Shock Waves
Propagation of a shock wave ($M_S = 2.25$ in N_2) over a cylindrical obstacle (\varnothing 20 mm) in a channel of 54 mm height, visualized by infinite fringe polychrome shearing interferometry. Image taken by H. Kleine and H. Grönig at the Shock Wave Laboratory, RWTH Aachen, Germany.
Preface

The 24th International Symposium on Shock Waves (ISSW24) was held at the Beijing Friendship Hotel during July 11-16, 2004, in Beijing. It was a great pleasure for the Local Organizing Committee to organize the ISSW in China for the first time, because forty-seven years have passed since the First Shock Tube Symposium was held in 1957 at Albuquerque. The ISSW24 had to be postponed for one year because of the SARS outbreak in Beijing shortly before the Symposium was scheduled to be held in 2003, but it has achieved success due to the continuous support and kind understanding from all the delegates. It is very heart-warming to have had such an experience and I am very happy to have served as chairman for the Symposium. I would like to thank all for the contributions and help that they have given us over the past three years, without which we would not have had the Symposium.

A total of 460 abstracts were submitted to the ISSW24. Each of the abstracts was evaluated by three members of the Scientific Review Committee and the decision on acceptance was made based on the reviewers’ reports. 195 oral papers, including 9 plenary lectures, were accepted to be presented in three parallel sessions, and 135 poster papers in three dedicated poster sessions. Topics discussed in these papers cover all aspects of shock wave research. Among the topics, supersonic and hypersonic aerodynamics; shock waves reflection, diffraction and focusing; and detonation phenomena and pulse detonation engines were the most popular. Such topics not only include interesting fundamental flow physics, but also have important applications. The plenary lectures were selected based on recommendations from all the IAC members, and reviewed the state of the art of recent shock wave research. It is also found that a good number of papers are the result of international research collaboration. These facts have demonstrated that the ISSW24 is really international and scientific, and that shock wave research is an important research field of continuously increasing interest.

The final programme consisted of 8 plenary lectures, 123 oral papers and 75 poster papers. The total number is much smaller than that originally accepted due to the change of date, and even though this was chosen carefully, it still overlapped with other conferences, for example, the 24th International Symposium on Rarefied Gas Dynamics from July 10-14, 2004. There were 232 participants registered at ISSW24 from 20 countries and regions: Australia 9, Canada 11, China 57, Chinese Taiwan 2, France 8, Germany 14, India 21, Iran 1, Israel 7, Japan 57, Korea 2, Morocco 1, Netherlands 2, Norway 2, Russia 8, Singapore 3, South Africa 4, Thailand 1, UK 7, USA 15.

Two hundred and three papers are published in the final proceedings and are organized in such a way that all the papers relating to similar topics are grouped together. Both oral and poster papers are considered to be equal without making any distinction between them. The Proceedings are more comprehensive than the CD-ROM that all the participants received during the Symposium, which only contains the full papers that were received before June 15, 2004, and which was intended as a tool for the prompt exchange of research information. The proceedings is a valuable resource because it brings the recent information of shock wave research together in one place, acts as an introduction to many researchers and students, and serves as a tool for promotion of the ISSW.

We have been greatly assisted in planning the ISSW24 by continuous support from various sponsors: Chinese Academy of Sciences, Nature Sciences Foundation of China, Chinese Society of Shock Waves, Chinese Society of Theoretical and Applied Mechanics,
and Chinese Society of Aerodynamics. On behalf of the Local Organizing Committee, I would like thank all the members of the International Advisory Committee for their guidance and suggestions, and the Scientific Review Committee for their careful and efficient evaluation of the abstracts. My greatest thanks have to be to the delegates for providing high quality papers, and actively participating in the Symposium. In particular, I would like to thank Prof. JM Yang from the University of Sciences and Technology of China for helping me to arrange and adjust the Symposium program, and make the presentations move smoothly. For editorial assistance, I wish to thank Dr. C. Wang for re-editing all the papers according to the required style of the ISSW24, and for compiling these proceedings. I must also thank Miss Q. Pu and X. Wang, my secretaries, for taking care of so many details in organizing the Symposium. Many thanks also go to the staff and students of the Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics of CAS, for helping and supporting me over the past three years. Finally, I want to express my appreciation to Dr. Chris Caron from Springer-Verlag for his kind cooperation in publishing these proceedings.

