-6221, Fax: +39-055-275-6296, E-mail: paolo.farina@geo.unifi.it

Ferretti, A. · (Chapter 3)
Tele-Rilevamento Europa, T.R.E., Via Vittoria Colonna 7, 20149 Milano, Italy

Fortuny-Guasch, Joaquim · (Chapter 43)
European Commission, Joint Research Center, Via E. Fermi 1, Ispra (VA), 21020, Italy

Frangov, Georgi · (Chapter 33)
Geological Institute, BAS, St. Acad. G. Bonchev Block 24, Sofia 1113, Bulgaria

Fukuoka, Hiroshi · (Chapters 2, 9, 11, 18, 19)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Corresponding author of Chapters 9, 18:
Tel: +81-774-38-4111, Fax: +81-774-38-4300, E-mail: fukuoka@SCL.kyoto-u.ac.jp
Furuya, Gen · (Chapter 20)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan

Gallage, Chaminda · (Chapter 16)
Department of Civil Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Gao, Shihang · (Chapter 39)
Department of Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Gratchev, Ivan B. · (Chapters 15, 46)
Graduate School of Science, Kyoto University, Japan and Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Corresponding author of Chapters 15, 46:
Tel: +81-77-438-4107, Fax: +81-77-438-4300, E-mail: gratchev@landslide.dpri.kyoto-u.ac.jp

Guerri, Letizia · (Chapter 43)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy

Hasegawa, Manabu · (Chapter 35)
Geographic Department, Geographical Survey Institute, Ministry of Land, Infrastructure and Transport, 1 Kitasato, Tukuba, Ibaraki, Japan

Havenith, Hans-Balder · (Chapter 12)
SED-ETH, Swiss Seismological Service, Institute of Geophysics, Hönggerberg, 8093 Zurich, Switzerland

Jezný, Michal · (Chapter 7)
Department of Engineering Geology, Faculty of Natural Sciences, Comenius University Bratislava, 84215 Bratislava, Mlynska dolina, Slovak Republic

Kalafatovich, Susana · (Chapter 34)
GRUDECA YAR, Apartado Postal 638, Cusco, Peru

Kato, Koji · (Chapter 22)
Shin Engineering Consultant Co. Ltd., Sakaedori 2-8-30 Shiroishiku, Sapporo 003-0021, Japan

Kjekstad, Oddvar · (Chapter 41)
Norwegian Geotechnical Institute, NGI, Sognsveien 72, P.O. Box 3930, Ullevaal Stadion, 0801, Norway
Corresponding author of Chapter 41:
Tel: +47-2202-3002, Fax: +47-2223-0448, E-mail: oddvar.kjekstad@ngi.no

Klimeš, Jan · (Chapter 4)
Institute of Rock Structure and Mechanics, Academy of Sciences, V Holešovièkách 41, 18000 Praha 8, Czech Republic

Kobayashi, Hideji · (Chapter 44)
Shin Engineering Consultants Co. Ltd., Sapporo 062-0931, Japan

Korup, Oliver · (Chapter 12)
Swiss Federal Research Institutes WSL/SLE, 7260 Davos, Switzerland
Koukis, G. · (Chapter 37)
Department of Geology, Section of Applied Geology and Geophysics, University of Patras, 26500 Patras, Greece

Leoni, Gabriele · (Chapter 13)
Consorzio Civita, Via del Corso 300, 00168 Rome, Italy

Leva, Davide · (Chapter 43)
LiSALab s.r.l., V. XX Settembre 34, Legnano (MI), 20025, Italy

Liao, Hongjian · (Chapter 39)
Department of Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Corresponding author of Chapter 39:
Tel: +86-29-8266-3228, Fax: +86-29-8323-7910, E-mail: hjliao@mail.xjtu.edu.cn

Lollino, G. · (Chapter 3)
CNR-IRPI Torino, Strada delle Cacce 73, 10135 Torino, Italy

Loupasakis, C. · (Chapter 37)
Institute of Geology and Mineral Exploration, Engineering Geology Department, Messogion Avenue 70, 11527 Athens, Greece

Mamaev, Yuri A. · (Chapter 46)
Institute of Environmental Geoscience of Russian Academy Science, Ulansky Pereulok 13, Building 2, P.O. Box 145, 101000 Moscow, Russia

Mamani, Romulo Mucho · (Chapter 5)
INGEMMET, Instituto Geologico Minero y Metalurgico, Av. Canada, No 1470, San Borja, Lima, Peru

