Thomas Böllinghaus
Horst Herold

Hot Cracking Phenomena in Welds
Hot Cracking Phenomena in Welds

With 322 figures and 46 tables

Springer
Dr.-Ing. Thomas Böllinghaus
Vizepräsident und Prof. der BAM
Bundesanstalt für Materialforschung und -prüfung
Unter den Eichen 87
12205 Berlin
Germany
Thomas.Boellinghaus@bam.de

Prof. Dr.-Ing. habil. Dr. E.h. Horst Herold
Institut für Füge- und Strahltechnik
Fakultät für Maschinenbau
Otto-von-Guericke-Universität
Universitätsplatz 2
39106 Magdeburg
Germany
Horst.Herold@mb.uni-magdeburg.de

Library of Congress Control Number: 2005921916

ISBN 3-540-22332-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Data conversion by the author.
Final processing by PTP-Berlin Protago-TEx-Production GmbH, Germany
Cover-Design: deblik, Berlin
Printed on acid-free paper 62/3141/Yu – 5 4 3 2 1 0
Preface

During modern fabrication welding of welded components the avoidance of hot cracking still represents a major topic, sometimes also under new aspects. Austenitic stainless steels, for instance, widely used in industry and known to be crack-free joinable by arc welding might turn their primary solidification mode from ferrite to austenite and thus, might become increasingly susceptible to hot cracking during increasingly applied modern laser and hybrid processes.

Additionally, the phenomena of hot cracking in welds have not completely been understood up to the present. Hydrogen added to the shielding gas in arc welding processes, for instance, might enhance solidification cracking by an increasing the heat input, but has been also tentatively considered to contribute to ductility dip cracking by embrittlement. Quite numerous technological hot cracking test procedures have been developed all over the world to rank the hot cracking resistance of base and filler materials ahead of fabrication welding. Standardization of such tests appears as very challenging, because the different results are difficult to compare and to transfer to real component welds.

In order to provide a forum to define the present state of knowledge, to exchange recent research results, to discuss different viewpoints and to contribute to the ongoing standardization work on hot cracking phenomena in welds an international workshop has been organized in March 2004.

The present book contains the 20 individual contributions from experts all over the world covering four major subjects.

By seven contributions the first chapter provides a complete overview of the different hot cracking phenomena. Different mechanisms of solidification cracking proposed in the past decades are summarized and new insight is particularly given into the mechanism of ductility dip cracking.

In the second chapter, metallurgy and materials, the effect of different alloying elements on the hot cracking resistance of various materials are shown. The initiation of stress corrosion cracking at hot cracks has additionally been included in one contribution as a special metallurgical effect.

Since numerical analyses and other simulation techniques represent very helpful tools to explain cracking phenomena, three individual contributions show in the third chapter how modelling of hot cracking can be performed and how such results might support the explanation of mechanisms.
In the final chapter, the various hot cracking tests are presented in seven individual contributions with a special emphasis on the ongoing process of standardization. As a final contribution the necessary linking between testing and practise is outlined on the basis of actual extraordinary cases.

In total, the extensive contributions from eight different countries do not only provide the latest insight and define the international state of knowledge on hot cracking phenomena in welds. As a particular item, the authors included numerous future research perspectives, fairly enough to excite also the next generation of scientists. By touching all three types of hot cracking, namely solidification cracking, liquation cracking and ductility dip cracking and also by explanations of their differences various articles represent also a very helpful tool for metallurgical and mechanical engineering students of the higher semesters. Furthermore, the text contains helpful individual advices, particularly for international welding engineers confronted with hot cracking in practise.

The editors convey their sincere gratitude to the authors and to all the participants of the workshop for their individual contributions and their eager discussions and, in particular, for pushing the scientific knowledge about hot cracking phenomena in welds a huge step forward.

We especially thank Karen Stelling for her tremendous work in formatting the individual articles and to prepare this book for printing, Margit Bauer for her very helpful translation assistance and, in particular, Thomas Kannengiesser as well as BAM Division V.5 Joining Technology for the organization and their support during the workshop.

Berlin and Magdeburg, January 2005

Thomas Böllinghaus
Horst Herold
Contents

I Phenomena and Mechanisms

On the Origin of Weld Solidification Cracking ... 3
 C.E. Cross

New Insight into the Mechanism of Ductility-Dip Cracking in Ni-base Weld Metals ... 19
 A.J. Ramirez, J.C. Lippold

Influence of Welding Speed on the Hot Cracking Resistance of the Nickel-Base Alloy NiCr25FeAlY during TIG-Welding 42
 A. Slyvinsky, H. Herold, M. Streitenberger

The Role of Segregation of Oxygen in Welding Alloys of the INVAR Type .. 59
 K.A. Yushchenko, V.S. Savchenko, T.M. Starushchenko

Character of Hot Crack Formation during Welding of Cast Heat-Resistant Nickel Alloys ... 71
 K.A. Yushchenko, V.S. Savchenko, N.O. Chervyakov, A.V. Zvyagintseva

Contribution to HAZ Liquation Cracking of Austenitic Stainless Steels ... 84
 P. Bernasovský

Morphology of Hot Cracks in Single-Phase Weld Metal 104
 B. Yakhushin

II Metallurgy and Materials

The Effect of Silicon and Iron on the Weldability of Ni-Co-Cr-Si HR-160® Alloy ... 119
 I.S. Maroef, M.D. Rowe, G.R. Edwards

The Influence of Different Nb-Contents on the Hot Cracking Susceptibility of Ni-Base Weld Metals Type 70/20 141
 R. Vallant
Hot Cracks as Stress Corrosion Cracking Initiation Sites in Laser Welded Corrosion Resistant Alloys

III Modeling and Simulation

Simulating and Predicting Weld Solidification Cracks
Y. Wei, Z. Dong, R. Liu, Z. Dong, Y. Pan

Integrated Mechanical-Metallurgical Approach to Modeling of Solidification Cracking in Welds

Influence of the Weld Pool Geometry on Solidification Crack Formation
M. Wolf, H. Schobbert, Th. Böllinghaus

IV Testing and Standardization

Recent Developments in Weldability Testing
J.C. Lippold

Hot Cracking Tests – The Route to International Standardization
J.C.M. Farrar

Value of Different Hot Cracking Tests for the Manufacturer of Filler Metals
H. Heuser

Influence of the Deformation Rate of Different Tests on Hot Cracking Formation
H. Herold, A. Pchennikov, M. Streitenberger

Testing for Susceptibility to Hot Cracking on Gleeble Physical Simulator
S.T. Mandziej
Scientific Bases of the International Standardization Project
"Hot Cracking Tests for Welds" .. 377
 B. Yakhushin, D. Semin

Discussion and Evaluation of Some Extraordinary Cases
of Hot Cracking .. 383
 K. Wilken
I Phenomena and Mechanisms