Zonglin Jiang
Chairman of ISSW24
July 11-16, 2004
The 24th International Symposium on Shock Waves
Hosted by Institute of Mechanics
Chinese Academy of Sciences
Beijing, China
July 11-16, 2004

Honorary Chairman
Hongru Yu

Chairman
Zonglin Jiang

Vice Chairman
Zhaoyuan Han

ISSW24 Committee

Local Organizing Committee

Hongru Yu Zhaoyuan Han Xinyu Chang
Erjie Cui Xiaogang Deng Xueying Deng
Jialing Le Feng Li Yiguang Ju
Guoliang Mao Xizhuang Shan Chao Wang
Jiming Yang Hanxin Zhang Naiyi Zhu
Fenggan Zhuang

International Advisory Committee

Robert Bakos Gabi Ben-Dor Martin Brouillette
Keun-Shik Chang Tatiana Elizarova Nikita Fomin
Boris Gelfand Victor Golub Herbert Oliver
Zhao-Yuan Han Frank Houwing Ozer Igra
Katsuhiro Itoh Valery Kedrinskii Shenmin Liang
Assa Lifshitz Frank Lu Michio Nishida
Allan Paull Jagannatha Reddy Graham Roberts
Friedrich Seiler Joseph Shepherd Beric Skews
Kazuyoshi Takayama Geraint Thomas M.E.H. Van Dongen
Hong-Ru Yu David Zeitoun Fan Zhang
Scientific Review Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takashi Abe</td>
<td>Shigeru Aso</td>
<td>Brian Argrow</td>
<td></td>
</tr>
<tr>
<td>Holger Babinsky</td>
<td>Robert Bakos</td>
<td>Graham Ball</td>
<td></td>
</tr>
<tr>
<td>Luc Bauwens</td>
<td>Gabi Ben-Dor</td>
<td>Tatiana Bormotova</td>
<td></td>
</tr>
<tr>
<td>Martin Brouillette</td>
<td>Keun-Shik Chang</td>
<td>Amer Chpoun</td>
<td></td>
</tr>
<tr>
<td>Randy Chue</td>
<td>Xiaogang Deng</td>
<td>Georg Eitelberg</td>
<td></td>
</tr>
<tr>
<td>Sudhir Gai</td>
<td>Boris Gelfand</td>
<td>Victor Golub</td>
<td></td>
</tr>
<tr>
<td>Jagadeesh Gopalan</td>
<td>Hans Gronig</td>
<td>Jean-Francois Haas</td>
<td></td>
</tr>
<tr>
<td>Zhao-Yuan Han</td>
<td>Koichi Hayashi</td>
<td>Ozer Igra</td>
<td></td>
</tr>
<tr>
<td>Katsuhiko Itoh</td>
<td>Mikhail Ivanov</td>
<td>In-Seuck Jeung</td>
<td></td>
</tr>
<tr>
<td>Valery Kedrinskii</td>
<td>Mark Kendall</td>
<td>Boo C. Khoo</td>
<td></td>
</tr>
<tr>
<td>Feng Li</td>
<td>Shenmin Liang</td>
<td>Assa Lifshitz</td>
<td></td>
</tr>
<tr>
<td>Kazuo Maeno</td>
<td>Brian Milton</td>
<td>Marco Minucci</td>
<td></td>
</tr>
<tr>
<td>Hiroshi Miyajima</td>
<td>Richard Morgan</td>
<td>Ramakanth Munipalli</td>
<td></td>
</tr>
<tr>
<td>Michio Nishida</td>
<td>Herbert Oliver</td>
<td>Allan Paull</td>
<td></td>
</tr>
<tr>
<td>Ethirajan Rathakrishnan</td>
<td>Jagannatha Reddy</td>
<td>Graham Roberts</td>
<td></td>
</tr>
<tr>
<td>Paul Roth</td>
<td>Tsutomu Saito</td>
<td>Akihiro Sasoh</td>
<td></td>
</tr>
<tr>
<td>Friedich Seiler</td>
<td>Joseph Shepherd</td>
<td>Beric Skews</td>
<td></td>
</tr>
<tr>
<td>M.E.H. Van Dongen</td>
<td>Zbigniew Walenta</td>
<td>Hai Wang</td>
<td></td>
</tr>
<tr>
<td>Jiming Yang</td>
<td>Fan Zhang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sponsors

- Chinese Academy of Sciences
- Nature Sciences Foundation of China
- Chinese Society of Shock Waves
- Chinese Society of Theoretical and Applied Mechanics
- Chinese Society of Aerodynamics
Contents

