Volumes already published
Volume 1: Trees 1 (1986)
Volume 2: Crops 1 (1986)
Volume 3: Potato (1987)
Volume 4: Medicinal and Aromatic Plants 1 (1988)
Volume 7: Medicinal and Aromatic Plants 11 (1989)
Volume 8: Plant Protoplasts and Genetic Engineering 1 (1989)
Volume 10: Legumes and Oilseed Crops 1 (1990)
Volume 11: Somaclonal Variation in Crop Improvement 1 (1990)
Volume 12: Haploids in Crop Improvement 1 (1990)
Volume 14: Rice (1991)
Volume 15: Medicinal and Aromatic Plants III (1991)
Volume 17: High-Tech and Micropropagation 1 (1991)
Volume 19: High-Tech and Micropropagation III (1992)
Volume 20: High-Tech and Micropropagation IV (1992)
Volume 21: Medicinal and Aromatic Plants IV (1993)
Volume 24: Medicinal and Aromatic Plants V (1993)
Volume 25: Maize (1994)
Volume 26: Medicinal and Aromatic Plants VI (1994)
Volume 28: Medicinal and Aromatic Plants VII (1994)
Volume 32: Cryopreservation of Plant Germplasm 1 (1995)
Volume 33: Medicinal and Aromatic Plants VIII (1995)
Volume 36: Somaclonal Variation in Crop Improvement 11 (1996)
Volume 37: Medicinal and Aromatic Plants IX (1996)
Volume 40: High-Tech and Micropropagation VI (1997)
Volume 41: Medicinal and Aromatic Plants X (1998)
Volume 43: Medicinal and Aromatic Plants XI (1999)
Volume 44: Transgenic Trees (1999)
Volume 45: Transgenic Medicinal Plants (1999)
Volume 47: Transgenic Crops 11 (2001)
Volume 48: Transgenic Crops III (2001)
Volume 49: Somatic Hybridization in Crop Improvement 11 (2001)
Volume 50: Cryopreservation of Plant Germplasm 11 (2002)
Volume 51: Medicinal and Aromatic Plants XII (2002)
Volume 56: Haploids in Crop Improvement II (2005)

Volumes in preparation
Tropical Crops I
Tropical Crops II
Plant Metabolomics
Dedicated to the memory
of Professor Dr. Georg Melchers
Preface

On planning this monograph, our intent was to examine first the current status of knowledge of the fundamental aspects of gametophyte-to-sporophyte development and, second, the haploidy progress in representative species where it is being used for plant improvement. Consequently, the monograph is divided arbitrarily into two sections.

The first section deals with the molecular, cytological and biochemical aspects of haploid embryogenesis. In this case, microspore embryogenesis is emphasized as this system still represents the primary route to haploid and doubled haploid embryo development in most species. Here, the authors have presented an up-to-date review of the regulation of microspore embryo induction and development.

The second section is devoted to the utilization of haploids in the improvement of specific crop species. Here, we have grouped them into families containing commercially important crops. Although the Fabaceae, Euphorbiaceae and Malvaceae families contain commercially important species, these were not included because of the scarcity of literature on the induction, development and use of haploids in these species. Nevertheless, as we gain more basic understanding of the induction and regulation of haploid embryogenesis, the use of this technology will be of great value in the improvement of these and other species.

The chapter on utilization of haploid cells and embryos (Chap. I.8) addresses their potential use in gene transformation, mutation, selection and artificial seed technology. Microspore-derived embryos offer a convenient system for studies of storage product accumulation and metabolism. In Chapter I.6 the use of such embryos and haploid cell cultures for storage lipid and protein metabolism is examined. The treatment is restricted to *Brassica* as there have been no reports of such studies with other species.

For the chapter on miscellaneous species (Chap. II.5), the intent was to provide coverage of those crop species that could not be conveniently included in the major families. Here, the authors have covered five families with emphasis on the use of gynogenesis for doubled haploid production. This method is quite successful in the Liliaceae and Cucurbitaceae and may be useful even in cases where androgenesis is applicable as novel genetic recombinations may be uncovered. At the National Research Council of Canada Plant Biotechnology Institute in Saskatoon, research is ongoing, aimed at the potential application of doubled haploids to the improvement of commer-
cially important members of the Umbelliferae, Labiatae and Caryophyllaceae. The results of those investigations will help in understanding species differences in haploid embryogenic response. Doubled haploid technology is of significant value in gene mapping and identification of quantitative trait loci (QTL), both of which are important for crop development.