Margottini, Claudio · (Chapters 3, 8, 13, 26)
ENEA CR Casaccia, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy
Corresponding author of Chapters 3, 8, 26:
Tel: +39-06-3048-4688, Fax: +39-06-3048-4029, E-mail: margottini@casaccia.enea.it

Marinos, Paul · (Chapters 30, 31)
National Technical University of Athens, School of Civil Engineering, Geotechnical Department, 9 Heroon Polytechniou Str., 15780 Zografou, Athens, Greece
Corresponding author of Chapter 31:
Tel: +30-210-772-3430, Fax: +30-210-772-3770, E-mail: marinos@central.ntua.gr

Marsella, Maria · (Chapter 32)
Dept of Hydraulics, Transports and Roads, University of Rome “La Sapienza”, Italy

Marui, Hideaki · (Chapter 20)
Research Institute for Hazards in Snowy Areas, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan

Marunteanu, Cristian · (Chapter 45)
Faculty of Geology and Geophysics, University of Bucharest, 6, Traian Vuia St., 020956 Bucharest, Romania
Corresponding author of Chapter 45:
Tel: +40-1-3125-003/34, Fax: +40-1318-1557, E-mail: cristian@gg.unibuc.ro
Matova, Margarita · (Chapter 33)
Geological Institute, BAS, St. Acad. G. Bonchev Block 24, Sofia 1113, Bulgaria
Corresponding author of Chapter 33:
Tel: +359-2979-2212, Fax: +359-272-4638, E-mail: m_matova@geology.bas.bg

Mucho, R. · (Chapter 3)
INGEMMET, Instituto Geologico Minero y Metallurgico, Av. Canadá 1470, San Borja, Lima 41, Peru

Nadim, Farrokh · (Chapter 41)
International Centre for Geohazards, ICG, c/o NGI, Sognsveien 72, P.O. Box 3930, Ullevaal Stadion, 0801, Norway

Nichol, Susan · (Chapter 25)
Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada

Nikolaou, N. · (Chapter 37)
Institute of Geology and Mineral Exploration, Engineering Geology Department, Messogion Avenue 70, 11527, Athens, Greece
Corresponding author of Chapter 37:
Tel: +30-210-779-6351, Fax: +30-210-778-2209, E-mail: nikolaou@igme.gr

Nocentini, Massimiliano · (Chapter 6)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy

Ochiai, Hirotaka · (Chapter 11)
Forestry and Forest Products Research Institute, Tsukuba, Japan

Osipov, Victor I. · (Chapter 15)
Institute of Environmental Geoscience, Russian Academy of Sciences, Ulansky Pereulok 13, Building 2, P.O. Box 145, Moscow 101000, Russia

Oviedo, Martin Jhonathan · (Chapter 5)
INGEMMET, Instituto Geologico Minero y Metalurgico, Av. Canada, No 1470, San Borja, Lima, Peru

Pagáková, Zuzana · (Chapter 7)
Department of Engineering Geology, Comenius University Bratislava, Faculty of Natural Sciences, 84215 Bratislava, Mlynska dolina, Slovak Republic

Paluš, Milan · (Chapter 14)
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou veřejností 2, 18207 Prague 8, Czech Republic

Pavlides, Spyros · (Chapter 30)
School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Peng, Xuanming · (Chapter 40)
Yichang Institute of Geology and Mineral Resources, China Geological Survey, 37 Gangyao Road, Yichang 443003, China

Pinto, Walter Pari · (Chapter 5)
INGEMMET, Instituto Geologico Minero y Metalurgico, Av. Canada, No 1470, San Borja, Lima, Peru
Pompilio, Massimo · (Chapter 32)
INGV, Catania, Italy

Postoyev, G. P. · (Chapter 38)
Institute of Environmental Geosciences RAS, Ulansky Pereulok 13, Moscow 101000, Russia

Puglisi, Claudio · (Chapters 3, 13)
Consorzio Civita, Via del Corso 300, 00186 Rome, Italy

Righini, Gaia · (Chapter 6)
Department of Earth Sciences, University of Firenze, Via Giorgio La Pira 4, 50121 Firenze, Italy

Romagnoli, Claudia · (Chapter 32)
University of Bologna, Dept. of Earth and Environmental Sciences, Italy

Rondoyanni, Theodora · (Chapter 31)
School of Mining and Metallurgical Engineering, Dept. of Geological Sciences, National Technical University of Athens, 9 Heroon Polytechniou Str., 15780 Zografou, Athens, Greece