Volume I

<table>
<thead>
<tr>
<th>Part I</th>
<th>Plenary Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of forty years continuous shock wave research at interdisciplinary shock wave research center, Tohoku University</td>
<td>K. Takayama 3</td>
</tr>
<tr>
<td>Precursor kinetics and nanoparticle synthesis studied in a shock wave reactor</td>
<td>P. Roth, A. Giesen 11</td>
</tr>
<tr>
<td>The propagation mechanism of cellular detonation</td>
<td>J.H.S. Lee 19</td>
</tr>
<tr>
<td>The development of the HyShot flight program</td>
<td>A. Paull, H. Alesi, S. Anderson 31</td>
</tr>
<tr>
<td>Shock induced porous barrier flows, with underlying wall pressure amplification</td>
<td>B.W. Skews, S. Bugarin 49</td>
</tr>
<tr>
<td>The single pulse shock tube: its odyssey in chemical kinetics</td>
<td>A. Lifshitz 57</td>
</tr>
<tr>
<td>Recent developments with gaseous detonation drivers for a shock tunnel</td>
<td>H-r Yu 65</td>
</tr>
<tr>
<td>Some perspectives on pulse detonation propulsion systems</td>
<td>F.K. Lu, D.R. Wilson 75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II</th>
<th>Supersonic and Hypersonic Aerodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser energy deposition in Edney IV interaction</td>
<td>D. Knight, R. Adelgren, G. Elliott, H. Yan, T. Beutner 89</td>
</tr>
<tr>
<td>Hypersonic wave drag reduction in re-entry capsules using concentrated energy deposition</td>
<td>K. Satheesh, G. Jagadeesh, P.S. Kulkarni 95</td>
</tr>
</tbody>
</table>
Supersonic flow over double cone geometries
H. Kleine, K. Hiraki .. 101

An expansion tube study of high enthalpy carbon-dioxide flows
T.J. McIntyre, T.N. Eichmann, I. Lourel, K.M. Hajek, H. Rubinsztein-Dunlop 107

Shock tunnel measurement of the interaction amplification factor for a hot gas side jet in a supersonic cross flow
M. Havermann, H. Ende, F. Seiler, M. Schwenzer .. 113

Drag reduction by controlled base flow separation for missile shaped bodies flying at hypersonic Mach number

Improvement of aerospike nozzle efficiency due to change of plug base configuration
S. Aso, K. Sugimoto ... 125

Measurement and calculation of vibrational temperature behind strong shock waves
R.L. Zhang, J.L. Le, J.P. Cui, F.M. Yu, L.H. Han, S. Wang, J. Liu 131

Interference effects due to a transverse slot jet in a hypersonic flow
F.C. Dixon, G.T. Roberts, O.R. Tutty ... 137

Aerodynamic characteristics of generic flight vehicle configuration from shock tunnel tests
A.G. Sarwade, A.S. Narayana, S. Panneerselvam, N. Sahoo,
S. Saravanan, G. Jagadeesh, K.P.J. Reddy .. 143

Heat transfer measurement and its application to CFD code evaluation
T. Kuribayashi, T. Saito, V. Menezes, M. Sun, G. Jagadeesh,
K. Takayama .. 149

Chemical nonequilibrium effects on flow field for reusable launch vehicles
H. Ma, L. Zhao, F.M. Wang .. 155

Integration property of a wedge-elliptic cone waverider with scramjet engine
H. Liu, F.M. Wang, L.W. Li, Y.B. Geng ... 161

Dynamic behavior of the shock wave formed around a reflector in supersonic flow
K. Hiraki, H. Kleine ... 167

Flow establishment over rearward-facing steps in high enthalpy flows
M.J. Hayne, D.J. Mee, S.L. Gai, B.S. Stewart, R.G. Morgan 173

Experimental and numerical investigation of high enthalpy flow past a cylinder in HEG
S. Karl, J. Martinez Schramm, K. Hannemann 179
Non-conventional dissociation rate in non-equilibrium boundary layer
N. Belouaggadia, R. Brun, T. Saito, K. Takayama 185

Power law shapes for leading-edge blunting with minimal standoff distance in low-density hypersonic flow
W.F.N. Santos ... 191

Surface temperature and pressure dependency of catalytic effects to flat plates in high enthalpy flow

Force and moment measurements on the HOPPER configuration for high enthalpy conditions
C. Glößner, H. Olivier ... 203

Time resolved holographic interferometry for short duration hypersonic high enthalpy test facilities
J. Martinez Schramm, A. Boutry, M. Vital Durand, K. Hannemann 209

Investigation of electromagnetic wave propagation in plasma by shock tube

Reduction of radiative heating due to a SiC ablation layer
M. Funatsu, H. Shirai ... 221

Effect of aerodynamic heating on infrared guided missiles
J.F. Milthorpe, P.J.P. Lynn 227

Numerical calculation of visible spectral radiation of sphere model in ballistic range
J. Liu, M. Zeng, A.H. Shi, R.L. Zhang, J.L. Le, Z.H. Qu 233

Effect of gas injection on drag and surface heat transfer rates for a 30° semi-apex angle blunt body flying at Mach 5.75
N. Sahoo, V. Kulkarni, G. Jagadeesh, K.P.J. Reddy 239

Nozzle start flow investigation in the conditions of high-altitude test
V.V. Volodin, T.V. Bazhenova, V.E. Fortov, V.V. Golub, A.A. Makeich, S.B. Shcherbak 245

Real gas effects on flows over rearward-facing steps in high enthalpy flows
M.J. Hayne, S.L. Gai, D.J. Mee, R.G. Morgan 251

Investigation of nonequilibrium radiation and relaxation phenomena in shock tubes
N.Y. Zhu, Q.S. Yang, H.L. Zhang, X.L. Yu, L.S. Huang 257