With the current emphasis on a bioeconomy, renewable resources and sustainable development, existing crop species and emerging ones may have to be manipulated to produce biological molecules of commercial interest. There will be a need to improve crop adaptation to biotic and abiotic insults. Haploid technology is likely to be a valuable component of any strategy aimed at these improvements.

Bringing this material together as an overview should stimulate interest and the development of new concepts and mechanisms that will lead to further improvements and utilization of these very important haploid systems.

The editors greatly appreciate the cooperation of all the authors who contributed to this monograph, and we hope we have succeeded in highlighting the advances made in haploid embryo development and its potential uses. The editors wish to acknowledge the excellent technical assistance of Keith Pahl and Marie Mykytyshyn in editing this monograph. This work was performed as part of Genome Prairie’s Enhancing Canola through Genomics project.

C.E. Palmer, W.A. Keller, and K.J. Kasha

October 2004
Contents

Section I Molecular, Cytological, and Biochemical Aspects of Haploid Embryogenesis

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1 Overview of Haploidy</td>
<td>3</td>
</tr>
<tr>
<td>C. E. Palmer and W. A. Keller</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2 Natural Occurrence of Haploids</td>
<td>3</td>
</tr>
<tr>
<td>3 Induction of Haploids</td>
<td>4</td>
</tr>
<tr>
<td>4 Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>I.2 Pathways to Microspore Embryogenesis</td>
<td>11</td>
</tr>
<tr>
<td>T. Aionesei, A. Touraev, and E. Heberle-Bors</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2 Embryogenic Induction of Microspores</td>
<td>12</td>
</tr>
<tr>
<td>3 Cellular Changes and Cell Cycle Events During Induction of Embryogenesis</td>
<td>13</td>
</tr>
<tr>
<td>4 Direct Embryogenesis Versus Indirect Plant Formation</td>
<td>16</td>
</tr>
<tr>
<td>5 Division Pathways of Embryogenic Microspores</td>
<td>19</td>
</tr>
<tr>
<td>6 Identification of the Developmental Fate of Microspores by Cell Tracking</td>
<td>24</td>
</tr>
<tr>
<td>7 Apical–Basal Polarity Formation of Embryogenic Microspores</td>
<td>26</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>30</td>
</tr>
<tr>
<td>I.3 The Role of Stress in the Induction of Haploid Microspore Embryogenesis</td>
<td>35</td>
</tr>
<tr>
<td>S. Zoriniants, A.S. Tashpulatov, E. Heberle-Bors, and A. Touraev</td>
<td></td>
</tr>
<tr>
<td>1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2 Stress and Microspore Embryogenesis</td>
<td>35</td>
</tr>
<tr>
<td>3 Morphological Characteristics of Stress-Induced Embryogenic Microspores</td>
<td>37</td>
</tr>
<tr>
<td>4 Mechanism of the Stress-Induced Switch from the Gametophytic to the Sporophytic Mode of Development</td>
<td>38</td>
</tr>
<tr>
<td>5 Conclusions and Perspectives</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>48</td>
</tr>
</tbody>
</table>
I.4 Microspore Embryo Induction and Development
in Higher Plants: Cytological and Ultrastructural Aspects 53
C. Clément, R.S. Sangwan, and B. Sangwan-Norreel
1 Introduction .. 53
2 The Microspore at the Sampling Stage 56
3 The Pretreated Microspore 59
4 Embryogenic Development of the Microspore 61
5 Conclusions .. 67
References .. 68

I.5 Biochemical and Molecular Aspects of Haploid Embryogenesis . 73
K. Boutilier, M. Fiers, C.-M. Liu, and A.H.M. van der Geest
1 Introduction .. 73
2 Gene Identification Strategies for Early MDE Development 74
3 Extracellular Signalling Molecules in MDE Development 83
4 Conclusions and Perspectives 90
References .. 91