Sabatakakis, N. · (Chapter 37)
Department of Geology, Section of Applied Geology and Geophysics, University of Patras, 26500 Patras, Greece

Sagara, Wataru · (Chapter 20)
SABO Technical Center, 4-8-21 Kudan-minami, Chiyoda-ku, Tokyo, 102-0074, Japan

Sasaki, Ryo · (Chapter 18)
Former Master Course graduate student, Graduate School of Science, Kyoto University, Japan

Sassa, Kyoji · (Chapters 1, 2, 9, 11, 15, 18, 19, 21, 40)
President of the International Consortium on Landslides
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Corresponding author of Chapters 1, 2, 11:
Tel: +81-774-38-4110, Fax: +81-774-32-5597, E-mail: sassa@SCL.kyoto-u.ac.jp

Sato, Hiroshi P. · (Chapter 35)
Geography and Crustal Dynamics Research Center, Geographical Survey Institute, Ministry of Land, Infrastructure and Transport,
1 Kitasato, Tukuba, Ibaraki, Japan

Shan, Wei · (Chapter 36)
College of Civil Engineering of Northeast Forestry University, Harbin 150040, China

Sheng, Qian · (Chapter 39)
Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

Shoaei, Gholamreza · (Chapter 42)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
and Natural Disaster Research Institute of Iran (NDRII)
Shoaei, Ziaoddin · (Chapter 42)
Soil Conservation and Watershed Management Research Institute, P.O. Box 13445-1136, Tehran, Iran
Corresponding author of Chapter 42:
Tel: +98-21-4490-1415, Fax: +98-21-4490-5876, E-mail: shoaei58@yahoo.com

Spizzichino, Daniele · (Chapters 13, 26)
Consorzio Civita, Via del Corso 300, 00168 Rome, Italy

Strom, Alexander L. · (Chapter 12)
Institute of Geospheres Dynamics, Russian Academy of Sciences, Leninskiy Av., 38-1, Moscow, Russia
Corresponding author of Chapter 12:
Tel: +7-095-939-7980, Fax: +7-095-137-6511, E-mail: a.strom@g23.relcom.ru

Su, Xueqing · (Chapter 25)
Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada

Svalova, V. B. · (Chapter 38)
Institute of Environmental Geosciences RAS, Ulansky Pereulok 13, Moscow 101000, Russia
Corresponding author of Chapter 38:
Tel: +7-095-207-4726, Fax: +7-095-823-1886, E-mail: inter@geoenv.ru

Takata, Shuzo · (Chapter 27)
Fukken Civil Engineering Consultants, 2-10-11 Hikarimachi, Higashi-ku, Hiroshima, Japan

Takeuchi, Atsuo · (Chapter 40)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji,
Kyoto 611-0011, Japan

Tarchi, Dario · (Chapters 3, 43)
European Commission, Joint Research Centre, SERAC Unit, Via E. Fermi 1, TP 723, 21020 Ispra (VA), Italy

Tian, Yongjin · (Chapter 9)
Lishan Landslide Prevention and Control Office, Xian, China

Tommasi, Paolo · (Chapters 21, 32)
Institute for Geo-Engineering and Environmental Geology, National Research Council, c/o Faculty of Engineering, Via Eudossiana 18, 00184 Rome, Italy
Corresponding author of Chapter 32:
Tel: +39-064-458-5005, Fax: +39-064-458-5016, E-mail: paolo.tommasi@uniroma1.it

Tonoli, Gedeone · (Chapter 8)
Trevi S.p.A, Divisione Rodio, Via Pandina 5, 26831 Casalmaicco, Lodi, Italy

Towhata, Ikuo · (Chapter 16)
Department of Civil Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
Corresponding author of Chapter 16:
Tel: +81-35-841-6121, Fax: +81-35-841-8504, E-mail: towhata@geot.t.u-tokyo.ac.jp

Tsunesumi, Haruo · (Chapter 35)
Geographic Department, Geographical Survey Institute, Ministry of Land, Infrastructure and Transport, 1 Kitasato, Tukuba, Ibaraki, Japan
Corresponding author of Chapter 35:
Tel: +81-29-864-6920, Fax: +81-29-864-1804, E-mail: tsune@gsi.go.jp
List of Contributors

Uchimura, Taro · (Chapter 16)
Department of Civil Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

Ugarte, David · (Chapter 2)
Instituto Nacional de Cultura (INC), Calle San Bernardo s/n., Cusco, Peru