An experimental study on aerodynamic characteristics of standard model HB-2 in high enthalpy shock tunnel HIEST
Measurement of electron density profile behind strong shock waves with a Langmuir probe
S. Wang, J.P. Cui, B.C. Fan, Y.Z. He, R.L. Zhang, L.H. Han, F.M. Yu, J.L. Le ... 269

Shock wave shape on power law leading edges
W.F.N. Santos .. 275

Part III Experimental Facilities and Diagnostics

Nozzle development for an expansion tunnel
M.P. Scott, P.A. Jacobs, R.G. Morgan 283

Active diaphragm rupture with laser beam irradiation
T. Takahashi, H. Torikai, Q.S. Yang, K. Watanabe, A. Sasoh 295

Development of a shock-induced detonation driver
F.K. Lu, D.R. Wilson ... 301

Operation of the ISL transonic shock tube in a high subsonic flow regime
F. Seiler, M. Havermann, F. Boller, P. Mangold, K. Takayama 307

Performance of the detonation driven shock tunnel

End-to-end modelling of the HEG shock tunnel

Ground testing of the HyShot supersonic combustion flight experiment in HEG

An investigation of shock induced gas mixing in a large cross section shock tube with a laser sheet technique
L. Houas, G. Jourdan .. 335

Force measurements on hypersonic waveriders in the IISc hypersonic shock tunnel HST2

Laser-Induced-Incandescence (LII) for particle sizing behind shock waves
R. Starke, P. Roth ... 347

Experimental study and numerical simulation of cellular structures and Mach reflection of gaseous detonation waves
D.L. Zhang, C.M. Guo .. 353
Application of the FM spectroscopic technique to SiH\textsubscript{2} detection in a shock tube
M.W. Crofton, E.L. Petersen .. 359

A new 6-component accelerometer force balance for short duration ground testing facilities
S. Saravanan, G. Jagadeesh, K.P.J. Reddy 365

Unsteady drag force measurement in shock tube
H. Tanno, T. Komuro, K. Sato, K. Itoh, S. Ueda, K. Takayama,
H. Ojima ... 371

Measurements of mixing induced at a gas interface by the Richtmyer-Meshkov instability

Experimental investigation on the influence of the starting process of the nozzle of shock tunnel on the operating condition of shock tube
P. Xie, Z.Y. Han ... 383

Surface pressure and heat transfer measurements in the unsteady separated hypersonic flow field over double cones
B. Vasudevan, S.P. Srikanth, H.U. Shashidhar, G. Jagadeesh 389

Application of heat transfer measurement using TLC in gun wind tunnel
X. Chen, Z.X. Bi, Z.S. Wu .. 395

Impulse combustion tunnel and its application in experimental research of scramjet
W. He, Y. Tan, X.D. Li, W.X. Liu, J.L. Le 401

A novel free floating accelerometer force balance system for shock tunnel applications
R. Joarder, D.R. Mahaptra, G. Jagadeesh 407

Nozzle flow calibration of high enthalpy shock tunnel HIEST
T. Komuro, H. Tanno, K. Sato, S. Ueda, K. Itoh 413

Part IV Shock Reflection, Refraction and Focussing

Shock wave reflection from a wedge in a dusty gas
O. Igra, G. Hu, J. Falcovitz, B.Y. Wang 421

Study on the shock interference in a wedged convergent-divergent channel
F.M. Yu, C.Z. Wang .. 429

3D interaction of shock waves in corner flow
Y.P. Goonko, A.N. Kudryavtsev, A. Chpoun 437
Wave systems around an accelerated disk
B.W. Skews, C. Law ... 443

Effects of heat transfer on the propagation of shocks at small scales
M. Brouillette ... 449

Experimental study of diverging and converging spherical shock waves
and their interaction with product gases
S.H.R. Hosseini, K. Takayama .. 455

The wall-jetting effect in Mach reflection: a numerical investigation
G. Ben-Dor, E.I. Vasilev, L.F. Henderson, T. Elperin 461

Analytical solution of flow field for weak Mach reflection over plane
surface
A. Sakurai, F. Takayama ... 467

Numerical investigation of toroidal shock waves focusing
H.H. Teng, Z. Jiang, Z.Y. Han, S.H.R. Hosseini, K. Takayama 473

Study of separated flows over double wedges and cones
T. Hashimoto, K. Takayama .. 479

Numerical and experimental study of the Mach 2 pseudo-shock wave in
a supersonic duct
L.Q. Sun, H. Sugiyama, K. Mizobata, T. Hiroshima, A. Tojo 487

Shock reflection and focusing in H2-air mixtures
B.L. Wang, W. Rehm ... 493

Optimal triple configurations of stationary shocks
G. Tao, V.N. Uskov, M.V. Chernyshov 499