I.6 Storage Product Metabolism in Microspore-Derived Cultures
of Brassicaceae .. 97
R.J. Weselake .. 97
1 Introduction .. 97
2 Lipid Biosynthesis in MD Cultures 98
3 Carbohydrate Metabolism in MD Cultures of B. napus 108
4 Storage Protein Biosynthesis in MD Cultures of B. napus 112
5 Glucosinolate Biosynthesis in MDEs of B. napus 114
6 Conclusions and Future Directions 115
References .. 116

I.7 Chromosome Doubling and Recovery of Doubled Haploid Plants .. 123
K.J. Kasha .. 123
1 Introduction .. 123
2 Terminology .. 124
3 Chromosome Doubling of Androgenetic Haploids 126
4 Gynogenetic Haploid Production and Chromosome Doubling .. 139
5 Other Avenues for Chromosome Doubling 143
6 Chromosomal Variation Associated with Chromosome Doubling . 144
7 Conclusions .. 146
References .. 147

I.8 Utilization of Microspore-Derived Embryos 153
Y. Takahata, H. Fukuoka, and K. Wakui
1 Introduction .. 153
2 Mutation ... 153
3 Dry Artificial Seed .. 155
Section II Utilization of Haploids in the Improvement of Specific Crop Species

II.1 Haploids in the Improvement of Solanaceous Species
G.C.C. Tai

1 Introduction .. 173
2 Induction of Haploids 174
3 Development and Use of Doubled Haploids 177
4 Development and Use of Dihaploids 179
5 Research Topics with Application of Haploidization 181
6 Conclusions .. 184
References .. 185

II.2 Haploids in the Improvement of Crucifers
W. FRIEDT and M.K. ZARHLoul

1 Introduction .. 191
2 Progress and Status of Haploid Production 192
3 Use of Haploids in Breeding of Crucifers 198
4 Brassica Haploids as a Tool in Breeding Research 202
5 Haploids in Combination with Other Biotechnological Methods. 205
6 Conclusions, Future Trends and Perspectives 207
References .. 208

II.3 Haploids in the Improvement of Poaceae
P. DEVAUX and R. PICKERING

1 Introduction .. 215
2 Doubled Haploid Production 216
3 Use of Doubled Haploids 227
4 Conclusion ... 232
References .. 233

II.4 Haploids in the Improvement of Woody Species
S.B. ANDERSEN

1 Introduction .. 243
2 Gametophyte Development in Woody Species 244
3 Haploid Development in Woody Species 245
4 Examples of Woody Angiosperms 249
5 Examples in Gymnosperms 253
6 Conclusions .. 254
References .. 254
II.5 Haploids in the Improvement of Miscellaneous Crop Species
(Cucurbitaceae, Liliaceae, Asparageceae, Chenopodiaceae,
Araceae and Umbelliferae) .. 259
A.G. Juhász and M. Jakáé

1 Introduction .. 259
2 Haploid Induction in Cucurbitaceae Species 260
3 Haploid Induction in Liliaceae Species 262
4 Haploid Induction in Asparagaceae 266
5 Haploid Induction in Chenopodiaceae 268
6 Haploid Induction in Araceae ... 270
7 Haploid Induction in Umbelliferae 270
8 Conclusion .. 271
References .. 271

II.6 Haploids in the Improvement of Linaceae and Asteraceae 277
K. Nichterlein and R. Horn

1 Linaceae .. 277
1.1 Introduction .. 277
1.2 Haploids Through Twinning Genotypes and Their Use
in Genetic Research and Mapping ... 279
1.3 Doubled Haploids Through Anther and Microspore Culture
and Use in Crop Improvement ... 280
1.4 Conclusions and Future Prospects of Doubled Haploids
in Linseed Improvement .. 283
2 Asteraceae ... 284
2.1 Introduction .. 284
2.2 Production of Doubled Haploids by Anther
and Microspore Culture in the Genus Helianthus 285
2.3 Doubled Haploid Production of Sunflower
by Induced Parthenogenesis .. 289
2.4 Conclusions and Future Prospects of Doubled-Haploid
Production in Asteraceae .. 290
References .. 291