Vankov, Dmitri A. · (Chapter 46)
Former doctoral student at Graduate School of Science, Kyoto University, Japan and Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan

Vašilová, Zuzana · (Chapter 14)
Bohemian Switzerland National Park Administration, Prašká 5, 40746 Krásná Lípa, Czech Republic

Verdel, Thierry · (Chapter 28)
LAEGO, École des Mines de Nancy, France

Vilimek, Vít · (Chapter 4)
Department of Physical Geography and Geocology, Faculty of Science, Charles University, Albertov 6, 12843 Prague 2, Czech Republic
Corresponding author of Chapter 4:
Tel: +420-22-195-1361, Fax: +420-22-195-1367, E-mail: vilimek@natur.cuni.cz

Vlčko, Ján · (Chapters 7, 4)
Department of Engineering Geology, Faculty of Natural Sciences, Comenius University Bratislava, 84215 Bratislava, Mlynska dolina, Slovak Republic
Corresponding author of Chapter 7:
Tel: +421-26-029-6596, Fax: +421-26-029-6702, E-mail: vlcko@fns.uniba.sk

Wang, Baolin · (Chapter 25)
Geological Survey of Canada, Natural Resources Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada
Corresponding author of Chapter 25:
Tel: +1-613-992-8323, Fax: +1-613-992-0190, E-mail: bwang@nrcan.gc.ca

Wang, Fawu · (Chapters 2, 9, 11, 21, 40)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Corresponding author of Chapters 21, 40:
Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: wangfw@landslide.dpri.kyoto-u.ac.jp

Wang, Gonghui · (Chapters 2, 9, 11, 18, 19, 40)
Research Centre on Landslides, Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Corresponding author of Chapter 19:
Tel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: wanggh@landslide.dpri.kyoto-u.ac.jp

Wang, Hui · (Chapter 10)
Environmental Geological Disaster Research Institute, Jilin University, 6 Ximinzhu Street, Changchun 130026, China

Wang, Yong · (Chapter 9)
Lishan Landslide Prevention and Control Office, Xian, China
Watanabe, Naoki · (Chapter 20)
Research Institute for Hazards in Snowy Areas, Niigata University, 2-8050 Ikarashi, Niigata, 950-2181, Japan
Corresponding author of Chapter 20:
Tel: +81-25-262-7058, Fax: +81-25-262-7050, E-mail: jibanken@cc.niigata-u.ac.jp

Yamagishi, Hiromitsu · (Chapters 22, 44)
Department of Environmental Science, Faculty of Science, Niigata University, Igarashi 2-no-cho 8050, Japan
Corresponding author of Chapter 22:
Tel: +81-25-262-6957, Fax: +81-25-262-6957, E-mail: hiroy@env.sc.niigata-u.ac.jp

Yasuda, Tadashi · (Chapter 44)
Public Consultants Co, Ltd., Sapporo 060-0005, Japan
Corresponding author of Chapter 44:
Tel: +81-11-222-2985, Fax: +81-11-222-2579, E-mail: tad_yasuda@public-con.co.jp

Yatabe, Ryuichi · (Chapter 27)
Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan

Ying, Jie · (Chapter 39)
Department of Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Yonekura, Naoshi · (Chapter 20)
Department of Public Works, Niigata Prefectural Government, 4-1 Shinko-cho, Niigata, 950-8570, Japan

Zhang, Lijun · (Chapter 36)
Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130012, China
and Information Center of Ministry of Land and Resources, Beijing, 100812, China
Corresponding author of Chapter 36:
Tel: +86-10-6655-8719, Fax: +86-10-6655-8613, E-mail: ljzhang@infomail.mlr.gov.cn

Zhang, Yeming · (Chapter 40)
Yichang Institute of Geology and Mineral Resources, China Geological Survey, 37 Gangyao Road, Yichang 443003, China

Zheng, Xiaoyu · (Chapter 10)
Environmental Geological Disaster Research Institute, Jilin University, 6 Ximinzhu Street, Changchun 130026, China

Zvelebil, Jiří · (Chapters 4, 14)
Geo-tools, NGO, U Mlejnu 128, 25066 Zdíby, Czech Geological Survey, Klárov 3, 11821 Prague, Czech Republic
Corresponding author of Chapter 14:
Tel: +420-60-225-9921, Fax: +420-25-753-1376, E-mail: jiri.zvelebil@geo-tools.cz
Part I
International Consortium on Landslides

Chapter 1
ICL History and Activities