Effects of the shock tube open-end shape on vortex loops released from
it
M. Kainuma, M. Havermann, M. Sun, K. Takayama 505

Numerical simulation of steady shock and detonation wave configura-
tions in a supersonic chemically reacting flow
A.V. Trotsyuk, A.N. Kudryavtsev, M.S. Ivanov 511

Hysteresis effect of oblique shock interactions in an axisymmetric steady
flow
Y. Burtschell, D.E. Zeitoun ... 517

Mach disk destruction by interference of rarefaction and compression
waves
A.L. Kotelnikov, T.V. Bazhenova, V.V. Golub, A.S. Chizhikov,
M.V. Bragin, S.B. Scherbak ... 523

3-D shock structure in underexpanded supersonic jets from elliptical
and rectangular exits
N. Menon, B.W. Skews .. 529
Action on the obstacle of a shock wave discharged from a partly closed channel exit
T.V. Bazhenova, V.V. Golub, A.L. Kotelnikov, A.S. Chizhikov 535

Laser energy deposition in crossing shock interaction
H. Yan, D. Knight, G. Elliott ... 541

Numerical investigation on shock passing through a gas particle suspension and diffracting over a wedge in a duct
S.L. Xu, S. Han, P.T. Yue, J.M. Yang, R.D. Archer 547

Enhancement of shock waves
D. Igra, O. Igra .. 557

Shock wave reflections at an wedge in dusty gases
T. Saito, M. Marumoto, K. Takayama 565

Investigation of imploding shock waves using the hydraulic analogy
C.B. Kiyanda, P. Chaput, A.J. Higgins, J.H.S. Lee 571

Analysis of behaviors of shock focusing in the inner cavities of double wedge and cone
C. Wang, Z.Y. Han, M. Situ .. 577

Part V Chemical Kinetics and Chemical Mechanisms

Silane oxidation behind reflected shock waves
E.L. Petersen, D.M. Kalitan, M.J.A. Rickard, M.W. Crofton 585

Kinetics of the gas phase reaction of SnO with O₂
J. Herzler, M. Kennedy, F.E. Kruis, P. Roth 591

Heat transfer modelling to catalytic protection systems of space vehicles entering into martian atmosphere
V. Kovalev, N. Afonina, V. Gromov 597

Shock-tube study of acetaldehyde pyrolysis
Y. Hidaka, S. Kubo, T. Hoshikawa, H. Wakamatsu 603

Shock tube studies on the high temperature chemical kinetics of allyl radicals: reactions with C₂H₂, CH₄, H₂ and C₃H₅ at 1000–1400 K
S.J. Isemer, K. Luther .. 609

Shock wave kinetics of Fe + NO based on Fe, O, and N atom measurements
A. Giesen, J. Herzler, P. Roth .. 615

Thermal decomposition of haloethanols: single pulse shock tube and ab initio studies
B. Rajakumar, K.P.J. Reddy, E. Arunan 621
Shock-tube studies on the reactions of 2H-heptafluoropropane with H and O(3P) atoms and the subsequent reactions
O. Yamamoto, K. Takahashi, T. Inomata .. 627

Modeling iron particle synthesis in a shock wave reactor
A. Kowalik, P. Roth ... 633

Reactions of C2 oxy-hydrocarbons at high temperatures
T. Koike, H. Ichino, K. Yasunaga, Y. Hidaka .. 639

A shock tube method in the kinetic study of nonequilibrium ionization-recombination by rarefaction wave cooling
S. Wang, J.P. Cui, B.C. Fan, Y.Z. He ... 645

Shock-tube study of ethanol pyrolysis
Y. Hidaka, H. Wakamatsu, M. Moriyama, T. Koike, K. Yasunaga...... 651

Part VI Shock/Boundary Layer and Shock/Vortex Interactions

Two-dimensional numerical modelling of overtaking shock-wave/moving-body interactions
C. Law, B.W. Skews ... 659

Experimental investigation of shock accelerated spherical gas inhomogeneity
G. Layes, G. Jourdan, L. Houas .. 665

Sudden energy release at the vicinity of a vortex

The flow-field around a small square plate interacting with the vortex flow released from a shock tube
T. Minota ... 677

Noise reduction by using smoothed corner at a duct exit
S.M. Liang, H. Chen ... 683

Diffraction patterns of a shock wave interacting with strong/weak vortices
S.-M. Chang, K.-S. Chang .. 689

Investigation of supersonic/hypersonic shock-wave/boundary-layer interactions (SBLIs)
R.O. Bura, G.T. Roberts, Y.F. Yao, N.D. Sandham 695

Experimental study of a shock accelerated water layer with imaging and velocity measurement
P. Meekunnasombat, J.G. Oakley, M.H. Anderson, R. Bonazza 701

Authors Index ... 707
Keywords Index ... 712

Volume II

Part VII Biological and Medical Applications

Evolution of the design of Venturi devices for the delivery of dry particles
to skin or mucosal tissue
G. Costigan, Y. Liu, G.L. Brown, F.V. Carter, B.J. Bellhouse 719