II.7 Challenges and Limitations to the Use of Haploidy
in Crop Improvement ... 295
C.E. Palmer and W.A. Keller

1 General Aspects .. 295
2 Androgegence .. 296
3 Gynogenesis ... 298
4 Parthenogenesis and Wide Hybridization Crosses 298
5 Emerging Uses of Doubled Haploids 299
References .. 300

Subject Index ... 305
List of Contributors

AIONESEI, T.
Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4, 1030 Vienna, Austria

ANDERSEN, S.B.
Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark

BOUTILIER, K.
Plant Research International. P.O. Box 16, 6700 AA Wageningen, The Netherlands

CLEMENT, C.
Université de Reims Champagne Ardenne, UFR Sciences, Biologie et Physiologie Végétales, BP 1039, 51687 Reims Cedex 2, France

DEVAUX, P.
Florimond Despres, Biotechnology Laboratory, 3 rue Florimond Despres, P.O.B. 41, 59242 Cappelle en Pévèle, France

FIERS, M.
Plant Research International. P.O. Box 16, 6700 AA Wageningen, The Netherlands

FRIEDT, W.
Institute of Crop Science and Plant Breeding I, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany

FUJUKO, H.
National Institute of Vegetable and Tea Science, Mie 514-2392, Japan

HEBERLE-BORS, E.
Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
HORN, R.
Department of Genetics and Biochemistry, Clemson University,
100 Jordan Hall, Box 340324, Clemson, South Carolina 29634-0324, USA

JAKÄE, M.
Agronomy Department, Biotechnical Faculty, University in Ljubljana,
Jamnikarjeva 101, 1000 Ljubljana, Slovenia

JUHÁSZ, A.G.
Vegetable Crops Research Institute, Budapest, 1775 Pf 95, Hungary

KASHA, K.J.
Department of Plant Agriculture, University of Guelph, Guelph, Ontario,
N1G 2W1, Canada

KELLER, W.A.
NRC – Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon,
Saskatchewan, S7N 0W9, Canada

LIU, C.-M.
Plant Research International. P.O. Box 16, 6700 AA Wageningen,
The Netherlands

NICHTERLEIN, K.
Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,
Vienna, Austria. Present address: FAO, Regional Office for Europe,
Viale delle Terme di Caracalla, Rome, Italy

PALMER, C.E.
NRC – Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon,
Saskatchewan, S7N 0W9, Canada

PICKERING, R.
New Zealand Institute for Crop and Food Research Limited,
Private Bag 4704, Christchurch, New Zealand

SANGWAN, R.S.
Université de Picardie Jules Verne, Androgenèse et Biotechnologies, 33,
rue Saint-Leu, 80039 Amiens, France

SANGWAN-NORREEL, B.
Université de Picardie Jules Verne, Androgenèse et Biotechnologies, 33,
rue Saint-Leu, 80039 Amiens, France
TAI, G.C.C.
Potato Research Centre, Agriculture and Agri-Food Canada, P.O. Box 20280,
Fredericton, New Brunswick, E3B 4Z7, Canada

Takahata, Y.
Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan

Tashpulatov, A.S.
Max F. Perutz Laboratories, University Departments at the Vienna
Biocenter, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4,
1030 Vienna, Austria

Touraev, A.
Max F. Perutz Laboratories, University Departments at the Vienna
Biocenter, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4,
1030 Vienna, Austria

van der Geest, A. (Lonneke) H.M.
Plant Research International. P.O. Box 16, 6700 AA Wageningen,
The Netherlands

Wakui, K.
Junior College, Tokyo University of Agriculture, Setagaya 156-8502, Japan

Weselake, R.J.
Department of Chemistry and Biochemistry, University of Lethbridge,
4401 University Dr, Lethbridge, Alberta, T1K 3M4, Canada. Present address:
Department of Agriculture, Food and Nutritional Science, 410 Agriculture/
Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5,
Canada

Zarhloul, M.K.
Institute of Crop Science and Plant Breeding I, Justus-Liebig-University
of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany

Zoriniants, S.
Max F. Perutz Laboratories, University Departments at the Vienna
Biocenter, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4,
1030 Vienna, Austria
Section I Molecular, Cytological, and Biochemical Aspects of Haploid Embryogenesis