A novel method to transform prokaryotic cells using shock waves
K.N. Nataraja, M. Udayakumar, G. Jagadeesh .. 725

The effects of diaphragm rupture and particle loading in contoured shock
tubes for vaccine delivery
N.K. Truong, M.P. Hardy, M.A.F. Kendall ... 731

Development of Ho: YAG laser-induced cavitation shock wave gener­
tor for endoscopic shock wave exposure
J. Sato, A. Nakagawa, T. Saito, T. Hirano, T. Ohki, H. Uenohara,
K. Takayama, T. Tominaga ... 737

Part VIII Detonation Phenomena and Pulse Detonation Devices

Head-on collision of a detonation with a planar shock wave
H.D. Ng, N. Nikiforakis, J.H.S. Lee ... 745

Numerical simulation on pulse detonation propulsion
C. Wang, Z. Jiang ... 751

Temperature and velocity measurements of imploding detonation
T. Tsuboi, K. Babazono, S. Nishizuka, M. Asakura, K. Ishii 757

The interaction of a detonation with a perforated plate
J. Chao, J.H.S. Lee .. 763

Initiation of stabilized detonations by projectiles
P. Hung, J.E. Shepherd ... 769

Effect of reaction order on stability of planar detonation waves
Z. Liang, L. Bauwens ... 775

Numerical and experimental study on the effect of obstacles on DDT
process
A.K. Hayashi, H. Shimada, K. Eto, J. Misawa, S. Shiokawa, H. Sato,
N. Tsuboi, J.H.S. Lee ... 781

Pulse detonation in a chamber with divergent nozzle
H.H. Li, Y.J. Zhu, J.M. Yang, M. Sun, X.S. Luo .. 789
Aluminium dust-air detonation at elevated pressures
F. Zhang, S.B. Murray, K.B. Gerrard .. 795

Influence of diaphragm properties on shock wave transmission
S.B. Murray, F. Zhang, K.B. Gerrard, P. Guillo, R.C. Ripley 801

Jet-initiated hydrogen detonation phenomena
S.P. Medvedev, S.V. Khomik, H. Olivier, A.N. Polenov, A.M. Bartenev,
B.E. Gelfand .. 807

The effect of chain initiation reaction on the stability of gaseous detonations
K. Mazaheri, S.A. Hashemi .. 813

Numerical studies of pre-detonator ignition of pulse detonation engine
J.P. Wang, Y.F. Liu, T.W. Li .. 819

Experimental study of a pulse detonation rocket with Shchelkin spiral
F.K. Lu, J.M. Meyers, D.R. Wilson ... 825

Transition between detonation and deflagration in a tube with a cavity
Z.M. Hu, C.L. Liu, D.L. Zhang, Z. Jiang .. 831

Investigation on detonation in $2\text{H}_2/\text{O}_2$ mixture initiated by AgN$_3$
S.L. Xu, K. Takayama, M.Y. Sun .. 837

Eigenvalue detonation of nitromethane and its failure
Y.M. Li, D.L. Frost .. 843

Experimental investigation on gaseous detonation propagation through
a heart-shape tube
C.J. Wang, S.L. Xu, Y.J. Zhang .. 849

Detonation modelling of high explosive cylinders
J.P. Lu, J.G. Anderson, F.C. Christo ... 855

Experimental study on liquid-fueled pulse detonation engine
Q.H. Mu, C. Wang, W. Zhao, Z. Jiang ... 861

Detonation loading of tubes in the modified shear wave speed regime
T. Chao, J.E. Shepherd .. 865

Direct initiation of detonation with ignition tube
H. Chen, X.Y. Zhang, H.R. Yu .. 871

New applications of soot track record in investigation of gaseous deto-
nation diffraction
C.M. Guo, D.L. Zhang, S.L. Xu .. 877

Part IX Supersonic Combustion and Scramjets
Performance measurements in a shock tunnel of a fuelled scramjet vehicle generating lift, thrust and pitching moment
M.J. Robinson, D.J. Mee ... 885

Experimental studies on model scramjet in a Mach 6 high enthalpy free-jet wind tunnel

Massively parallel computation of three-dimensional scramjet combustor
Z.H. Zheng, J.L. Le ... 897

Reducing skin friction by boundary layer combustion on a generic scramjet model
M. Trenker, D.J. Mee, R.J. Stalker .. 903

Numerical study on ignition of supersonic combustion fueled by partly catalyzed kerosene
S.L. Xu, S.H. Huang, X.Y. Liu, J.M. Dong, X.Z. Liu 909

\(\text{H}_2 \) injection in Mach 5 air flow: numerical study
Y. Burtschell, D.E. Zeitoun ... 915

Observation of mixing and combustion processes of \(\text{H}_2 \) jet injected into supersonic streamwise vortices
T. Sunami, F. Scheel ... 921

Numerical study on kerosene spray in supersonic flow
L.J. Yue, G. Yu ... 927

Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

Numerical investigation on the mixing and combustion in supersonic ejecting flow of RBCC
S.H. Huang, G.Q. He, H.Q. He, S.L. Xu .. 941

Time requirements for scramjet performance study with fuel of kerosene
J.L. Le, W.X. Liu, Y. Tan, W. He .. 947

Time series evaluation of 2-D air and hydrogen supersonic mixing layer by using catalytic reaction
F. Sakima, T. Arai, J. Kasahara, F. He, M. Murakoshi 953

An experimental study of supersonic combustion with incoming high temperature pure air stream obtained by shock tunnel
A.N. Hakim, S. Aso, S. Miyamoto, K. Toshimitsu 959

Gas sampling/analysis of the high enthalpy supersonic flow
L.H. Chen, B.K. Zheng, X.Y. Chang ... 965
Part X Blast Waves and Explosions

Sound generation by explosive decompression of an airplane
J.E. Shepherd, H.G. Hornung ... 973

Impulse characteristics of laser-induced blast wave in monoatomic gases
X.L. Yu, T. Ohtani, A. Sasoh, S. Kim, N. Urabe, I.-S. Jeung 979

Blast field of microexplosives at atmospheric and reduced pressures
E. Martel, M. Brouillette ... 983

Blast wave attenuation by lightly destructable granular materials
V.V. Golub, F.K. Lu, S.A. Medin, O.A. Mirova, A.N. Parshikov,
V.A. Petukhov, V.V. Volodin ... 989

Study on numerical simulation of gas explosion in confined volume
C. Wang, J. Lu, J.G. Ning ... 995

Unsteady drag force measurements over bodies with various configurations in a vertical shock tube
K. Tamai, T. Ogawa, H. Ojima, J. Falcovitz, K. Takayama1001

Planar shock-cylindrical blast wave interaction
M. Li, X.L. Yang, Y.J. Zhu, J.M. Yang, M. Sun, K. Takayama1007

Numerical investigations of volcanic eruption and production of hazard maps
H. Yamashita, T. Saito, K. Takayama ...1013

Reflection of blast waves from straight surfaces
H. Kleine, E. Timofeev, K. Takayama ...1019

The effect of ground and wall on the impulse wave discharged from an open end of a duct
Y.H. Kweon, T. Aoki, Y. Miyazato, H.D. Kim, T. Setoguchi1025

Part XI Shocks in Solids and Multi-Phase Flows

Shock tube problem with phase transition: numerical analysis and experiments
X. Luo, D.G. Labetski, V. Holten, M.E.H. van Dongen1033

Shock wave phenomena in underwater laser peening
K. Watanabe, H. Torikai, Q.S. Yang, A. Sasoh, Y. Sano, N. Mukai1039

An experimental and theoretical study of shock-induced surface waves in porous boreholes
G. Chao, D.M.J. Smeulders, M.E.H. van Dongen1043
Two-dimensional effects of the head on interaction between planar shock wave with low density foam
G. Malamud, D. Levi-Hevroni, A. Levy ...1049

Shock waves in complex (dusty) plasmas
D. Samsonov, S. Zhdanov, G. Morfill ...1055

Condensation coefficient of methanol vapor near vapor-liquid equilibrium states
S. Fujikawa, T. Yano, M. Ichijo, K. Iwanami1061

Possible meteoritic impact structures in China
Y. Miura, A. Koga, A. Nakamura, X. Hu, J.B. Li, Z. Jiang,
K. Takayama ...1067

Study on the effect of Mach number and initial amplitudes on the evolution of a single-mode shock-induced hydro-dynamic instability
O. Sadot, A. Rikanati, D. Oron, G. Ben-Dor, D. Shvarts1073

Influence of an axial flow on the near-field of axisymmetric dissemination of liquid
L. Yang, Z.Y. Han, P. Xie ...1079

Shock wave propagation and bubble collapse in liquids containing gas bubbles
H. Sugiyama, K. Ohtani, K. Mizobata, H. Ogasawara1085

Shock-induced dust cloud over a deposit layer of fine particles
B.Y. Wang, Y. Xiong, Q. Chen, A.N. Osiptsov1091

Impact behavior of two-dimensional particulate aggregation containing dissimilar material layer
M. Nishida, K. Tanaka, A. Ito, Z. Lu ...1097

An optical investigation of shock waves in various liquids
W. Garen, M. Müller, S. Koch, L. Popelka, W. Neu1105

Part XII Numerical Simulations of Shock Waves

Development of the hybrid numerical simulation to clarify shock viscosity effects in a plastic shock wave front
A. Abe ...1113

Computation of turbulent separated nozzle flows
Q. Xiao, H.M. Tsai ..1119

Simulation of strong shock-interface interaction
T.G. Liu, K.C. Hung, B.C. Khoo ...1125
A robust and simple upwind scheme: a way to resolve contact discontinuities and suppress the carbuncle instability
M. Sun, K. Takayama .. 1131

Recent development of a coupled CFD/CSD methodology using an embedded approach
J.D. Baum, E.L. Mestreau, H. Luo, R. Löhner, D. Pelessone,
C. Charman ... 1137

Numerical simulations of 3-dimensional laminar hypersonic blunt fin interactions
S.J. Vithana, O.R. Tutty, G.T. Roberts 1143

Prediction of jet flows from the axisymmetric supersonic nozzle
Y. Liu, M.A.F. Kendall, G. Costigan, B.J. Bellhouse 1149

An ALE method for compressible multi-material flows on unstructured grids
H. Luo, J.D. Baum, R. Löhner .. 1157

Blast type shock wave phenomena simulated using regularized smoothed particle hydrodynamics
M. Omang, S. Børve, J. Trulsen .. 1163

Aerodynamic characteristics of high Mach, low Reynolds numbers flow past micro spheres
M.-S. Liou, K. Takayama .. 1169

Starting nozzle flow simulation using K-G two-equation turbulence model
G.W. Yang, Z.M. Hu, Z. Jiang ... 1175

Perturbational finite volume scheme for the one-dimensional Navier-Stokes equations
Y.Q. Shen, Z. Gao, G.W. Yang .. 1181

Numerical study of reactive flow in an over-expanded nozzle: influence of wall temperature and altitude
L. Meister, Y. Burtschell, D.E. Zeitoun 1187

Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions
S.A. Decker, D. Chau, T.K. Woo, F. Zhang 1193

Molecular dynamics studies of shock wave propagation in argon by using higher order symplectic integrators
Y. Kohno, T. Yashima, O. Takahashi, K. Saito, T. Saito, K. Takayama.. 1199

Numerical studies on shock cell interaction
X.Y. Hu, B.C. Khoo .. 1205

Shock/bubble interaction near a rigid boundary in shock wave lithotripsy
A.R. Jamaluddin, G.J. Ball, T.G. Leighton 1211
Moment solution of comprehensive kinetic model for plane shock wave problem
R. Nagai, K. Maeno, H. Honma, A. Sakurai ..1217

Numerical simulations of forward detonation drivers for high-enthalpy shock tunnel
C.L. Liu, Z.M. Hu, D.L. Zhang, Z. Jiang ..1223

Part XIII Various Industrial Applications

Shock wave assisted removal of micron size dust particles from silicon wafer surfaces
G. Jagadeesh, M. Mizunaga, K. Shibasaki, S. Shibasaki, T. Saito, K. Takayama ..1231

A new shock wave assisted sandalwood oil extraction technique

Synthesis of high temperature materials for aerospace applications using a shock tube
V. Jayaram, M.S. Hegde, K.P.J. Reddy ..1241

Attenuation of shock wave by porous materials
K. Kitagawa, M. Yokoyama, M. Yasuhara ..1247

Experimental study of pressure wave refrigerator performance
W. Zhao, T. Saito, P. Voinovich, K. Shibasaki, S. Shibasaki, H. Ojima, K. Takayama ..1253

A new shock wave assisted wood preservative injection system
K.S. Rao, G. Ravikumar, Ram Lal, G. Jagadeesh ..1259

Part XIV Others

Atomization experiment of pulsed supersonic liquid jets
H.-H. Shi, H. Sato, M. Itoh ..1267

Effect of secondary swirl flow on the supersonic and coaxial free jet

Experimental application of pulsed Ho:YAG laser-induced liquid jet for neuroendoscopical hematoma removal
T. Ohki, A. Nakagawa, J. Sato, H. Jokura, T. Hirano, Y. Sato, H. Uenohara, M. Sun, T. Tominaga, K. Takayama ..1279

Attenuation and penetration of pulsed supersonic liquid jets–an experimental study
K. Planthong, K. Takayama, B.E. Milton, M. Behnia ..1285
Prediction of the driving conditions for hypersonic liquid fuel jets
B.E. Milton, K. Pianthong .. 1291

Presence of shock wave like structures in pedestrian motion
S.G. Rakesh, P.K. Barhai, A. Sasoh, G. Jagadeesh 1297

Study of a hypervelocity underwater projectile
S. Yamashita, K. Togami, T. Saeki, M. Kobayashi, S. Oshiba,
K. Takayama ... 1303

Experimental investigation on supersonic jet noise from convergent-divergent nozzles
Y. Miyazato, T. Aoki, N. Kondoh, M. Masuda, Y.H. Kweon, H.D. Kim,
T. Setoguchi, K. Matsuo .. 1309

Curved shock wave interaction with a spiral vortex
B. Skews ... 1317

Correction to: Shock Waves .. C1

Authors Index .. 1323

Keywords Index .. 1328